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Abstract: The focus of this study is the mathematical reasoning of pre-service teachers. The 
author of this paper was the instructor of a class of pre-service teachers preparing to teach in 
lower secondary school. The instructor divided the class in small groups and gave each group 
some mathematical exercises to work on. The unit of analysis of this study is the video and 
audio-recorded dialogue of each group. The aim of this study is to characterize different 
aspects of pre-service teachers’ mathematical reasoning, as well as to indicate ways to 
develop their reasoning further. The basic idea of the study is that rote learning reasoning is 
imitative, and the opposite kind of reasoning is creative. However, the study indicates that the 
reasoning of the participating students sometimes could be neither imitative nor creative. 
Thus, some of the reasoning was in a grey zone somewhere between imitative and creative 
reasoning.    
Keywords: Pre-service teachers, imitative reasoning, non-imitative reasoning, creative 
mathematical reasoning. 

Introduction 
Freudenthal (1991) is concerned with mathematics as an activity. To describe the main 
aspects of this activity he uses the term mathematising. Referring to Treffers (1986), 
Freudenthal (1991) makes the distinction between horizontal and vertical mathematising. 
According to Freudenthal horizontal mathematising leads from the world of life to the world 
of mathematics to which we only have access through symbolic representations. In this 
process, the mathematical representations get their meaning through their relations to real life 
situations. The mathematical concepts and methods are gaining their meaning as abstract 
constructs in many different contexts. When symbols are shaped, reshaped, manipulated, and 
connected to the representation of other mathematical concepts or methods the mathematising 
is vertical.  

However, the distinction between horizontal and vertical mathematising is vague. 
Mathematical objects may be very different for the expert mathematician and the novice. The 
mathematical activity of novices may be restricted to procedures or rules, and to particular 
contexts and situations. Skemp (1978) has labeled this instrumental understanding. Expert’s 
mathematical activity is on the other hand normally conceptually based and relational 
understanding (Skemp, 1978). In addition, expert reasoning may be less restricted to 
procedures. Thus, the distinction between horizontal and vertical mathematising depends on 
the situation and the persons involved. According to Freudenthal (1991), the best way to 
explain this distinction is to give some examples. One of his examples concerns the figurate 
numbers. For instance, the sum of the n first odd integers equals the n’th square integer. When 
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represented geometrically by arranging figurate numbers as dots (units) in a square this may 
be a matter of horizontal mathematising. Formulating this relation with number symbols and 
proving it using an integer variable and mathematical induction would be vertical 
mathematising.   

This study is concerned with the way pre-service teachers’ reason mathematically and how to 
develop their reasoning through teacher education.  Freudenthals (1991) general idea or 
maybe even philosophy about mathematical activity as mathematisation seems to be a fruitful 
basis for such an endeavor. Accordingly, it is particularly interesting to understand the pre-
service teachers reasoning when mathematising. 

Pre-service teachers are hardly expert mathematicians. Therefore, one may expect that their 
mathematical reasoning is different from the reasoning of the expert mathematician. Based on 
teaching experience one may have some idea of what these differences might be. One of these 
differences might be the role of creativity in mathematical reasoning. Of course, this is a 
question of what creativity means in the mathematical field. Sriraman (2009) conducted a 
study where he interviewed expert mathematicians. In this study, he also discusses the 
concept of creativity in the mathematical field. His conclusion is that it is sufficient to define 
creativity as the ability to produce novel or original work. Sriramans study indicates that in 
general, the interviewed mathematicians’ creative process followed the Gestalt model 
(Wallas, 1926). The Gestalt model has four stages. The first stage of this model, called 
preparation consist of hard work in order to understand the problem. The second stage is 
incubation where one puts the problem aside for some time. However, probably without 
forgetting it completely. The third stage is illumination when perhaps doing something else 
the solution suddenly appears. One has of course no guarantee that this will happen. The 
fourth stage is verification where one works out the details of the solution to verify it.    

In an essay, Hadamard (1954) discusses the role of invention in the mathematical field using 
his own and other’s research as examples. The reading of Hadamard’s essay indicates that 
what he has in mind when discussing invention in the mathematical field is similar to what the 
expert mathematicians have in mind when interviewed by Sriraman (2009). However, the 
question would be if pre-service teachers see it the same way. Does mathematics as an 
activity (Freudenthal, 1991) involve creativity in any way for pre-service teachers? The 
motivation for this study is that the way pre-service teachers see this question would probably 
have an impact on their future teaching. It is reasonable to assume that if pre-service teachers 
do not see creativity as part of any mathematical activity, then their teaching would probably 
reflect this. In turn, their students would probably experience mathematics as not having 
anything to do with creativity. On the other hand, if pre-service teachers do see creativity as 
part of mathematical activity, then their future teaching would probably reflect this as well, 
and hence their students would experience creativity as an integral part of mathematical 
activity. By making creativity an element of teaching pre-service teachers mathematics, one 
could make them aware of creativity as an element of mathematics. This would probably 
improve their mathematical reasoning, as well as have an impact on their future teaching. It is 
reasonable to expect that students, who have experienced creativity as an element of working 
with mathematics will make it and element of their future work with mathematics. There are 
no reasons why this should not apply to pre-service teachers as well. The pre-service teachers 
participating in this study were working with certain exercises involving number sequences. 
Hence, the research question of the study is as follows: 
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RQ: How to characterize and develop further pre-service teachers’ mathematical reasoning in 
problem solving activities related to number sequences?  

The participants of this study were students in a class of pre-service teachers. The author did 
not consider any kind of mathematical giftedness or excellence when selecting the 
participants of the study. All student of the class were invited. The students were preparing to 
teach mathematics in lower secondary school. They were specializing in mathematics by 
taking a course on number theory. The course involved figurate numbers, sequences, 
divisibility, greatest common divisor with the Euclidean algorithm, linear Diophantine 
equations, congruences and some cryptology.  

Most of the students of the class with a few exceptions did take part in the study. The students 
worked in small groups. A colleague of the instructor recorded the students on video while 
they were working. Each group was also audio recorded. The instructor answered questions 
and gave some help if the students asked for it. In each group, there was a discussion among 
the students on how they could solve the problems. These discussions or rather the transcripts 
of them constitute the unit of analysis of this study. Excerpts of these transcripts will follow 
below.       

The students worked with certain exercises on number sequences. The exercises gave the 
students the first few terms of a sequence of numbers, and asked them to find the next term as 
well as a general expression for each term of the sequence. Thus, the students were working 
with numbers, finding patterns and generalizing to find the general term of a given sequence. 
One could characterize this as vertical mathematising (Freudenthal, 1991). To work with 
number sequences does probably not require calculations that are very complicated for the 
students. The students only needed some basic algebra knowledge. The concepts involved 
such as numbers and sequences should not be very difficult for the students. Thus, the 
students could concentrate on the problem solving aspect of it and work with their own ideas, 
some of which possibly might have some novelty for the students. In addition, some 
sequences such as the Fibonacci numbers have appeared as topics of exercises in lower 
secondary school in Norway. Thus, the topic of number sequences is relevant for their future 
teaching. The students experienced this relevance for their future teaching, and this was 
clearly motivating the students to work with this particular topic.    

Literature review 
The first part of the research question is to characterize pre-service teachers’ mathematical 
reasoning as the first step to develop ideas about how to develop their reasoning. Therefore, as 
part for the research behind this paper, the author conducted a limited and systematic search 
for literature dealing with the characterization of mathematical reasoning. This review will 
mention some of the most relevant literature. The study uses the research framework of 
Lithner (2008) and consequently Lithner is fundamentally important. Individuals are using the 
notion of creativity in many different contexts. This makes it necessary to discuss the meaning 
of creativity in the context of mathematics. The purpose of this literature review is to draw 
attention to what literature has to say about the meaning of creativity not in general but in the 
field of mathematics. Since this study is looking for ways and ideas to develop pre-service 
teachers’ mathematical reasoning, it might be useful to consider the differences between 
expert mathematicians and novices.  
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Sriraman (2009) investigated how mathematicians create mathematics. In a qualitative study, 
he interviewed five creative mathematicians. The results indicate that in general, the 
mathematicians’ creative process followed the four-stage Gestalt model. Sriraman also 
thoroughly discussed the meaning of creativity in the mathematical field. In his definition, the 
novelty of the work is essential. Since pre-service teachers are not expert mathematicians, the 
Gestalt model may be less relevant for this study. The Gestalt model describes a creative 
process where during the period of incubation one may leave the problem for a while and do 
something else. This is something expert mathematicians can do, but it would not have been 
easy for the participating students of this study to do so within the time schedule of the lesson 
where the recording took place. For the Gestalt model to be relevant, it would require the 
possibility to leave the problem and come back to it after a period of incubation. Possibly this 
does not happen very often in upper secondary school, perhaps even less so in lower 
secondary school. What is required for this study is to relate the notion of creativity to the 
mathematical activity of students rather than expert mathematicians.    

Haylock (1987) proposes a framework for fostering and rewarding mathematical creativity in 
schoolchildren. Two key aspects form the basis of this framework. One aspect is the ability to 
overcome fixations in mathematical problem solving. The other aspect is the ability for 
divergent production within mathematical situations. Haylock makes the point that thinking 
flexibly and divergently are qualities of mathematical thinking, which might justify the 
description “creative”. According to Haylock these qualities of mathematical thinking are 
sadly neglected in school mathematics. Haylock makes the distinction between algorithmic 
fixation and content universe fixation. To explain these ideas, Haylock makes it clear that a 
pupil may show fixation in mathematics by continued use of an initially successful algorithm 
even when this becomes inappropriate or less than optimal. This would be algorithmic 
fixation. Secondly, the fixation may be some sort of self-restriction related to the content 
universe of the problem. The pupil may restrict inappropriately or unnecessarily the range of 
elements which may be used or related to the given problem. This would be content universe 
fixation. To explain the notion of divergent production, Haylock gives as an example the task 
to find all possible ways to use a brick. The task has many solutions and the challenge is to 
find many solutions. Divergent production is contrasting convergent thinking where the task 
has only one solution. The research framework of Haylock (1987) is concerned with 
schoolchildren. However, the present study focuses on pre-service teachers.       

A research framework that is concerned with students beyond upper secondary school, such 
as beginning under graduates is the research framework of Lithner (2008). This framework 
might be more relevant for the present study. The purpose of Lithner’s (2008) research 
framework is to characterize mathematical reasoning, and explain the origins and 
consequences of different reasoning types. A basic idea is that rote learning reasoning is 
imitative, while the opposite type of reasoning is creative. Lithner says that reasoning is the 
line of thought adopted to produce assertions and reach conclusions in task solving, thus not 
restricted to proof, and may even be incorrect. Suppose the task is to find the maxima or 
minima of a given function 𝑦 = 𝑓(𝑥). Some students may try to solve this task by finding the 
derivative of the function and solving the equation 𝑓′(𝑥) = 0. This strategy may work if the 
function is a second-degree polynomial. However, in general it is insufficient. It may fail even 
for a third-degree polynomial such as 𝑓(𝑥) = 𝑥3. This function has a critical point at the 
origin, but this point is not a maximum nor a minimum. The reason for this strategy choice 
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may be an earlier example. The student may have experienced that the strategy has worked 
before. To consider the similarity with an earlier example would be a surface property 
consideration, when the mathematical content involved is less important for the strategy 
choice. Sometimes surface property considerations only may be the basis of the strategy 
choice or reasoning (Lithner, 2008). If so, the reasoning would be imitative. The other type of 
reasoning called creative mathematically founded reasoning fulfils all of the following 
criteria. 

1. Novelty. A new (to the reasoner) reasoning sequence is created, or a forgotten one is 
re-created. 

2. Plausibility. There are arguments supporting the strategy choice and/or strategy 
implementation motivating why the conclusions are true or plausible. 

3. Mathematical foundation. The arguments are anchored in intrinsic mathematical 
properties of the components involved in the reasoning. 

Polya (1954) makes the distinction between demonstrative reasoning and plausible reasoning. 
The framework of Lithner (2008) proposes a concept of mathematical reasoning inspired by 
Polya’s (1954) notion of plausible reasoning. In his preface, Polya makes the point that “the 
result of the mathematician’s creative work is demonstrative reasoning, a proof; but the proof 
is discovered by plausible reasoning, by guessing” (Polya, 1954, p. iv). 

The intrinsic mathematical properties of the components involved, refers to the properties of 
the numbers, functions, matrixes or other mathematical components involved in the 
reasoning.  

Lithner (2008) summarizes by explaining that in creative reasoning the epistemic value lies in 
the plausibility and logical value of the reasoning, whereas in imitative reasoning it is 
determined by the authority of the source of the imitated information. 

The research framework of Lithner (2008) is concerned with the mathematical reasoning of 
students. However, in a literature review Leikin and Pitta-Pantazi (2013) makes the point that 
some research studies focus on the creative person, some on the creative process, some on the 
creative product and some on the creative environment. To study the environment such as the 
class would have required a different approach. One would presumably look at such 
phenomena as group dynamics. The present study focuses on the mathematical reasoning of 
pre-service teachers. Thus, the study focuses on the creative individual. Leikin and Pitta-
Pantazi also makes the useful distinction between relative and absolute creativity. Absolute 
creativity refers to the kind of creativity the professional community evaluates as high and 
significant achievements. Such as work rewarded by international prizes. Relative creativity 
refers to the work of an individual such as a student when the work is not new to the 
professional community but has novelty to the individual.   

Methodology 
The motivation for the study was my own teaching experience. This includes teaching classes 
in upper secondary school as well as teaching pre-service teachers mathematics. Mostly 
students preparing to teach in lower secondary school. My own teaching experience gave me 
the impression that students reasoning is largely imitative and restricted to procedures. The 
idea was that by setting up a teaching experiment it might be possible to understand the 
reasoning of the students more deeply. By dividing the students into smaller groups, the 
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students could work together and solve some exercises. The idea was that to understand their 
reasoning I could analyze the dialogue of each group. It might be that one could understand 
more by analyzing the dialogue of each group than by analyzing the students’ written works. I 
divided the students into groups from two to four students and recorded their work on video 
and audio. The students constituted their own group as they wished. This may perhaps have 
helped the dialogues to run smoothly. However, there may also have been certain group 
dynamical aspects that could have had an impact on the dialogues within a group. It remains 
for a later study to look at what kind of impact group dynamical aspects may have. The only 
restriction was the size of the group. To avoid passive group members it was important that 
the groups were relatively small. The assumption was that with small groups every group 
member would have to contribute to the dialogue. I did not look for excellence or any kind of 
mathematical giftedness when asking the students to participate. This means that the students 
probably were more or less on the same level with regard to mathematical ability. However, 
they were pre-service teachers and perhaps more willing than other students, to share and 
explain what they had understood to their fellow students. In any case, the dialogues were 
running smoothly in each group. I informed the students that the exercises would be an 
integral part of the course, and thus that they were working as normal and preparing for their 
exam. This may have contributed to the authenticity of the study. Sfard (2008) introduced the 
term commognition to make the point that communication and cognition are like the two sides 
of the same coin. This means that thinking is an individualized version of interpersonal 
communication. Thinking is the communication we do with our selves. The point of view in 
this paper is that thinking includes mathematical reasoning and any mathematical dialogue is 
a form of communication. Thus, it makes sense to analyze the mathematical dialogues of the 
students to understand some of their individual mathematical reasoning. The participating 
students of this study were asking each other questions within each group on how to 
understand the problems and how to solve them. They also suggested to each other what to do 
at each step of the solution process. They shared both questions and mathematical ideas. This 
means that at least some of the individual reasoning of each student became part of each 
group dialogue as they communicated it to each other. I did not give any complete method of 
solution to the exercises. However, I did give the students a hint. The hint was to write down 
the differences of consecutive terms of the sequence to get certain equations. Then to add 
these equations. The students were supposed to experience how the terms of the sequence 
cancel out when adding the equations, and how this makes it possible to solve the problem. 
One might argue that giving this hint to the students, I was guiding the steps of the learning 
process of each student. If so, this would be what Freudenthal (1991) label as guided 
reinvention. I also introduced some notation through an initial example. This included writing 
a sequence as an infinite row of numbers 𝑎1, 𝑎2, 𝑎3, … using three dots to indicate infinity. I 
also introduced the notation (𝑎𝑛) for the sequence itself and 𝑎𝑛 for the general expression of 
each term of the sequence.         

Analysis  
To have a closer look at the students reasoning let us start with one group with two students. 
Called Sara and Tom in this paper. They were working with the following exercise: 

Episode 1 
Exercise. Given the sequence starting with the terms: 

0, 4, 10, 18, 28, 40, …  
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Find the next term of the sequence. Then, find an expression for the general term of the 
sequence. 

When the video recording starts, the two students have written down the following sequence 
of numbers: 

     0, 4, 10, 18, 28, 40, 54, …  

Obviously, they have found the next term of the sequence to be 54. The video recording also 
reveals that the students have written down the following equations:   

𝑎2 − 𝑎1 = 4 = 2 × 2  

𝑎3 − 𝑎2 = 6 = 2 × 3  

                𝑎4 − 𝑎3 = 8 = 2 × 4 

                            𝑎5 − 𝑎4 = 10 = 2 × 5 

                𝑎6 − 𝑎5 = 12 = 2 × 6 

                𝑎𝑛 − 𝑎𝑛−1 = 2𝑛 

   𝑎𝑛 − 0 = 2 × 2 + 2 × 3 + 2 × 4 + 2 × 5 + 2𝑛 

    𝑎𝑛 = 2(2 + 3 + 4 + 5 + ⋯+ 𝑛) 

The two students obviously starts by using the idea explained to them by the instructor. They 
also realize that 4 = 2 × 2, that 6 = 2 × 3, that 8 = 2 × 4 etc. and in general that the 
difference between consecutive terms is 2𝑛. This must have been the students own reasoning 
as the instructor did not help them with this. However, the video reveals that the students have 
a problem with the sum in the brackets. Let us look at the dialogue when they discuss the 
situation.  

1. Sara: Must find the number one. 
2. Tom: It is not for sure that there should be a number one. 

The students were familiar with the triangular numbers and thus they knew that   

1 + 2 + 3 + ⋯+ 𝑛 =
1
2
𝑛(𝑛 + 1) 

However, the sum in the brackets does not start with the number 1.  It appears that this 
constitute a problem for the students. They did not simply rewrite and use the equation 

     2 + 3 + 4 + ⋯+ 𝑛 = 1
2
𝑛(𝑛 + 1) − 1  

This would of course have solved the problem. The question is why they did not do so. If the 
students’ reasoning were imitative, then they would probably look for the way they think one 
is supposed to work it out, rather than to try finding a solution by themselves. This would 
mean that whenever the students find themselves in an unfamiliar situation they may not 
know what to do. The question of Tom in line 2 might indicate imitative reasoning. If one 
were considering surface properties rather than intrinsic ones, it might be natural to ask 
whether there should be a number one or not. However, if one were considering intrinsic 
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mathematical properties, it would perhaps be more natural to ask what one could do in the 
situation. Therefore, when he says that there should perhaps not be a number one, he might 
perhaps be considering surface properties rather than intrinsic mathematical properties. The 
video shows that Tom is turning the pages in his notebook and studying in particular a certain 
page. The video reveals that Tom has written down the following equations in his notebook: 

𝑎2 − 𝑎1 = 8 = 4 × 2 

                                                                 𝑎3 − 𝑎2 = 12 = 4 × 3   

                                                                 𝑎4 − 𝑎3 = 16 = 4 × 4 

                                                                 𝑎5 − 𝑎4 = 20 = 4 × 5 

                 𝑎𝑛 − 𝑎𝑛−1 = 4𝑛 

Let us go back to the dialogue. 

4. Tom: Here we have, here we have started with four times two, four times three, 
5. Sara: Yes… and then we have put four outside, but we have a one there, so that we 

have… 
6. Tom: It must be the same. 

To solve the problem they obviously look at similar example they have found in Tom’s 
notebook. This further indicates that the two students are into surface property considerations 
rather than intrinsic mathematical properties and thus that their reasoning is imitative.  The 
video reveals that the example they look at is the sequence (𝑎𝑛) beginning with the terms 

     4, 12, 24, 40, 60, … 

Writing down the differences between consecutive terms of the sequence one finds the above 
equations. Adding these equations gives the equation 

𝑎𝑛 − 𝑎1 = 4 × 2 + 4 × 3 + ⋯+ 4𝑛 

Since 𝑎1 = 4 we find that 

𝑎𝑛 = 4 × 1 + 4 × 2 + 4 × 3 + ⋯+ 4𝑛 

Hence, we have 

𝑎𝑛 = 4(1 + 2 + 3 + ⋯+ 𝑛). 

As Sara says in line 5, they have put a four outside and then they have a one inside the 
brackets. The problem with the missing number 1 does not seem to exist in this example. The 
video does not show whether the two students have done this by themselves or not. They may 
for instance have written it down from the blackboard. Let us continue with the dialogue. 

7. Sara: But why have they 4 times 1, plus 4 times 2, from where do we have that one… 
it wasn’t 4 first, it was 8… in the sequence. Here we have zero first in the sequence in 
the ordinary sequence before we have found the derivative sequence, there is the 
derivative sequence. 

The terminology used by Sara requires some explanations. Given any sequence (𝑎𝑛), the 
difference 𝑎𝑛′ = 𝑎𝑛+1 − 𝑎𝑛 defines a new sequence (𝑎𝑛′ ). The instructor introduced the notion 
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of the derivative sequence for this new sequence. When Sara in line 7 speaks of the derivative 
sequence, she probably has in mind the derivative sequence of the first sequence. In line 7, 
Sara is comparing the two sequences. The first part of what she says is about the sequence 
beginning with 4, 12, 24, 40, 60, … The second part is obviously about the sequence 
beginning with 0, 4, 10, 18, 28, 40, …  

8. Tom: Yes… but four times one is again four, there in the derivative sequence 
9. Sara: right? here is the derivative sequence 
10. Tom: Don’t know if one can say that between zero and four there is four. We start it at 

four. 
11. Sara: Okay, it is here, it is only four in between. It starts at four, that one starts at four 

times eight that one. 
12. Tom: yes, yes, but one can put zero in front and put four times one here. This one is 

four times two, times three, dat, dat, four times n plus one 
13. Sara: Now you get one from there. 
14. Tom: mhm. 
15. Sara: Thus, you get 4 times 4 here 
16. Tom: and 4n there, then you take one of those and move it forward 
17. Sara: but we do not have that number one here 

What Sara says in line 17, indicates that they still have a problem with the missing number 
one in the sequence they started with. In addition to that, if one were considering surface 
properties rather than intrinsic mathematical properties it might be natural to ask the way Sara 
does in line 17, indicating imitative reasoning.    

18. Tom: but don’t just say one 
19. Sara: That is why I think, must be, therefore it must plus one, that is first and then you 

must have… 

Tom calls for the instructor by raising his hand. 

20. Instructor: Yes 
21. Sara: We don’t know where to find the number one to get a triangular number. 

The instructor tried to guide the two students by making them see the possibility that one 
could write 

2 + 3 + 4 + ⋯+ 𝑛 = 1
2
𝑛(𝑛 + 1) − 1  

The students eventually realized that this would be a way out.   

To contrast the first group let us look at another group with three students, Mary, Jane and 
Johanna. 

Episode 2 
Exercise. The given sequence (𝑎𝑛) starts with the terms:  

3, 8, 15, 24, 35, 48, … 

The dialogue opens as follows: 

1. Mary: a-n minus a-one will be 
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2. Jane: a-n minus a-one equals, or we don’t take that one. Two times two plus one, then 
we see that 

3. Johanna: so there, in a way you have done the “zipper”. 

The terminology used here by Johanna needs explaining. “The zipper” was the method of 
writing down the difference between consecutive terms to get certain equations and then add 
these equations.   

4. Jane: yes, should we do something about the number one first? 
5. Mary: two-n plus one 
6. Jane: should we begin by picking up that number one? We have, a-one is three, should 

we use that to get it into the sequence in some way? 
7. Mary: What do you mean? 

So far, the dialogue indicates that the students are considering several options. In line 4, Jane 
asks if they should do something with the number one first. Thus indicating that there are 
other possibilities. In line 6, Jane suggests they should do a certain operation first, also 
indicating that they could as well do something else. It might be that they are aware of the 
possibility of choosing between different mathematical ideas. At this point, the video 
recording reveals that Mary has written down the following equations: 

𝑎2 − 𝑎1 = 5 = 2 × 2 + 1 

𝑎3 − 𝑎2 = 7 = 2 × 3 + 1 

𝑎4 − 𝑎3 = 9 = 2 × 4 + 1 

                                                             𝑎5 − 𝑎4 = 11 = 2 × 5 + 1 

⋮ 

𝑎𝑛 − 𝑎𝑛−1 = 2𝑛 + 1 

𝑎𝑛 − 𝑎1 = (2 × 2 + 1) + (2 × 3 + 1) + (2 × 4 + 1) + ⋯+ (2𝑛 + 1) 

The three students obviously follow the hint the instructor gave them, that they could write 
down the differences between consecutive terms of the sequence to get certain equations and 
then add these equations. Thus, this part of their reasoning would be imitative. However, it 
was their own idea to write 5 = 2 × 2 + 1, 7 = 2 × 3 + 1, etc. The interesting part of their 
reasoning is perhaps the second part. They have found the difference 𝑎𝑛 − 𝑎1 expressed as a 
sum and the problem is to find this sum. Let us return to the dialogue.   

8. Jane: I mean that, if we begin by adding the number of times we have the number 1, 
9. Mary: We have the number one n plus one times. 
10. Jane: we have the number one n minus one times, we have that many equations there, 

we have the number one that many times there. 
11. Mary: no, we have deleted that one 
12. Jane: yes but, now I am only counting the number of equations we have here 
13. Mary: yes, but when we going to add up to n plus one 
14. Jane: Yes, we agree so far, but then I thought that now when we move on and think 

about how many times we have the number one, yes and we have the number one, as 
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many times as there are equations here, we have that many times the number one, and 
there are that many equations, n minus one equations. I learned that last lesson. 

15. Mary: Yes, we have the number one n minus one times yes. 

Obviously, Jane has understood the idea of the method. Mary responds to this in an 
affirmative way indicating that she has probably understood the idea as well. Since Johanna 
does not protest to this, one may perhaps assume that she has understood as well. However, 
Johanna does not say as much as Mary and Jane so it is more difficult to know how she 
thinks. 

16. Jane: So let us write it up first. a-n minus 3 equals n minus 1 plus and then we may 
write, 

17. Mary: Okay, writing one, one really puts one outside like that. We have now added all 
the number ones, and then we may put two outside. 

The video reveals that when Mary is saying this she has written 𝑎𝑛 − 3 = 1(𝑛 − 1) and that 
she is pointing her index finger at the expression on the right side of this equation. By doing 
so, she is probably asking the two other fellow students if they agree with what she is doing. 

18. Jane: Yes, but should we not move over the number 3 first, for it is really 2 times 1 

Jane has realized that to write 3 = 2 × 1 + 1 is useful. 

19. Mary: It says plus between them 
20. Jane: then we have the number three, we may write it as one plus one times two. It is 

not a triangular number 
21. Mary: Not? Plus the number three over, 
22. Jane: yes, yes, 
23. Mary: three, dat, dat, dat. 

The students are quite happy with what they are doing. 

24. Jane: If we take the number three over, we could write it as one plus two time’s one. 
Do you agree? I don’t have any rubber so it is going to be messy. 

25. Mary: three equals two times one plus one, yes. 
26. Jane: and then we may use it, in the sequence, 
27. Mary: but do we then have another number one? 
28. Jane: yes, we had two times two only, right? Here we have two times two, we don’t 

have two times one, but now we have. 
29. Mary: Yes, but a number one like that more, more than n minus one times the number 

one. 
30. Jane: yes, we have a number one an extra time, but we simply put it outside the 

triangular number there, formula. 
31. Mary: But then we only have n right, now we get plus two times one plus one. Then 

we have a number one, one extra time, this is the number of ones.  

At this point, the video revels that Mary has written 𝑎𝑛 = 1(𝑛 − 1) + 2 × 1 + 1 still pointing 
her index finger at the same spot. 

32. Jane: so when we add this up, n minus one plus one, then that one disappears. 
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33. Mary: For now we have that plus that, then we have plus two times two plus one, no 
the plus one we have removed. 

34. Johanna: But if we start by move over the number three, it will not be so messy. 
35. Jane: Isn’t that what we have done? 
36. Johanna: Yes, we started out by making this expression using the number of ones. If 

only we start out correctly by moving over. 

What Johanna is saying in line 36 may indicate that she has understood what has been going 
on even though she has not been very talkative. 

37. Mary: so a-n, it will be two times one plus one, plus two times two plus one. 

Here the video reveals that Mary is writing the expression  

𝑎𝑛 = (2 × 1 + 1) + (2 × 2 + 1) + (2 × 3 + 1) + ⋯+ (2𝑛 + 1) 

38. Jane: Okay, you haven’t taken the number one yet. Must see if we end up with 
something similar. 

Perhaps Jane thinks that Mary is too slow. 

39. Mary: But do we have the number one n minus one times now? 
40. Jane: This is what you should do now. You put the number ones outside. Now there is 

one extra, so there is one times n terms. 
41. Mary: Yes, for there we had n minus one times the number one, but here we have n 

times the number one because we have moved one over. Then we have one n plus two 
times one plus two plus three plus, dat, dat, dat, what do we hav now? Plus n? 

42. Jane: Yes 
43. Mary: plus 2n, I am not so sure about this. 

The video shows that at this point Mary has written 

𝑎𝑛 = 1(𝑛) + 2(1 + 2 + 3 + ⋯+ 2𝑛) 

The use of parentheses is somewhat inadequate. However, Jane has written 

𝑎𝑛 = 𝑛 − 1 + 1 + 2(1 + 2 + 3 + ⋯+ 𝑛) 

44. Jane: Yes, but I have calculated like we did and I have the same that a-n equals n plus 
2, then we have that one, whatever it was. 

The video show that Jane is writing 

𝑎𝑛 = 𝑛 + 2 ×
1
2
𝑛(𝑛 + 1) 

45. Johanna: two-n plus 
46. Jane: n plus one 
47. Mary: n plus one to the second. 
48. Jane: that is what we use I guess 
49. Mary: then you have n plus, what was the result, 2, what did we get? 
50. Jane: two times T-n, triangular number n, right, isn’t that the way you are supposed to 

write? 
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According to the video Mary completes the calculation and writes 

𝑎𝑛 = 𝑛2 + 2𝑛 

Having done that she concludes with 

51. Mary: should be n to the second plus two-n? 
52. Jane: let us find out if it is correct. We take term number four or something, n equals 

4, n to the second plus two-n is 16 plus 8, which is 24. Is it correct? n equals 5, 5 to the 
second plus two times 5 is 35 

53. Mary: 24, yes it is correct.      

Discussion 
As their instructor, I selected the exercises for the students to work with. Thus, the students 
did not pose the problems themselves. Neither did they develop any further questions to the 
exercises. It is quite possible that the form of exercisers did not invite for any further 
questions. I also provided the students with a hint to get started. The idea with the hint was to 
avoid that some groups of students were totally stuck. From the point of view of the 
instructor, this was simply a way to administrate the situation when several groups of students 
were working on some mathematical problems at the same time. From the researcher’s point 
of view, this was also a way to improve the chances to have some interesting dialogues to 
analyze the students reasoning. 

However, as a possible further development of the teaching experiment it could be interesting 
to see what happens if the participating students have to work with such problems without any 
hints.  

Imitative reasoning  
The first episode shows two students who probably are largely reasoning imitatively. They 
look at an earlier example to solve the exercise. Probably what the students are doing is to 
look for similar examples. Having found an example which they consider as similar and 
which they trust, the idea obviously is that they can do likewise with the problem they have as 
with the similar example. One might think that to look at an earlier example would complicate 
matters. Not make it easier. However, to find an earlier problem, might not be a bad idea. In 
fact, to recall a formerly solved problem is what Polya (1945) suggests one should do. 
However, the similarities the students find are surface similarities. It is of course not sufficient 
to consider surface properties of the components involved. When Polya says that if you have 
solved a related problem before, you should try to exploit that, he has of course in mind the 
intrinsic mathematical properties of the components involved. The problem for the students is 
perhaps not using an earlier problem but rather that they are largely considering surface 
properties. There is a lot more to learn from a former example by looking at the intrinsic 
properties of the components involved. The question why students choose to consider surface 
properties of the components involved rather than intrinsic properties is complicated. There 
are probably no simple answers to that question.    

Flexible reasoning 
The second episode shows three student who are considering different options. Thus, their 
reasoning is to a certain extent flexible (Haylock, 1987). The three students individually 
suggests what they can do. They discuss these suggestions and try to agree on what to do. 
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They also ask each other questions. This means that they chose between different ideas in a 
flexible way. It is reasonably clear that one difference between the two episodes is that in the 
first episode the two students try to find out what they are supposed to do. Whereas, in the 
second episode, the three students try to come up with ideas of what they can do about the 
situation. However, nothing indicates that the ideas they come up with have any novelty to 
them. They simply choose between familiar mathematical ideas. The flexibility of their 
reasoning indicates that they are not reasoning imitatively. Lithner makes the distinction 
between imitative reasoning and creative reasoning. Novelty is required for creative 
reasoning. If their reasoning does not have any novelty, their reasoning is not creative either 
(Lithner, 2008).  To understand the reasoning of the pre-service teachers of this study it is 
required with a further development of these categories of reasoning.  

Non-imitative reasoning 
The first episode shows two students who are probably largely reasoning imitatively although 
not totally. They started out by writing: 4 = 2 × 2, 6 = 2 × 3 etc. To do this was not part of 
the hint I gave them. Therefore, it is possible to argue that this part of their reasoning was not 
imitative. The second episode shows three students who reason more flexibly (Haylock, 
1987). However, they began their reasoning by following the hint I gave them. Therefore, this 
part of their reasoning was imitative. Having finished the first part of their reasoning, they 
discuss among them certain ideas to solve the problem. However, if these ideas were new to 
the students, this would probably show in the dialogue. The dialogue of the second episode 
shows three students discussing ideas that are probably already familiar to them. Therefore, 
nothing indicates that the ideas they discuss have any novelty to them. This means that their 
reasoning is not imitative nor creative. Mathematical reasoning that is not imitative we might 
label as non-imitative reasoning. This paper will make the distinction between imitative 
reasoning and non-imitative reasoning. Thus, non-imitative reasoning would include 
reasoning which is creative as well as not creative.       

Mathematical justification 
The question of what a mathematical justification or verification is for students as opposed to 
expert mathematicians might be very different. By the end of the second episode, the three 
students Jane, Mary and Johanna want to examine if the result is correct. They do so by 
looking at examples. They choose 𝑛 = 4 and calculate that 42 + 2 × 4 = 16 + 8 = 24 which 
equals 𝑎4 of the given sequence. They choose another examples which is 𝑛 = 5. Again, they 
calculate and find that the result is in accordance with the term 𝑎5 of the given sequence. 
Having done that they conclude that what they have found is correct. Nothing indicates that 
they have in mind to look at their own reasoning critically to see if it is valid. Freudenthal 
(1991) makes the point that even though mathematics is rooted in common sense, 
mathematics is very different. Freudenthal argues that the most striking example of 
mathematics rooted in common sense is whole numbers (Freudenthal, 1991). Childrens 
acquisition with whole numbers comes with their normal activities. Freudenthal also states 
that the use of numerals in spoken language supports the acquisition of number. However, 
mathematics is different from common sense. Perhaps a very early example in the history of 
mathematics beyond common sense is the discovery of incommensurable quantities such as 
the side and diagonal of a unit square. We now instead have the notion of irrational numbers. 
It would be common sense to examine a result by checking a few examples. However, that is 
not sufficient in mathematics. Perhaps this is one reason why students struggle with the logic 
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of mathematics. The logic of mathematics is not as simple as the logic of common sense. 
Mathematical logic is more abstract and contains variables.     

The derivative of a sequence  
The students worked with sequences given to them by me the instructor. I gave the students 
the first few terms of a sequence  

      𝑎1, 𝑎2, 𝑎3, …  

The students were supposed to find a general expression for each term 𝑎𝑛 of the given 
sequence (𝑎𝑛). I gave the students an idea to get them started. The idea was to write down the 
differences between consecutive terms. 

𝑎2 − 𝑎1 = 𝑎1′  

𝑎3 − 𝑎2 = 𝑎2′  

𝑎4 − 𝑎3 = 𝑎3′  

⋮ 

𝑎𝑛+1 − 𝑎𝑛 = 𝑎𝑛′  

Adding together, we find that 

                                                                    𝑎𝑛+1 = 𝑎1 + ∑ 𝑎𝑘′𝑛
𝑘=1                  (1) 

The problem was to find the sum on the right hand side of equation (1). There is a clear 
analogy here with the fundamental theorem of calculus when stated as  

                                                          𝑓(𝑏) = 𝑓(𝑎) + ∫ 𝑓′(𝑥)𝑏
𝑎 𝑑𝑥.                  (2) 

In equation (2) 𝑓 is a function with a continuous derivative on the closed interval [𝑎, 𝑏]. This 
analogy might make it reasonable to speak of the derivative of a sequence and to write it as 
(𝑎𝑛′ ) where 𝑎𝑛′ = 𝑎𝑛+1 − 𝑎𝑛. My introduction of the notion of the derivative sequence in this 
teaching experience was justified by this analogy. 

Inquiry based mathematics education 
To get started the students had a hint, or an idea called “the zipper”. It was to write down the 
differences between consecutive terms of the sequence to get certain equations, and then add 
these equations. All groups followed this hint. Obviously, they all experienced how the terms 
canceled out when they added the equations. Thus, this part of their reasoning was imitative. 
However, they did not get a complete solution. They had to work out the sum on the right side 
of the above equation (1). Each group of the class did this somewhat differently. In episode 1, 
we see two students who are largely reasoning imitatively. They eventually ask for some more 
guidance and then solve the problem. In episode 2, we see three students who reason more 
flexibly. Their reasoning is non-imitative and they solve the problem without any guidance 
except for the initial one I gave them. This indicates that it was not possible for the 
participating students to solve the problems using only imitative reasoning. Hence, the 
exercises were problem solving and not routine for them. A part of this problem solving was 
probably also to analyze the sequences and write for instance that 4 = 2 × 2, 6 = 2 × 3 etc. 
Problem solving is one aspect of inquiry-based learning (Artigue & Blomhøj, 2013). 
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According to Artigue and Blomhøj (2013) inquiry-based pedagogy can be defined loosely as a 
way of teaching in which students are invited to work in ways similar to how mathematicians 
and scientists work. The problem solving aspect of the students’ work with the sequences 
makes it reasonable to characterize the students’ learning as inquiry-based. The two groups, 
one reasoning largely imitatively, the other non-imitatively, must have experienced the 
teaching experience rather differently. None of the groups reasoning had any novelty. Thus, 
none of the groups reasoning was creative. However, some of the students’ reasoning was not 
imitative either.         

Conclusion 
There is no reason to characterize the mathematical reasoning found in this study as creative, 
because nothing indicates that it had any novelty for the students. This does of course not 
exclude the possibility of creative mathematically based reasoning among pre-service teachers 
(Lithner, 2008). It remains for a later study to see what happens if the students have to work 
with such problems without any hints. It might be that the students would have had to come 
up with more ideas themselves. Using the research framework of Lithner, I characterized 
some of the students’ reasoning as imitative. However, some of the students’ reasoning had 
flexibility (Haylock, 1987). Thus, some of the reasoning found in this study is neither 
imitative nor creative. Hence, there is a grey zone between imitative reasoning and creative 
reasoning. In this paper, we call mathematical reasoning, which is not imitative, non-
imitative. This means that non-imitative reasoning includes creative reasoning as well as 
reasoning that is not creative.  

The reasoning of expert mathematicians and scientists is not imitative. Otherwise, it would 
not be research. The reasoning of the two students in episode 1 was largely imitative. They 
needed some extra guiding to solve the problem. I argued that in episode 2 some of the 
reasoning of the three students was non-imitative. The two episodes indicate that the students 
were probably unable to solve the exercises, using imitative reasoning only. This indicates 
that the teaching experiment was a kind of inquiry-based pedagogy. If students mostly work 
with exercises which they can solve using imitative reasoning, they may perhaps not develop 
their reasoning beyond imitative reasoning. Thus, to develop students’ mathematical 
reasoning, it would be required to let them work with exercises they cannot solve using 
imitative reasoning. Obviously, there may be several ways to accomplish that students 
reasoning is non-imitative. However, one way indicated in this paper is to let students work be 
inquiry based (Artigue & Blomhøj, 2013).    
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