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A Mathematical Analysis of student-generated sorting 
algorithms 

 
Audrey A. Nasar1 

Borough of Manhattan Community College at the City University of New York 
 
Abstract: Sorting is a process we encounter very often in everyday life. Additionally it is 
a fundamental operation in computer science. Having been one of the first intensely 
studied problems in computer science, many different sorting algorithms have been 
developed and analyzed. Although algorithms are often taught as part of the computer 
science curriculum in the context of a programming language, the study of algorithms and 
algorithmic thinking, including the design, construction and analysis of algorithms, has 
pedagogical value in mathematics education. This paper will provide an introduction to 
computational complexity and efficiency, without the use of a programming language. It 
will also describe how these concepts can be incorporated into the existing high school or 
undergraduate mathematics curriculum through a mathematical analysis of student-
generated sorting algorithms. 
Keywords: Sorting; Algorithm; Complexity; Computational Thinking; Mathematics 
Education; Pre-calculus 
 

 

I. Introduction 
 You’ve seen the headlines. It’s pretty clear that we live in the era of Big Data. 

Beyond the collection of all this data, as a society we have become reliant on algorithms 

to sort the data and come up with something meaningful. Sorting, is a fundamental 

operation in computer science as well as a process we perform naturally in everyday life. 

Children are exposed to basic sorting activities from an early age, with toys such as the 

“Russian nesting doll”, where dolls of decreasing size are placed one inside the other, and 

the “ring pyramid”, where different sized rings are placed on a center pole from largest to 

smallest to build a pyramid. The general value of sorting is based on the fact that sorted 
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data are much easier to maneuver. If a phone book listed names at random rather than 

alphabetically, the prospect of finding a desired name would be a rather daunting task.    

 Given the impact of computers and computing on almost every aspect of society, 

the ability to develop, analyze, and implement algorithms is gaining more focus. A 

primary goal of mathematics education is to prepare students to be flexible problem 

solvers. The study of algorithms and algorithmic thinking contributes to the 

understanding of problem solving techniques and therefore has pedagogical value. 

According to Knuth (1974), a person does not really understand something until he 

teaches it to someone else. He goes on to clarify that a person does not really understand 

something until he can teach it to a computer, that is, express it as an algorithm. The 

mathematical ideas behind the design, construction and analysis of algorithms, are 

important for students’ mathematical education. Furthermore, discovering and exploring 

algorithms can help students see mathematics as a meaningful and creative subject.  

 In secondary school, algorithms are usually restricted to the computer science 

curriculum and as a result, the important relationship between mathematics and computer 

science is often overlooked (Henderson, 1992). An algorithm is a mathematical object.  

The program, on the other hand, depends on the computer and/or the programming 

language used. Gal-Ezer and Zur (2004) found that the study of algorithms gives the 

learner insight into the problems involved by providing techniques for solutions that are 

independent of programming languages. Hence, if we can describe algorithms without 

having to rely on a programming language this gives us the opportunity to focus on their 

mathematical characteristics which could be a valuable addition to a student’s secondary 

mathematics education. Teaching algorithms in high school would afford teachers and 
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students the opportunity to “apply the mathematics they know to solve problems arising 

in everyday life, society and the workplace” (CCSSI, 2010).  Furthermore, since students 

are already comfortable with the process of sorting, sorting algorithms can serve as an 

entry point for teaching algorithmic thinking.    

 There have been several studies in computer science education that highlight 

methods used to teach sorting algorithms at the secondary level, including using a hands-

on approach, flow-charts, and computer animations (Bernat, 2014; Végh, & Stoffová, 

2017), mobile device apps (Boticki, Barisic, Martin & Drljevic, 2013), and a carefully 

designed web-based environment (Kordaki, Miatidis & Kapsampelis, 2008). While 

informative, these studies do not emphasize the mathematical characteristics of the 

sorting algorithms. Natov (2009) compares the complexities and running times of two 

sorting algorithms in a paper geared towards instructors of discrete mathematics and 

algorithms. Although he describes a mathematical analysis of complexity, he assumes the 

reader to be familiar with more advanced computer science concepts such as Big O 

notation and running time.   

 Lovász (2013) writes: “an important task for mathematics educators of the near 

future (both in college and high school) is to develop a smooth and unified style of 

describing and analyzing algorithms. A style that shows the mathematical ideas behind 

the design; that facilitates analysis; that is concise and elegant would also be of great help 

in overcoming the contempt against algorithms that is still often felt both on the side of 

the teacher and of the student” (pg. 7). This paper will address this need by providing a 

framework with which to perform a mathematical analysis of the complexity and 

efficiency of sorting algorithms without the use of a programming language, thus 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CD8QFjAC&url=http%3A%2F%2Fwww.cs.elte.hu%2F%7Elovasz%2Fpublic.pdf&ei=n5s5T4nxDafr0gGd8PXhAg&usg=AFQjCNGD0k0GpW-JCnxA_MuVbNJbqlFEtA
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allowing for a more seamless integration into the existing high school or undergraduate 

mathematics curriculum.  

 The observations made in this paper are based on a two-week mini-course on 

algorithms that was taught by the author to a class of ten high school students. All ten 

students had previously taken calculus, however some experience with precalculus would 

have been sufficient. The mini-course introduced students to the concept of complexity 

and then exposed them to several novel algorithmic problems, including sorting. They 

were asked to generate and analyze their own algorithms and then determine which was 

more efficient. This paper will follow the same format as the mini-course, starting with 

an introduction to the concept of complexity, as it was explained to the high school 

students, followed by a mathematical analysis of two of the algorithms that the students 

generated for the sorting problem.   

 

III. Complexity 

 The complexity, or computational difficulty, of an algorithm estimates how many 

computations are needed to solve the algorithmic problem. Proulx (1997) found that the 

ability to measure and interpret complexity in addition to a good sense of scale makes 

students aware of the fact that some problems are indeed difficult, while many other 

seemingly complex problems can be solved rather easily. To see both the power and the 

limitations of computers, an understanding of how the complexities of different 

algorithms compare is necessary. In particular, students need to understand that some 

problems cannot be solved efficiently. Although technology may change the relative 

importance of individual algorithms, the mathematical ideas behind the design, 
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construction, and analysis of algorithms and the experience of applying some of these 

ideas to devise and improve existing algorithms is of importance for students’ long-term 

mathematical education and will never become obsolete. Lovász (1996) writes 

“complexity, I believe, should play a central role in the study of a large variety of 

phenomena, from computers to genetics to brain research to statistical mechanics. In fact, 

these mathematical ideas and tools may prove as important in the life sciences as the 

tools of classical mathematics (calculus and algebra) have proved in physics and 

chemistry” (pg. 1).  

 Complexity can be measured by isolating a particular operation fundamental to 

the problem and then counting the number of times the algorithm performs this operation 

for an input of a given size. We will refer to this operation as an ‘elementary operation’.  

This method provides criteria for comparing several algorithms for the same problem to 

determine which is the most efficient with respect to the chosen operation. This analysis 

would give students the opportunity to “construct and compare linear, quadratic, and 

exponential models and solve problems” (CCSSI, 2010). 

 The choice of elementary operation will vary depending on the nature of the 

problem that the algorithm is designed to solve (and in some cases may involve more 

than one operation). For sorting algorithms, we will count the number of comparisons 

needed to sort the elements. The number of elementary operations performed by an 

algorithm tends to grow with the size of the input. As such, it is traditional to describe the 

complexity of an algorithm as a function of n, its input size. The best notion for input size 

depends on the nature of the problem being studied. For sorting problems, the most 

natural measure of n is the number of items in the input sequence. When n is sufficiently 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CD8QFjAC&url=http%3A%2F%2Fwww.cs.elte.hu%2F%7Elovasz%2Fpublic.pdf&ei=n5s5T4nxDafr0gGd8PXhAg&usg=AFQjCNGD0k0GpW-JCnxA_MuVbNJbqlFEtA
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small, different algorithms may require the same number of elementary operations to 

solve a given problem.  For example, two sorting algorithms for alphabetizing a list of 

names may only require one comparison when the input sequence has length n=2. 

However, as n increases, one of the algorithms may perform significantly fewer 

comparisons than the other, and would therefore be considered more efficient. Maurer 

and Ralston (2004) note that as computers get faster, people use them on larger and larger 

problems, so if there are a number of competing algorithms to solve the same problem, it 

is important to know which algorithm is most efficient for large n. As such, the choice of 

an algorithm for small inputs is not critical.  

 In addition to input size, the measure of complexity should also reflect the 

structure of the input. Even for inputs of the same size, the number of elementary 

operations performed by an algorithm can vary depending on the specific input. For 

example, an algorithm for alphabetizing a list of names may require very little work if 

only a few of the names are out of order, but it may involve substantially more work if 

many of the names are out of order. It is worthwhile to look at algorithms whose 

complexity depends on the structure of the input as well as algorithms whose complexity 

is the same for all inputs of a given size. An algorithm is said to be ‘oblivious’ if its 

complexity is independent of the structure of the input and ‘non-oblivious’ if the 

complexity depends on the structure of the input (Libeskind-Hadas, 1998). For ‘non-

oblivious’ algorithms, we differentiate between the worst-case, average-case, and best-

case scenarios by defining a separate complexity function for each.  Whereas, for 

‘oblivious’ algorithms, it suffices to describe their complexity by a single function (as 

their worst-case, average-case, and best-case scenarios are all the same).  
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Definition 1: The worst-case complexity of an algorithm is the greatest number of 

operations needed to solve the problem over all inputs of size n.  

Definition 2: The best-case complexity of an algorithm is the least number of operations 

needed to solve the given problem for all inputs of size n.  

 Definition 3: The average-case complexity which is the most typical of the three but 

usually much more difficult to compute, quantifies the algorithm’s average performance 

over all possible inputs of the same size assuming all inputs are equally likely.  

 

 Given two algorithms with worst-case complexity functions f(n) and g(n) 

respectively, the algorithm with worst-case complexity function f(n) is considered to be 

more efficient than the algorithm with worst-case complexity function g(n) if 

lim𝑛→∞
𝑓(𝑛)
𝑔(𝑛)

= 0. This can also be explained without using a limit by comparing the 

degree of the leading terms (in the case of polynomial functions) or graphing both 

functions and looking at the end behavior.  Note that in the case of ‘oblivious’ 

algorithms, we need not specify worst-case.  

   

III. Student-generated sorting algorithms 

 After the concept of complexity was introduced, the author presented the sorting 

problem and encouraged the students to develop their own algorithms. The ‘General 

Sorting Problem’ can be described as follows: 

The General Sorting Problem:  For a given sequence of n distinct elements 

  where each pair of elements can be ordered,  the output is a reordering 

 of the given sequence such that . 

 

a1,a2,...,an

 

a'1 ,a'2 ,...,a'n

 

a'1 ≤ a'2 ≤ ...≤ a'n
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In addition to developing their own algorithms, students were encouraged to answer the 

following questions:  

(1) What “elementary operation” is used to solve the problem? 

(2) Describe a function that gives the number of operations performed for a given 

input for your algorithm.  

 The first algorithm proposed by a student, commonly known as  ‘selection sort,’ 

finds the smallest element in the sequence, followed by the next smallest element, and so 

on, until the entire sequence is sorted. It can be described as follows: for a given sequence 

, to find the smallest element, 𝑎′1, start by comparing the first and second 

elements in the sequence. Once the smaller of the two is established go on to compare it 

with the third element in the sequence. Once the smaller of the two is established go on to 

compare it with the fourth element in the sequence, and so on. After the last element in 

the sequence has been compared, this process will result in the identification of 𝑎′1. Next, 

move 𝑎′1 to the first position in the sequence shifting the remaining unsorted elements to 

the right. In order to find the second smallest element, 𝑎′2, compare the second and third 

elements in the sequence. Once the smaller of the two is established go on to compare it 

with the fourth element in the sequence. Once the smaller of the two is established go on 

to compare it with the fifth element in the sequence, and so on. After the last element in 

the sequence has been compared, this process will result in the identification of 𝑎′2. Next, 

move 𝑎′2 to the second position in the sequence shifting the remaining unsorted elements 

 

a1,a2,...,an
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to the right. Continue this process until only one unsorted element remains. By default 

this element is 𝑎′𝑛 and what results is the sorted sequence a '1,a '2 ,...,a 'n .    

 Example: Use ‘selection sort’ to sort the sequence of numbers 5,9,2, 7,1 . To 

find the smallest element in the sequence, 𝑎′1, compare 5 and 9. Since 5 is less than 9 go 

on to compare 5 and to 2. Since 2 is less than 5 go on to compare 2 and 7. Since 2 is less 

than 7 go on to compare 2 and 1. Since 1 is less than 2 it must be the smallest element in 

the sequence, hence set 𝑎′1=1.  Next 1 is moved to the first position in the sequence, and 

the remaining elements are shifted to the right. Now consider finding the second smallest 

element in the sequence. Since 5 is less than 9 go on to compare 5 and 2. Since 2 is less 

than 5 go on to compare 2 and 7. Since 2 is less than 7 it must be the second smallest 

element in the sequence, hence 𝑎′2=2. Next 2 is moved to the second position in the 

sequence, shifting the remaining elements to the right. Now to find the third smallest 

element in the sequence compare 5 and 9. 5 is less than 9 so go on to compare 5 and 7. 5 

is also less than 7 and so it must be the third smallest element in the sequence, hence 

𝑎′3=5. Incidentally it is already in the third position so does not need to be moved. To 

find the fourth smallest element in the sequence, compare 9 and 7. 7 is less than 9 and so 

it must be the fourth smallest element in the sequence, hence 𝑎′4=7.  7 is moved to the 

fourth position, shifting the remaining element to the right. This results in the sorted 

sequence 

 

1,2,5,7,9, .  

 After students successfully applied the algorithm to a sequence of numbers, they 

were asked to derive the complexity function. To find the complexity function they 

identified the elementary operation for this algorithm as making a comparison. Although 

the algorithm also required shifting elements, for simplicity only the comparisons were 
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counted.  They observed that the number of comparisons used to order the sequence did 

not depend on the extent to which the elements were already ordered. Therefore, this 

algorithm could be classified as ‘oblivious.’ Next, the complexity function was defined as 

follows: 

 Let f(n) represent the complexity function for ‘selection sort.’ Then f(n) gives the 

number of comparisons necessary to sort a sequence of length n.  Finding the smallest 

element 𝑎′1 uses n-1 comparisons, finding the second smallest element 𝑎′2 uses n-2 

comparisons, and in general, finding the kth smallest element 𝑎′𝑘 uses n-k comparisons.  

Applying this general formula for k=n-1, finding 𝑎′𝑛−1  would use n-(n-1) or 1 

comparison, namely the comparison of the last two unsorted elements in the sequence. 

Once the smaller of the two is identified and placed in the second to last position, the 

entire sequence will be sorted. Therefore, sorting a sequence of length n uses a total of (n-

1)+(n-2)+(n-3)+…+3+2+1= (n)(n-1)/2 comparisons. Now (n)(n-1)/2 is equivalent to 

𝑛2/2 − 𝑛/2, so we can write 𝑓(𝑛) = 𝑛2/2 − 𝑛/2. Note that in order to sort the sequence 

 

5,9,2,7,1 , a total of 10 comparisons were made. This result can be confirmed by 

plugging in n=5 to the complexity function 𝑓(𝑛) = 𝑛2/2 − 𝑛/2. ‘Selection sort’ can be 

described as having ‘quadratic complexity’ as its complexity function is a quadratic.   

 The second algorithm proposed by another student is commonly known as  

‘insertion sort.’  It orders the first two elements, then incorporates the third element, then 

the fourth element, and so on until the entire sequence is ordered. It can be described as 

follows: for a given sequence, compare the first and second element in the sequence 

placing the smaller of the two in the first position and the larger in the second position.  

Then compare the third element with the element in the second position. If it is larger, 
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then place it in the third position but if it is smaller then go on to compare it to the first 

element in the sequence. If it is larger than the first element then place it in the in second 

position but if it is smaller then place it in the first position. Next compare the fourth 

element with the third element. If it is larger then place it in the fourth position but if it is 

smaller then go on to compare it to the third element, second element, and first element as 

necessary.  Continue this process until all the elements in the sequence have been 

ordered.  

 Example: Use ‘insertion sort’ to sort the sequence of numbers . First 

compare 5 and 9. Since 5 is less than 9 keep 5 in the first position and 9 in the second 

position. Next compare 2 and 9. Since 2 is less than 9 compare it to 5. Since 2 is less than 

5 place it in the first position shifting 5 and 9 to the second and third position 

respectively. Next compare 7 to 9.  Since 7 is less than 9 go on to compare 7 and 5. Since 

7 is greater than 5 place it in the third position shifting 9 to the fourth position. Next 

compare 1 and 9. Since 1 is less than 9, compare it to 7. Since it is less than 7, compare it 

to 5. Since it is less than 5 compare it to 2. Since it is less than 2 place it in the first 

position shifting the remaining elements to the right. This results in the sequence 

.  

 After the students successfully applied the algorithm to a sequence of numbers, 

they moved on to analyzing its complexity. Although the algorithm also requires shifting 

elements, the students were advised only to count the comparisons.  They observed that 

the number of comparisons used to order the sequence depended on the extent to which 

the elements were already ordered. In other words, unlike the previous algorithm, this 

algorithm was not ‘oblivious.’ After further analysis it became clear that the best-case 

5,9,2, 7,1
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scenario would result if the sequence was already in order and the worst-case scenario 

would result if the sequence were in reverse order.   

 The complexity functions were defined as follow: Let b(n) represent the best-case 

complexity function. The algorithm starts by comparing the first two elements, and then 

compares each of the remaining n-2 elements once each for a total of 1+(n-2) 

comparisons. Hence b(n)=n-1. Given the sequence  the algorithm would use 4 

comparisons. Let w(n) represent the worst-case complexity function. The algorithm 

would start by comparing the first two elements, and then comparing the third element 

with each of the first two elements and the fourth element with each of the first three 

elements and in general, the kth element with each of the k-1 elements that precede it, for 

a total of (n-1)+(n-2)+(n-3)+…+3+2+1= (n)(n-1)/2 comparisons. Hence 𝑤(𝑛) = 𝑛2/2 −

𝑛/2 which is the same as the complexity function for ‘selection sort.’ Given the sequence 

 the algorithm would use 10 comparisons. The average case complexity 

function a(n) is a lot more complicated and was not covered in class, but can serve as a 

deeper exploration. Note that in order to sort the sequence  a total of 9 

comparisons, which is between the best case and worst case. ‘Insertion sort’ can be 

described as having ‘quadratic complexity’ in its worst case and ‘linear complexity’ in its 

best case. The students observed that while the worst-case complexity function for 

‘insertion sort’ is the same as the complexity function for ‘selection sort,’ ‘insertion sort’ 

is more efficient because it will often use fewer operations than ‘selection sort.’  

 While we did not have time during the mini-course to delve deeper into the 

mathematical analysis of sorting algorithms, some possible extensions are: 
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(1) To consider how the complexity would change if the elements in the sequence were 

not distinct.  

(2) To describe the average-case complexity function for ‘insertion sort.’ 

(3) To introduce ‘merge-sort’ and demonstrate why it is the most efficient of any sorting 

algorithm.  

 At the end of the mini-course, many students reflected that they enjoyed learning 

about sorting because it was very relevant to their lives. They also liked that there were 

so many possible solutions. In addition, because students generated their own algorithms, 

they were able to really take ownership over them and were more invested in the 

complexity analysis and determining which is more efficient. I don’t think they would 

have been as interested had the algorithms been given. Furthermore, students were 

pleasantly surprised at how mathematical the analysis of sorting algorithms actually was. 

In conclusion, the sorting problem proved to be a rich introduction to the mathematical 

analysis of algorithms and was very accessible to students at the high school level.  
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