Structure of the G protein chaperone and guanine nucleotide exchange factor Ric-8A bound to Gαi1

Levi J. McClelland
Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, 59812, USA.

Kaiming Zhang
Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA.

Tung-Chung Mou
Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, 59812, USA.

Jake Johnston
Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, 59812, USA.

Cindee Yates-Hansen
Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, 59812, USA.

Follow this and additional works at: https://scholarworks.umt.edu/biosci_pubs

Part of the Biology Commons

Let us know how access to this document benefits you.

Recommended Citation
McClelland, Levi J.; Zhang, Kaiming; Mou, Tung-Chung; Johnston, Jake; Yates-Hansen, Cindee; Li, Shanshan; Thomas, Celestine J.; Doukov, Tzanko I.; Triest, Sarah; Wohlkonig, Alexandre; Tall, Gregory G.; Steyaert, Jan; Chiu, Wah; and Sprang, Stephen R., "Structure of the G protein chaperone and guanine nucleotide exchange factor Ric-8A bound to Gαi1" (2020). Biological Sciences Faculty Publications. 476. https://scholarworks.umt.edu/biosci_pubs/476

This Article is brought to you for free and open access by the Biological Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
Authors

This article is available at ScholarWorks at University of Montana: https://scholarworks.umt.edu/biosci_pubs/476
Ric-8A is a cytosolic Guanine Nucleotide exchange Factor (GEF) that activates heterotrimeric G protein alpha subunits (Gα) and serves as an essential Gα chaperone. Mechanisms by which Ric-8A catalyzes these activities, which are stimulated by Casein Kinase II phosphorylation, are unknown. We report the structure of the nanobody-stabilized complex of nucleotide-free Gα bound to phosphorylated Ric-8A at near atomic resolution by cryo-electron microscopy and X-ray crystallography. The mechanism of Ric-8A GEF activity differs considerably from that employed by G protein-coupled receptors at the plasma membrane. Ric-8A engages a specific conformation of Gα at multiple interfaces to form a complex that is stabilized by phosphorylation within a Ric-8A segment that connects two Gα binding sites. The C-terminus of Gα is ejected from its beta sheet core, thereby dismantling the GDP binding site. Ric-8A binds to the exposed Gα beta sheet and switch II to stabilize the nucleotide-free state of Gα.
ic-8A is a cytosolic guanine nucleotide exchange factor (GEF) that activates heterotrimeric G protein alpha subunits (Ga)\(^1\). As a chaperone required for Ga biogenesis and membrane localization, Ric-8 homologs are essential to life in multicellular eukaryotes\(^1\). Genetic\(^8\) and biochemical data\(^9\) support a role for Ric-8A in G protein-coupled receptor (GPCR)-independent regulation of asymmetric cell division that is essential for embryonic development\(^10\). Ric-8A exhibits GEF and chaperone activity towards Ga of the i, q, and 12/13 classes\(^1\), while Ric-8B performs these functions for Gas and Gaolf—each in a variety of cellular contexts\(^1\). Both GEF and chaperone activities are stimulated by Casein Kinase II phosphorylation\(^13\).

That the Ga-class specificity of Ric-8A and Ric-8B is the same for both GEF and chaperone activities\(^14\) suggests a common mechanistic basis for the two activities. Ric-8A adopts an armadillo (ARM)/HEAT repeat domain architecture and is structurally unrelated to GPCRs\(^15\). Biophysical data show that nucleotide-free G\(\alpha\) is structurally dynamic when bound to Ric-8A\(^16\) and shares some properties with GPCR-bound Ga\(^1\). Namely, Ric-8A induces rotational dynamics in the Ga helical domain\(^19\) and binds to the C-terminus of G\(\alpha\)\(^16,20\). In contrast to GPCRs, there is evidence that Ric-8A forms extensive interactions with the Ga switch regions that undergo GTP-dependent conformational change\(^1,17,20,22\), and with the Ga \(\beta\)-sheet scaffold\(^17\). To better understand the structural basis of Ric-8A GEF and chaperone activity, we have determined the structure of the Ric-8A:Gai1 complex, using both cryo-electron microscopy (cryo-EM) and X-ray crystallography.

Results

Cryo-EM and X-ray crystallographic analysis of Ric-8A:Gai1. To form the complex we used the N-terminal 491-residue fragment of rat Ric-8A, which is a more active GEF than the full-length (530 amino acid) protein and, to reduce conformational heterogeneity, we used the N-terminal 31-residue truncation mutant of rat Gai1 (A31N-Gai1), an efficacious substrate for Ric-8A\(^16\). Recombinant Ric-8A(1–491) was phosphorylated by Casein Kinase II at S435 and T440, which is necessary and sufficient for stimulation of GEF activity\(^13\) (Supplementary Fig. 1). Hereafter we refer to phosphorylated Ric-8A(1–491) as Ric-8A and A31N-Gai1 as Ga.

To stabilize and limit the dynamics of the Ric-8A:Ga complex for crystallographic and cryo-EM experiments, we developed a panel of camelid nanobodies (Nb)\(^23\) that specifically recognize either Gai1, Ric-8A, or the complex of the two. We formed a series of Ric-8A:Ga:Nb complexes that included from one to four Nbs from this panel. The quality and resolution of cryo-EM reconstructions derived from these complexes was improved in step with the number of Nbs in the complex. We determined the cryo-EM structure of a complex of Ric-8A:Ga with three Nbs bound to Ric-8A and one bound to the helical domain of Ga. Together, these Nbs do not significantly affect Ric-8A GEF activity (Supplementary Fig. 2). The structure was determined from 327,493 particles with a sufficient orientation distribution derived from 8468 movie images, yielding a 3.9 Å resolution reconstruction (Fig. 1, Supplementary Figs. 3, 4, 5a and Supplementary Table 1).

![Fig. 1 Architecture of the Ric-8A:Gα4Nb complex.](image-url)

Fig. 1 Architecture of the Ric-8A:Gα4Nb complex. a Cryo-EM 3D map of Ric-8A:Gα4Nb is shown with Ric-8A colored wheat, Gα GTPase and Helical domains colored cyan and green, respectively, and nanobodies colored gray. b Annotated ribbon and cylinder drawing, colored as in a, but with the \(\beta\)-strands of Gα rendered in magenta. c The Ric-8A:Gα1:4Nb complex is shown with the nanobodies removed and the loop segments of the Gα GTPase domain colored green. Segments of Ric-8A that contact Gα are rendered in dark brown. Ric-8A residues 335–340, which include the two phosphorylation sites, are rendered in red.
We obtained crystals of Ric-8A:Ga bound to the three Ric-8A-specific Nbs used to generate the cryo-EM structure. Diffraction from these crystals was highly anisotropic (Supplementary Fig. 5b), extending to 4.6 Å along α1, and b*, and 3.3 Å along c*, affording a measurement of a 90% complete anisotropic dataset (Supplementary Table 2). Initial crystallographic phases were determined by molecular replacement and subsequently used to fit the cryo-EM density map. Iterative cycles of model-building and refinement utilized both cryo-EM and X-ray diffraction data to generate the final models (Supplementary Table 1 and 2). In the following discussion, we use prefixes “G” and “g” for residue and secondary structure identifiers of Ric-8A and Ga, respectively. ARM/HEAT repeat helices of Ric-8A are designated according to their position in the repeat: “A,” “B” or “C” for ARM repeats or “a” and “b” for HEAT repeats, followed by the sequence number of the repeat (1 through 9). We use the established nomenclature for Ga secondary structure22–24. Descriptions of the crystal structure of Ric-8A/Ga refer to chains A and B, the better ordered of the two complexes in the asymmetric unit.

The cryo-EM reconstruction reveals Ric-8A residues 2–487 and the whole of Ga with the exception of the disordered linker (residues 50–76) between the Helical and GTPase domains (Fig. 1a, b and Supplementary Movie 1). The crystal structure of the Ric-8A-Ga complex also reveals continuous electron density for Ric-8A except for the linkage between 422 and 430. Notably, residues C-terminal to the last HEAT repeat (r430–r491) are disordered in structures of Ric-8A in which Ga is absent15,20. In the crystal structure, which lacks Nb9156, the helical domain of Ga and its connections to the GTPase domain, including much of ga1 and all of switch I, are disordered. Otherwise the cryo-EM and X-ray models of Ric-8A:Ga are in good agreement, although certain loop regions in both Ga and Ric-8A show significant divergence (Supplementary Fig. 6). Small angle X-ray scattering (SAXS) measurements of the complex are consistent with the X-ray and cryo-EM structures (Supplementary Fig. 7).

Ric-8A displaces the Ga C-terminus and induces GDP release. Binding of Ric-8A to the GTPase domain of Ga at three noncontiguous contact surfaces bury more than 3200 Å² of solvent-accessible surface area (Fig. 2a). Together, these interactions destabilize the guanine nucleotide-binding site (Fig. 3). At the core of the complex, Ric-8A ab9 (r411–r415) and the reverse turn r451–r457 (rRT) interact with the g4¡g6 strands of Ga (Fig. 2b and Supplementary Fig. 8a and b).

Ric-8 ab9 occupies the site of ga5 in GDP-bound Ga, and consequently ga5 is ejected from the concave surface of the Ga β-sheet (Fig. 3a). Ric-8A residues rY412, rA415, rA416, and rL418 in rab9 substitute for nonpolar residues of ga5, to stabilize the hydrophobic surface of the Ga β-sheet core. These residues are conserved in both A and B isoforms of vertebrate Ric-8 (Supplementary Fig. 9a), and form Van der Waals interactions with residues in g64–g66 that are conserved in both GaI and GaS families (Supplementary Fig. 9b). The rW415A mutation severely impairs GEF activity (Fig. 4), although the Y412A mutation does not. At the same interface, steric interactions with rS437 lever the antiparallel g62–g63 hairpin away from the GTPase core (Fig. 3a).

As a unit, g62–g63 undergo a ~5° counter-clockwise rotation as viewed from the concave surface of the Ga β-sheet core. In particular, the orientation of the g61–g63, in particular, destabilize and induce partial disorder in ga1. This, as described below, triggers separation of the Helical and GTPase domains of Ga.

The ~90° rotation of a5 away from the GTPase domain core (Fig. 3a) reconfigures the “TATC” motif in the g66–a5 GDP purine-binding loop (Fig. 3b). This structural change perturbs the conserved NKKD motif (in g84–aG) that confers specificity for guanosine nucleotides26. Displacement of these two loops dismantles the GDP purine-binding site. The hydrophobic contact between the N-terminus of ga4 and the Ric-8A aβ8–aC8 turn (Supplementary Fig. 10) is also important, as indicated by the impairment of GEF activity resulting from the rL383E mutation (Fig. 4).

Binding of the Ga C-terminus to the Ric-8A ARM repeat trough. After its ejection from the Ga β-sheet, ga5 is accommodated in a broad trough formed by helices rab2 through rab8 that line the concave surface of ARM/HEAT superhelix of Ric-8A (Fig. 2g and Supplementary Fig. 8g and h), as observed also in the structure of Ric-8A bound to the C-terminus of transducin20. Indeed, after superposition of the respective Ric-8A models, the main-chain and side-chain atoms of the C-termini of transducin (residues 334–350) and Gai1 (338–354) align with an RMS deviation of 0.36 Å. The predominantly hydrophobic amino acid residues of ga5 that interact with the Ric-8A trough (e.g. gF336, gV339, gL343, gL344, and gL348) otherwise pack against the GTPase domain β-sheet of nucleotide-bound Ga27. Most of the Ric-8A residues that contact ga5 are conserved in Ric-8B (Supplementary Fig. 9a), whereas several of the Ric-8A-contacting residues in ga5 are not conserved among Ga classes (Supplementary Fig. 9b).

Phosphorylation of Ric-8A stabilizes its interface with Ga. Ric-8A phosphorylation acts as an entropic clamp to promote GEF activity. The Ric-8A ab9 and RT segments that interact with the Ga β-sheet are connected by an intrinsically disordered sequence, r330–r45015 followed by ra10. The segment spanning r430–r440 is rich in acidic amino acids, and binds within a basic groove formed by raA8 (r344–r358) and ra9 (r401–r410) (Fig. 2c). Phosphorylated rps435 and rT440, which are well-ordered (Supplementary Fig. 8i–l) and form multiple ion-pair interactions with conserved lysine and arginine side chains in the Ric-8A electro-positive groove, help to immobilize the r430–r450 connector and consequently stabilize rab9 and rRT that interact with g4B–g6B. Accordingly, we found earlier that charge → neutral mutations of rR345Q and rK349A, which interact with rps435 and adjacent acidic residues, reduce both basal and phosphorylation-stimulated GEF activity of Ric-8A13,15.

Ric-8A interactions with Ga Switch II and a3. Ric-8A helix a11 (r717–r491), which is preceded by an elongated peptide (r458–r707) that forms an extended arch over the a3–β5 loop of Ga, packs between Ga Switch II and ga3 (Fig. 2d, and Supplementary Fig. 8c–f). In the GTP-bound state of Ga, these two elements form the Ga effector protein-binding site28. The ejection of ga5 from the Ga β-sheet together with interactions between a11 and the Switch II and ga3 interfaces was recently deduced from steered molecular dynamics calculations consistent with small angle X-ray scattering and crosslinking data22. ra11 occupies the position of Switch II in the G protein heterotrimer29, and also in Gai1 bound to GTP analogs27 and in the Gai1-GDP·Pi product complex30 (Fig. 3c). However, Switch II is disordered in Gai1·GDP and probably also in nucleotide-free Ga25. Ric-8A interactions with Switch II are functionally important, since mutations of two Ga-contacting residues in ra11, rE478, and L482, which are conserved in both Ric-8A isoforms, impair GEF activity (Fig. 4). The conformations of Switch II observed in the X-ray and cryo-EM structures differ from each other, and from those adopted in nucleotide-bound Ga28 (Supplementary Fig. 8e, f).
Remodeling of Switch II may be facilitated by Ric-8A-induced displacement of β2-β3 (Fig. 3a) described above.

Ric-8A-induced reorientation of the Gα helical domain. Displacement of gα5 and reorientation of gβ2-gβ3 eliminates a nexus of stabilizing interactions with the C-terminal residues of gα1, which become disordered (Fig. 3a). As a consequence, contacts between the GTPase and helical domains of Gα are disrupted. As observed in the cryo-EM structure, the helical domain undergoes a counter-clockwise rotation of ~60° around an axis roughly aligned with αD of the Gα helical domain (Fig. 3d). By this motion, a channel opens between the helical and GTPase domains, providing a path of egress for the nucleotide. The magnitude of the rotation is less than that observed in crystal and cryo-EM structures of GPCR:G protein complexes, or deduced from double electron–electron resonance studies of Ric-8A:Gα, possibly because it is limited by steric interactions between the Nbs bound to Gα and Ric-8A. The variability in the orientation of the helical domain is also suggested by normal-mode analysis of the SAXS data (Supplementary Fig. 7). The coupled interactions between Ric-8A and Gαi1, described above, induce profound conformational changes that dismantle the Gα guanine nucleotide-binding site (Fig. 3b and Supplementary Movie 2).

Fig. 2 Interactions of Ric-8A with Gαi1. Three major Ric-8A:Gα contact surfaces and phosphorylation sites are highlighted in the green, yellow, pink, and blue overlays (panel a) and enlarged in panels b–e. Axes adjacent to each panel label indicate the rotation applied to the overall schematic to generate the panel view. b Interaction between Gα β-sheet and the Ric-8A C-terminal ARM/HEAT repeat helix rαb9 and reverse turn r451–r457 (rRT) from the crystal structure. Polypeptide backbones are rendered as tubes, with diameter proportional to B-factor at Cα. Carbon atoms of Ric-8A and Gαi1 are rendered in deep brown, and green, respectively, and oxygen and nitrogen atoms are, respectively, colored red and blue. c Acidic Ric-8A peptide with phosphorylated residues rpS335 and rpT440 bound to the positively charged surface formed by the 8th and 9th Ric-8A ARM/HEAT repeats from the crystal structure. d Interaction of rα11 with gα3 and Switch II from cryo-EM. Putative hydrogen bonds (donor–acceptor contact < 3.5 Å) are depicted with orange dashed lines. e Contacts between gα5 and residues in successive ARM/HEAT repeats of Ric-8A, from the crystal structure.
Discussion

The basis for the Gα class selectivity of Ric-8 isoforms is not readily apparent. The great majority of residues at the Gα contact residues are conserved in Ric-8A and Ric-8B (Supplementary Fig 9a). Gα residues that interact with rαB9 and rRT are conserved in the Gαi and Gαs classes. However, several residues in gα5 differ between Gαs and Gαi classes (Supplementary Fig. 9b), and, as suggested20, the latter may engage in more productive interactions with Ric-8A than their Gαs counterparts.

The structure of the complex suggests mechanisms that produce the chaperone activity of Ric-8A, by which it promotes folding and stabilization of nucleotide-free Gα3. It is remarkable that the magnitude of conformational changes induced in Gα by Ric-8A far exceed those sufficient to effect GDP release in GPCR–G protein complexes2,18. Comparison of the Ric-8A:Gα complex with that of the Gαi2:β1γ2 heterotrimer bound to the A1 adenosine receptor32 (Supplementary Fig. 11) shows that both GEFs induce conformational changes or disorder within the Gαi P-loop and in gα1. Binding within the transmembrane cavity of GPCRs, the C-terminus of Gα (gα5) undergoes a 60° rotation and 5 Å displacement18, thereby inducing rearrangement of gβ6-gα5 and, to a lesser extent, gβ4-gG, both of which are purine recognition elements. The destabilization of gα1 by loss of contacts with gα5 is transmitted both to the P-loop and the hinge between the Ras and helical domains, permitting the release of contacts between the two2. By its wholesale ejection of gα5 from the Gβ-

Fig. 3 Conformational changes induced in Gα by its interaction with Ric-8A. In panels a–c, GDP•Pi-bound Gαi1 (PDB ID 1GIT) [https://doi.org/10.2210/pdb1GIT/pdb], rendered in gray is superimposed on the crystal structure of Ric-8A-bound Gα using the Cα atoms of Gαi1 residues 219–225 (gβ4), 262–270 (gβ5), and 318–325 (gβ6). a Conformational changes due to binding of Ric-8A α9, ab9, and RT to Gαi1. b Ric-8A-induced conformation changes dismantle the Gα nucleotide-binding site (see text). GDP from 1GIT is included as a stick model for reference. c Displacement of Switch II by rα11. The position of GDP bound to Gαi1•GDP is shown as a stick model. d Ric-8A-induced rotation of the helical domain away from the GTPase domain of Gα: top, Gαi1•GDP (1GIT) rendered with helices as cylinders and β-strands as ribbons and the helical domain colored green; atoms of GDP are rendered as spheres. Bottom, the cryo-EM-derived model of Ric-8A-bound Gα with GDP from 1GIT shown as a reference point.
terminal ~40 residues of Ric-8A, which harbor three of the CKII phosphorylation sites13, must play a critical role in Ric-8A structure of gSwitch II interactions with Ric-8A would restore the native conformation of the P-loop is largely retained in the

sheet and perturbation of the Ga β-sheet itself, which is not observed in interactions with GPCRs, Ric-8A produces the same outcome. Remarkably, the C-terminus of Ga, which tends to disorder, forms anchoring contacts with both GPCRs and with Ric-8A. In contrast, GPCRs do not induce reorientation of the gβ2–gβ3 β-hairpin, β1, or major structural changes in Switch II that are observed in the complex of Ric-8A with Ga1.

The large interaction surface formed by Ric-8A with Switch II and the Ga β-sheet core may be particularly related to its role as a chaperone. Ric-8A stabilizes nucleotide-free Ga subunits in the absence of Gβγ16. Molecular dynamics simulations suggest that contacts between Ga5 and the Ga β-sheet are dynamic in nucleotide-free Ga13. Interactions with Ric-8A would shield these hydrophobic surfaces from exposure in the cytosol. Switch II is also a dynamic structure, even in the GDP-bound state of Ga66 and would likewise be stabilized by Ric-8A α11. Ric-8A(1–491) partially rescues Ga1 biosynthesis in Ric-8A α/− cells, but not that of Gaq, for which full-length Ric-8A is required34. Hence, the C-terminal ~40 residues of Ric-8A, which harbor three of the five CKII phosphorylation sites13, must play a critical role in Ric-8A chaperone activity. Nevertheless, it is clear that the mechanism by which Ric-8A stabilizes dynamic regions of the nucleotide-free Ga GTPase domain also underlies its GEF activity.

The extensive interface between Ric-8A and Ga prompts the question how the two proteins are able to dissociate upon binding of GTP to Ga, a process that is kinetically facile in comparison to the overall exchange reaction (Fig. 5a and Supplementary Fig. 2). Although displaced slightly by steric conflict with ra11 (Fig. 3b), the conformation of the P-loop is largely retained in the nucleotide-free Ga bound to Ric-8A (Fig. 5b), thus providing a preformed platform for subsequent binding of GTP. Electrostatic repulsion between the C-terminus of r11 and the γ-phosphate of GTP as modeled in Fig. 5b, could promote its release from its binding site between ga3 and Switch II, allowing Switch II to refold into its native GTP-bound conformation. Disruption of Switch II interactions with Ric-8A would restore the native structure of gβ2–gβ3, promote its interaction with ga1 and thereby destabilize the remaining interface of Ric-8A with the GTPase domain. The dynamics that accompany Ric-8A binding to Ga•GDP and subsequent release of Ga•GTP remain to be explored.

Methods

Preparation of crosslinked Ric-8A and Ga1. Bis-sulphosuccinimide sulphate (BS3, Pierce-Thermo-Fisher Scientific) was dissolved in water to a concentration of 100 μM. K100 reagent (CovAlX) is provided as a 2 mg/ml aqueous solution and contained a proprietary mixture of inert carbon chain spacers (lengths between 8.8 and 13.2 Å), separating 1-S-hydroxyl-7-azobenzotriazole groups. Ric-8A-Ga1 complex, prepared as described16,17,19, was dialyzed into 20 mM phosphate buffered saline (PBS) pH 7.4, 1 mM DTT, and final concentration adjusted to 20 μM in the same buffer. For each 100 μl of complex, 20 μl of K100 (2 mg/ml) and 25 μl of BS3 (100 μM) was added, incubated at room temperature for 30 min and the reaction quenched by addition of 10 μl of 1 M Tris pH 8.5. Samples were centrifuged at 14,000 rpm on a desk-top centrifuge for 10 min at 4°C, to remove particulate matter, eluted though a tandem 5 ml HiTrap desalting column (GE Healthcare) to remove excess cross-linking reagents. Proteins were eluted in 20 mM PBS, concentrated to 0.3 mg/ml and 1 mM fresh DTT added as the final step. Cross-linked samples were analyzed by Coomassie-stained SDS–PAGE and verified by Western blotting using an anti-Ric-8A monoclonal antibody3 and mouse anti-α11 monoclonal antibody (Enzo Lifesciences). The crosslinked preparation contained cross-linked Ric-8A•Ga1, free Ga1, and Ric-8A in roughly equal proportion.

Development of Camelid Nbs. Llamas (Lama glama) were immunized with the cross-linked Ric-8A•Ga1 preparation. Peripheral blood lymphocytes were isolated from the immunized animals for extraction of total RNA, generation of cDNA and PCR amplification to isolate cDNAs encoding heavy chain variable domains (VHH) for subcloning into the pCTCON2 vector for display on the cell surface of *Saccharomyces cerevisiae* EBY100 cells, as described22,35,36. Cells expressing Nbs that selectively recognize Ga1, Ric-8A, or the crosslinked Ric-8A•Ga1 were identified by three-color FACS sorting on a FACS AriaIII (BD Biosciences), using Dylight 505 (Pierce, Thermo Scientific)-conjugated Ric-8A, Dylight 488-conjugated Ga1, and R-phycocerythrin goat anti-mouse antibody (Lucron) to label nanobody-expressing clones. Three rounds of selection were conducted using 10 μM fluorescent proteins in 20 mM PBS pH 7.4, 100 mM NaCl, and 2 mM DTT. Nanobody sequences from selected clones yielding Nbs that exclusively bind to Ga1, to Ric-8A either free or bound to Ga1, or exclusively to the Ric-8A•Ga1 complex were subcloned in a pMESy4 vector for periplasmic expression in *E. coli* WK6 cells as described37. Nanobody sequences encode a C-terminal hexahistidine affinity tag.

Of the set of 27 Nbs discovered in screening that show strong expression, 20 were capable of binding to either free Ric-8A or to Ric-8A in complex with Ga1, but not to Ga1, three bound exclusively to the Ric-8A•Ga1 complex and three bound to Ga1 or its complex with Ric-8A but not to Ric-8A alone. From this set was identified a set of four Nbs capable of binding simultaneously to Ric-8A•Ga1, as determined by co-elution as a stable hexameric complex from a GE Healthcare HiLoad 16/600 Superdex 200 pg column and validated by mass spectrometry on a MicroFlex MALDI-ToF MS (Bruker Microflex). Of this set, Nb8109, Nb8117, and Nb8119 bind to Ric-8A and the Ric-8A•Ga1 complex and Nb9156 binds to Ga1.

Nanobody expression and purification. Nbs 8109, 8117, 8119, and 9156 were encoded in pMESy4 vectors for periplasmic expression in WK6 *Escherichia coli* cells22. Briefly, overnight cultures were grown in 50 ml LB media containing

Fig. 4 Mutational analysis of selected residues at the Ric-8A-Ga1 interface. GDP-GTP exchange rates were measured by the rate of tryptophan fluorescence increase upon addition of ΔN31Ga1 to Ric-8A and GTPγS at final concentrations of 2 μM Ric-8A, 1 μM ΔN31Ga1 and 10 μM GTPγS. Student’s two-tailed t-test probabilities that mutant Ric-8A nucleotide exchange rates fall within the distribution of wild-type Ric-8A (n = 8) are: L383E, n = 7, p = 1 × 10^{-6}; Y412A, n = 11, p = 0.83 (not significant); A415W, n = 4, p = 7 × 10^{-12}; E478A, n = 5, p = 1.7 × 10^{-5}; E478K, n = 5, p = 2.9 × 10^{-8}; L482D, n = 4, p = 6 × 10^{-9}. mGa1 represents the intrinsic exchange rate for myristoylated Ga1 (n = 5; p = 5 × 10^{-10}). Horizontal bars represent means and 1 standard deviation.
100 μg/ml Ampicillin, 100 mM Glucose, and 1 mM MgCl₂ in shaker flasks at 190 rpm and 37 °C. After ~16 h cells were pelleted at 4000 rpm (2200 x g) for 10 min using a benchtop Sorvall Legend RT. Re-suspended pellets were added to 1 l TB media containing 100 μg/ml ampicillin, 5 mM glucose, and 1 mM MgCl₂ then incubated at 190 rpm and 37 °C until achieving an OD₆₀₀ of 0.7–1.0, at which point temperature was lowered to 28 °C and growths were induced with 300 μM isoprropyl β-D-1-thiogalactopyranoside (IPTG) for 16 h post-induction. Cells were pelleted at 8000 rpm (12,000 x g) for 15 min in a Sorvall RC 6+ Centrifuge and cell pellets were stored at −80 °C. Pellets were re-suspended in 100 μl of TES buffer (0.2 M Tris pH 8, 0.5 mM EDTA, 0.5 M sucrose) at 4 °C, vortexed and allowed to stir for a minimum of 1 h. Cells were then added dropwise to a 200 ml solution of TES/4 buffer (0.05 M Tris pH 8, 0.125 mM EDTA, 0.125 M sucrose), then stirred for 1 hour. Lysate was then spun down at 8000 rpm (12,000 x g) for 30 min and supernatant was loaded on a gravity column with Ni-NTA agarose resin (Qiagen). Nanobody-bound resin was washed with 20 column volumes of 25 mM NaCl, 1 mM TCEP. Experiments were carried out at 20 °C using a LS55 luminescence spectrometer (Perkin Elmer) with 4 nm slit widths (excitation 295 nm, emission 345 nm). GEF activity for Ric-8A and Ric-8A mutants were measured by pre-incubating 450 μl of Ric-8A and GTPγS in a quartz fluorescence cuvette prior to addition of 50 μl of 10 μM mGai1 for a final concentration of 0.5 μM Ric-8A, 1 μM mGai1, and 10 μM guanosine 5'-O-(gamma-thio)triphosphate (GTPγS) in 500 μl GTPγS binding to size-exclusion chromatography purified complexes of Ric-8A: ΔN33Gai1 with and without Nb were compared to intrinsic nucleotide exchange of Ric-8A, ΔN33Gai1. Progress curves were fit to single or double (if a slow binding process was detected) exponential rate models using SigmaPlot 7. Statistical significance of rate differences between reference and test samples was determined by a two-tailed Student’s t-test. Probability that differences are derived from a random distribution is reported. All data points are shown in box plots that show mean and standard deviation for each data set.

Crystallization of the ΔN33Gai1:Ric-8A:3Nb complex. Crystallization trials for the Ric-8A:ΔN33Gai1:Nb8109:Nb8117:Nb8119 complex were conducted by vapor diffusion using commercially available crystallization screening kits. Sitting drops were set on 96-2 well INTELLIT-PLATEs (Art Robbins Instruments) using a Gryphon crystallization robot (Art Robbins Instruments) at 3–10 mg/ml protein complex at a 1:1 v/v ratio with precipitation solution. Initial crystallization conditions were identified from hits on the ShotGun screen (MDI-88 Molecular Dimensions). Further optimization was carried out by grid screening variations in sodium malonate (Hampton Research) concentration and pH and by crystal seeding by hanging drop on 24-well VDXm plates (Hampton Research). Crystal seed stocks were prepared with the Seed Bead kit (Hampton Research) in 1.4 M sodium malonate pH 6.9. 0.9 μl of protein stock was added to 0.6 μl of reservoir and 0.3 μl of crystal seed stock and incubated at 12 °C for a minimum of 1–2 weeks. Optimal crystals were obtained from hanging drops containing 3.6 mg/ml Ric-8A:ΔN33Gai1:3Nb, 1.4 M sodium malonate pH 6.9 at 12 °C.

Crystallographic data collection and processing. Diffraction data were measured at the NSLS-II FXS beamline from LN2 cryoprotected crystals measuring ~50 μm × 50 μm × 5 μm employing a helical data collection module, using X-rays of 0.9793 wavelength. A Si (111) double crystal monochromator was used to focus the X-ray beam to a spot size of 1 μm × 1 μm at the sample. Data were measured in the phi axis rotation mode in 0.2° frames, at 0.06 s/frame at a beam attenuation of 0.7. Diffraction data were measured on an Eiger 16M detector at a 133 Hz frame rate. Due to significant (>0.5 Å) differences in unit cell axis dimension between crystals, data from a single crystal was selected for data processing and structure determination. In view of the considerable anisotropy of diffraction (~4.6 Å along a and 3.3 Å along c), three separate data processing sets were conducted using the AutoPROC v1.02 software toolbox for evaluation in subsequent model-building and refinement steps. All three utilized XDS for data indexing and initial integration. The Standard isotropic protocol uses SCALEA and TRUNCATE from the CCP4 to generate isotropic data with a resolution cutoff (4.6 Å) determined by the criteria Rmerge ≤ 0.6, I/σ(I) ≥ 2.0 and CC1/2 > 0.3. The Extended Isotropic protocol employed POINTLESS and AIMLESS scaling and analysis software to generate scaled intensities extending to the 3.2 Å resolution.

Fig. 5 The P-loop of Gαi1 provides a pre-ordered binding site for GTP in the complex with Ric-8A. a Progress curve for GTP (10 μM) binding to purified Ric-8A:Gαi1 complex (1 μM) (red), relative to that for nucleotide exchange at Gαi1 GDP (1 μM). b Superposition of a model of GTP (PDB ID 1CIP) [https://doi.org/10.2210/pdb1CIP/pdb] onto the nucleotide-binding site of Ric-8A-bound Gαi1. Serine 47 of Gαi1 is positioned for Mg²⁺ coordination (see text).
with I(α) ≥ 1.2. The Anisotropic Filtering protocol implemented in STAR-ANISO generated a dataset that incorporates intensities within a locally averaged value of 0.001 to define an anisotropic diffraction cut-off surface (Supplementary Table 2).

Crystallographic model building and refinement. All crystallographic calculations were conducted using the PHENIX 1.16 software package unless otherwise noted. Initial crystallographic phases for the Ric-8A:ΔΝ31Gai1:3Nb complex were determined by Molecular Replacement using atomic coordinates of Ric-8A residues 1–426; residues 34–65 and 190–320 of ΔΝ31Gai1 and three nanobody backbone models were manually refit into a sigma-weighted 2mFo–DFc map using Coot v0.8.6 and refined using phenix.refine. Completion and refinement of the crystallographic model followed the following general strategy: (1) model-fitting to the cryo-EM reconstruction in regions of the structure in which the path of the polypeptide chain was not defined in (or differed substantially from) the 2mFo-DFc map followed by real space refinement with secondary structure and geometry restraints49. Model quality was evaluated with Coot v0.8.6 and refined using phenix.refine. (2) reﬁtting to the latter 2mFo-DFc map and subsequent reﬁnement; (3) reﬁnement of the cryo-EM map (see below) using the crystallographic model as an alignment reference. In the regions in which the polypeptide path observed in the cryo-EM-derived and crystallographic models diverged, no attempt was made to bring them into agreement. Initial cycles of crystallographic model building and refinement were carried out using Standard Isotropic or Extended isotropic data sets derived from datasets derived from merging and scaling data from the two most strongly diffracting crystals. The final rounds of fitting and refinement of the complete model (excluding the C-terminus of Gα1, the Helical Domain, and Switch 1, residues 51–184) utilized an Anisotropic Supplementary set comprising data from the single crystal that afforded the strongest diffraction and optimal merging statistics (see Supplementary Table 2). A TLS model was applied during refinement using phenix.refine. Model quality and correlation with the refined electron density were performed using MolProbity30. The atomic coordinates for the refined crystallographic model for the Ric-8A:ΔΝ31Gai1:3Nb complex and associated structure factors are deposited in the RCSB Protein Data Bank52 (PDB ID 6TYL). Figures depicting atomic models were rendered using PyMol version 2.3 (Schrodinger, LLC).

Cryo-EM data collection. Three microscopists of the Ric-8A:ΔΝ31Gai1:3Nb complex at 0.4 mg/ml with 0.01% NP40 were applied onto glow-discharged 200-mesh R2/1 Quantifoil grids (Electron Microscopy Sciences). Grids were blotted for 4 s and rapidly cryo-cooled in liquid ethane using a Vitrobot Mark IV (Thermo Fisher Scientific) at 200 kV and then imaged in a Titan Krios cryo-electron microscope (Thermo Fisher Scientific) with a 1.5 mm ID low-pass filter (Gatan) at a magnification of 130,000× (corresponding to a calibrated sampling of 1.06 Å per pixel). Micrographs were recorded using EPU software (Thermo Fisher Scientific) with a Gatan K2 Summit direct electron detector, where each image is composed of 30 individual frames with an exposure time of 6 s and a dose rate of 11.5 electrons per second per Å2. A total of 8670 movie stacks were collected with a defocus range of −100 to −3 μm.

Cryo-EM image processing. All micrographs were motion-corrected using MotionCor2 and the contrast transfer function (CTF) was determined using CTFFIND43. All particles were autopicked using the NeuralNet option in EMAN2 v 2.31 and further checked manually, yielding 768,736 particles from selected 4k4k micrographs. Particle coordinates were then imported to Relion v3.0.6, wherein multiple rounds of 2D classification were performed to remove poor 2D class averages. Meanwhile, ~20,000 particle images were selected to build an initial particle set comprising data from the single crystal that afforded the strongest correlation with the reﬁned crystallographic model for the Ric-8A:ΔΝ31Gai1:3Nb complex were manually reﬁned within the cryoSPARC v2.24. A total of 676,130 particles were used for 3D classification in Relion to remove the poor classes. Next, five rounds of 3D heterogeneous refinement were performed in cryoSPARC to further remove the bad particles. The final 3D refinement with 327,493 particles was performed in cryoSPARC using the “non-Unifold” refinement option with a soft mask of the complex density and a 3.85 Å resolution map was obtained. The resolution of the final map was estimated according to the 0.143 FSC criterion. A 3.9 Å low-pass filter was done to the final 3D map for better display (see more information in Supplementary Fig. 2 and Table 1).

Cryo-EM model building. The cryo-EM model for the Ric-8A:ΔΝ31Gai1:1:4Nb complex was constructed with a refined crystallographic Ric-8A:ΔΝ31Gai1:3Nb model (in which only the GTPase domain was modeled) and a model of the helical domain of Gai1 in complex with Nb9136 from the crystal structure of Gai1:Nb9136 complex (unpublished data). The final Ric-8A:ΔΝ31Gai1:3Nb cryo-EM model was optimized by refinement using phenix.real_space_refine with secondary structure and geometry restraints49. Model quality was evaluated with MolProbity30.

Small angle X-ray scattering. SAXS was performed at BioCAT beamline 18ID at the Advanced Photon Source, Chicago, with in-line size exclusion chromatography (SEC-SAXS) to separate samples and other contaminants. Protein sample (~5 mg/ml in 50 mM HEPS, pH 8.0, 150 mM NaCl and 1 mM TCEP) was loaded onto a Superdex 200 Increase 10/300 GL column, which was run at 0.7 ml/min in an AKTA Pure FPLC (GE Healthcare Life Sciences). After detection by an in-line UV monitor, the sample passed through the SAXS flow cell, a 1.5 mm ID quartz cell with 10 μm walls. Scattering intensity was recorded using a Pilatus3 1M (Dectris) detector which was placed 3.67 m from the sample allowing access to a range of momentum transfer (q) from 0.0065 to 0.35 Å−1 (q = 4πsinθ/λ). Exposures of 0.5 s were acquired every 2 s during elution. Data were reduced using BioXTAAS raw v1.6.0. Buffer blanks were created by averaging regions flanking the elution peak and subtracted from exposures selected from the elution peak to create the I(q) vs. q curves used for subsequent analyses. Ab initio molecular envelopes were computed by the ATSAS v2.6.2 package56 programs DAMMIN57. Ten beam models were reconstructed in DAMMIF56, which were aligned and averaged in DAMAVER56. The Molecular envelope was visualized, and atomic models fit to molecular envelopes using Chimera v1.10.260. The conformational flexibility of Ric-8A:ΔΝ31Gai1 was modeled by coarse-grained fitting with respect to experimental SAXS data using SRELEX program in the ATSAS software package56. Normal mode analysis was conducted with automatic determination of rigid body units. The final disposition of rigid body units after application of normal mode projections was determined by rigid body refinement with respect to the computed SAXS profile56. CRYSOIL software from the ATSAS software package was used to model scattering profiles from atomic coordinates. Amino acid sequence alignments were conducted using Clustal Omega62 via its web-server (https://www.ebi.ac.uk/Tools/msa/clustalo/).

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

Coordinates of Ric-8A:ΔΝ31Gai1:4Nb model from cryo-EM are deposited in the RCSB Protein Data Bank (PDB) with ID 6TYL. Coordinates of Ric-8A:ΔΝ31Gai1:3Nb model from crystal structure are deposited in the PDB with ID 6TYL. The cryo-EM reconstruction in the Electron Microscopy Data Bank with EMID 208212 is available at https://www. ebi.ac.uk/pdbe/entry/emdb/EMD-208212. The small angle X-ray scattering data for the Ric-8A:ΔΝ31Gai1 complex is deposited in the Small Angle Scattering Biological Database (SASBDB) with access code SASDG95 (https://www.sasdb.org/data/SASDG95). The source data underlying Fig.4 and Supplementary Fig. 2a are provided as a Source Data file. All other relevant data are available from the authors upon reasonable request.

Received: 1 January 2020; Accepted: 10 February 2020;
Published online: 26 February 2020.

References

DE-AC02-06CH11357 with support of NIH grant P41 GM103622 and 1S10OD01890-01 for purchase of the Pilatus 3 1M detector. We thank Dr. Baisen Zeng for assistance with GEF assays and SPR quantitation of Nb-Ric-8A binding.

Author contributions
L.J.M. prepared and crystallized the Ric-8A:Gαi1:3Nb complex, assisted with X-ray data collection, conducted mutagenesis studies, and analyzed kinetic data. K.Z. carried out cryo-EM sample screening, image acquisition and processing, generated and refined cryo-EM reconstructions. T.-C.M. fit and refined atomic models to cryo-EM and crystallographic data and conducted SAXS analysis. J.J. prepared and screened samples for cryo-EM data collection, and assisted with data analysis. C.Y.H. Conducted crystallography experiments and assisted with protein preparations. S.L. assisted with cryo-EM data collection and processing. C.J.T. prepared samples for nanobody development and conducted initial nanobody characterization. T.I.D. advised on X-ray data collection and processing. S.T. and A.W. generated nanobodies. G.G.T. provided general consultation on project. J.S. oversaw nanobody development. W.C. oversaw cryo-EM studies. S.R.S. designed project, provided overall supervision, and wrote the manuscript with assistance from co-authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-14943-4.

Correspondence and requests for materials should be addressed to W.C. or S.R.S.

Peer review information Nature Communications thanks John H. Kehrl, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020