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Estimation of Probability of Habitat Use of Roosevelt Elk on the Olympic Peninsula 

VINCENT GUGLIOTTI, University of Montana, 32 Campus Dr, Missoula, MT 59812 

ABSTRACT  

 Estimating the probability of habitat use for a particular species is crucial to the direct 

management and conservation of that species. Without knowledge of habitat preferences, 

managers cannot effectively focus efforts on vital resources or landscape types. However, 

modelling probability of habitat use can be done in several ways which leaves room for variation 

and uncertainty in the estimates produced by each method. This study is an examination of the 

variation between two estimates of probability of habitat use while focusing on a particular 

subspecies of elk that inhabits a unique ecosystem relative to other elk subspecies. I modeled elk 

resource selection using both an occupancy framework and a zero-inflated Poisson regression. 

This project is essentially a comparison between using logistic regression to model habitat use 

and generalized linear regression. Occupancy modelling gives the same weight to every location 

where the target species is detected, no matter the frequency of use. Whereas a generalized linear 

model is a count-based approach that determines the relationship between the number of 

sightings at particular survey sites and associated habitat variables. Understanding the 
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differences in estimates that are produced by each method can help future researchers decide to 

implement one over the other for their particular application.  

KEY WORDS: Occupancy modeling, Zero-Inflated Poisson, Logistic regression, Linear 

regression, Remote camera trap, Cervus canadensis roosevelti 

INTRODUCTION 

A critical component of ecological study is the examination of patterns of habitat use and 

landscape characteristics selected by wild animals. Identification of these patterns can provide 

insight into the environmental preferences of a target species. Wild animals most often prefer to 

occupy habitat that is of high quality and can therefore provide the basis for the prioritization of 

management initiatives (Regolin et al. 2021). Wildlife managers must know how animals use 

different patches of habitat within the landscape to direct management initiatives that will have a 

significant impact on the health of the population. 

One way to identify patterns of habitat use is through occupancy modeling using camera 

trap data. Camera trapping protocols are well suited for identifying patterns of habitat use. The 

relatively low cost of operation of a camera trap grid allows for a large area to be surveyed for 

long periods of time, if necessary, with limited requirements for human presence (MacKenzie et 

al. 2002). The use of remote camera traps has proven reliable and accurate for many different 

surveying applications in the field of ecology and conservation (O’Connell et al. 2011). 

While this method of survey is incredibly useful, it does have limitations. One of these 

limitations is that camera trap studies produce a large dataset, with only a portion of the captures 

representing the intended target species. Camera trapping consistently produces more data 

representing species that are not the intended target species, sometimes termed by-catch data 
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(Edwards et al. 2018). By-catch data, while not ideal for most analyses, can be used to produce 

simple models for occupancy. Additionally, since the independent closure assumption of a study 

site in an occupancy model is violated in observational camera trap studies, the model produces 

the relative probability of use rather than true occupancy. Relative probability of use, when 

defined by environmental variables, can be interpreted similarly to a resource selection function 

(MacKenzie & Bailey 2004). However, the relative probability of use produced by an occupancy 

model does not consider multiple repeated detections at a single site. Once a cell has been 

identified as being occupied, it holds the same weight in the model as every other occupied site 

no matter the frequency of use of each respective site. A direct measure of probability of use can 

be produced using a generalized linear model to represent resource selection (Manly et al. 2002). 

However, generalized linear regression is not able to predict relationships between animal 

presence and landscape variables when there is an excess of zeroes in the data set, as there often 

is in camera trap studies. Therefore, a second function must be used to account for the excess 

zeroes in the data set. Similar to an occupancy model, which models detection as well as 

occupancy, a Zero-Inflated Poisson (ZIP) model is a mixed effect model that uses a binary 

logistic regression to predict the probability of getting zero detections at a site as a result of some 

known or unknown process (probability of detection for example), but also incorporates a 

generalized linear model to predict count data (Böhning et al. 1999, Zeileis et al. 2008). The 

similarity between models allows for the direct comparison of differences between occupancy 

modeling for habitat use and resource selection for habitat use. In other words, this is a 

comparison of using logistic regression modeling for habitat use and generalized linear modeling 

for habitat use.  
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Standard resource selection models are often built with global positioning system (GPS) 

collar data points but can also be built using camera trap data (Lara-Diaz et al. 2018). A resource 

selection model, or resource selection function (RSF), compares used locations and available 

locations. GPS points, or sites where the target species was detected by a camera, act as used 

locations and are compared against unused locations which, in a GPS collar study, are random 

points placed on the landscape or, in a camera study, sites where the target species was not 

detected by a camera (Manly et al. 2002). RSFs are valuable because they inform managers of 

the different landscape variables that a species select for and associate with. Whereas occupancy 

models were originally designed to identify what locations a target species is found at and what 

characteristics may be associated with their habitation (MacKenzie et al. 2002). The question 

becomes what difference does it make to model animal preference with a direct measure of 

landscape use as opposed to the identification of presence? Does the difference between these 

methods change the predictions of animal-landscape variable associations that are made by each? 

The Olympic Cougar Project is a large, collaborative, multi-national effort to map cougar 

connectivity, dispersal, and analyze movement data. The project’s ultimate goal is to identify 

dispersal bottlenecks and work with Washington State developers to strategically place wildlife 

corridors and interstate crossings to increase connectivity between the isolated Olympic cougar 

population and the rest of North America (Elbroch 2018). The project has been working in 

collaboration with local tribes to collect camera trap data for species on the peninsula and have 

accrued detections of Roosevelt Elk (Cervus canadensis roosevelti) that were provided for this 

analysis.  

I used camera trap by-catch data from the Olympic Cougar Project to model the 

probability of resource use of elk on the Olympic Peninsula in Washington through both 
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occupancy modeling and resource selection modeling. Conservation of elk has been an important 

ecological goal for decades. Healthy elk populations contribute great ecological, economic, and 

social benefits in areas where they are present, and they are culturally significant (Gordon et al. 

2004; Lopez-Hoffman et al. 2017; Pascual-Rico et al. 2021). Elk are also a critical component of 

the diets of North America’s largest and most charismatic carnivores: bears (Ursus sp.), wolves 

(Canis lupus), and mountain lions (Puma concolor) (Griffin et al. 2011). In fact, one potential 

use of the results from this study could be to help inform the Olympic Cougar Project of the 

habitat preferences of a vital prey source for cougars. When considering these characteristics of 

elk, it makes sense that they have attracted so much attention and have been at the forefront of 

emerging wildlife research and management projects. Additionally, the use of occupancy 

modeling and RSFs to identify patterns of habitat and resource use for elk has mostly been 

performed on subspecies of elk that inhabit environments which are often dry or only moderately 

wet (Barbknecht et al. 2011, Rumble & Gamo 2011, Tolliver & Weckerly 2018). There is no 

recent research that has identified habitat use patterns of Roosevelt Elk in ecosystems with 

uniquely high averages of annual precipitation, such as those present on the Olympic Peninsula 

(Jenkins & Starkey 1984). Elk on the Olympic Peninsula have access to a greater diversity of 

ecosystems as well. Many types of ecosystems which range from alpine grasslands to marine 

shoreline are present within a relatively small area when compared to the typical home ranges of 

mainland elk (Chappell et al. 2001). In addition to inhabiting drastically different environments, 

it has also been seen that Roosevelt and Rocky Mountain elk differ in average body size and 

body fat percentage (Cook et al. 2010). These differences indicate a potential for differing 

physiological needs and therefore potentially differing habitat use patterns in their respective 

ecosystems. Thus, to better understand the habitat use patterns of Roosevelt elk on the Olympic 
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Peninsula, a resource selection model, and a model for the probability of habitat use with 

ecologically significant covariates must be developed. 

STUDY AREA 

My study area was the entire Olympic Peninsula of Washington state, bounded to the 

southeast by the I-5 corridor and to the south by the Columbia River (Figure 1). The peninsula 

ranges in elevation from sea level to 2432 meters at the peak of Mount Olympus in Olympic 

National Park. The peninsula’s drastically varying elevation paired with its proximity to marine 

shoreline gives rise to many kinds of ecosystems within a relatively small area. The most 

ecologically significant ecosystems are generally described as: lowlands conifer-hardwood 

forest, montane mixed conifer forest, subalpine parkland, alpine grasslands and shrublands, and 

riparian-wetlands (Chappell et al. 2001). All of these ecosystems are prevalent on the landscape 

and receive a wide range of annual rainfall that can be anywhere from 50-360 centimeters on 

average (Chappell et al. 2001). In addition to elk, other large mammals on the peninsula include 

cougars (Puma concolor), black bears (Ursus americanus), black-tailed deer (Odocoileus 

hemionus), and non-native mountain goats (Oreamnos americanus). Outside of the confines of 

Olympic National Park, elk are subject to hunting with the proper permissions in every game 

management region on the peninsula, including with special permits on tribal reservations 

(Washington Department of Fish and Wildlife). 

METHODS 

Survey Design 

The data I used for this study was collected by the Lower Elwha Klallam Tribe on the 

northern Olympic Peninsula from April to November of 2021 (Figure 2). A total of 97 camera 
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stations were placed within 67, 4x4-kilometer grid cells. The cameras are located on national 

forest lands and tribal lands, but not within Olympic National Park itself (Figure 2). For the 

occupancy model, I defined a sampling event as a seven-day period and any sightings of elk 

within a particular grid cell during the survey period were recorded as a single sighting for that 

sampling event. For the resource selection function, I compiled the detection data to determine 

the total number of detections per grid cell over the entire survey period and then proceeded to 

build the model.  

Candidate Variable for Detection 

Imperfect detection of species during a camera trap survey introduces bias into models of 

habitat use. MacKenzie et al. (2002) developed their equation for occupancy to account for 

imperfect detection. Explaining probability of detection as a function of covariates helps the 

model deal with the uncertainty of missed captures at sites that are in fact occupied by the target 

species. Likewise, the ZIP model can use covariate effects to explain the prevalence of excess 

zeroes in a data set. I tested the effect of camera effort on detection in both the occupancy and 

ZIP models. I define camera effort in this study as the number of camera traps per 4x4 km grid 

cell which can range from 1-3. The number of cameras in a particular cell can influence the 

number and frequency of sightings at a site and therefore I analyzed it as a potential covariate on 

detection (Hofmeester et al. 2021). 

Candidate Variables for Occupancy and Resource Selection 

Elk are a highly charismatic species and there has been a plethora of prior work 

performed to examine their ecology and life history. Many of the environmental factors that 

influence elk occupancy have already been identified and implemented into various models. The 
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potential covariates for elk occupancy I use in this study were mostly inspired by the work done 

by Rowland et al. (2018) which involved modeling the relationship between nutrition and habitat 

use of elk in western Oregon and Washington (Table 1). 

I used the average Enhanced Vegetation Index (EVI) per cell for this study as a proxy for 

dietary digestible energy (DDE) (Villamuelas et al. 2016). Often, the Normalized Difference 

Vegetation Index (NDVI) is used as a proxy for DDE in elk studies because the study areas do 

not have a dense overstory. NDVI and EVI are very similar and measure the same wavelengths 

of light reflected from plants, but NDVI is more suited to detecting differing amounts of red and 

green light. This means that it is very good at finding variation in grasslands where healthy and 

productive vegetation is green and less productive vegetation will be less so to the point that it 

may even look yellowish to the human eye. When trying to use NDVI on a very green and very 

dense canopy like in the rainforests of the Olympic Peninsula, the NDVI values would plateau 

because NDVI cannot very well differentiate between different wavelengths of reflected green 

light. However, EVI is very effective at distinguishing differences in the greenness of a very 

green environment like rainforest canopy (Huete et al. 2002). While EVI is not directly 

measuring greenness of the forest’s understory and therefore forage, it is able to detect general 

composition of the forest which can indicate the composition of the understory (Villamuelas et 

al. 2016). This method may not be able to directly identify the exact understory conditions elk 

prefer on the peninsula but, for the goals of this project, an indirect indicator of understory forage 

will suffice. EVI data for the study area was acquired from the MODIS Vegetation Index Data 

products. 

Various anthropogenic disturbances have been shown to influence the occupancy and 

habitat use patterns for elk. One of those disturbances is roads and highways open to public use 
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therefore distance to open roads is one of the covariates being analyzed for an effect on 

occupancy and use in this study. Evidence can also be found supporting the effect of vegetative 

cover on elk occupancy, often measured as cover-forage edge distances (Rowland et al. 2018). 

Due to the limited scope of this study, I used a remotely sensed surrogate variable for cover-

forage edge. In the study area, various land cover types have been identified by MODIS Land 

Cover Type Data products. Each cell contains varying proportions of each land cover type and 

the influence of proportion of each land cover type on elk occupancy and habitat use was 

analyzed. 

Slope and elevation were also evaluated as potential variables influencing occupancy of 

elk. Slope and elevation have been shown previously to have an influence on spatial distribution 

in other studies of elk and they have the potential to influence a model of occupancy or resource 

selection in the study area (Rowland et al. 2018, Cook et al. 2016). These variables were 

averaged across an entire sample cell producing a single value for the cell.  

Covariate Analysis 

I scaled all covariates [(value - mean value)/standard deviation] before analysis to aid 

comparison across variables (Menard 2011). I selected significant variables for the occupancy 

model by a univariate analysis performed in the ‘unmarked’ package in Program R (Kellner et al. 

2023). For the occupancy model, I analyzed the effect of number of cameras per cell on 

detectability by assessing its explanation of the data while occupancy was null. If the variable 

had a p-value < 0.05 it was considered significant and served as the null for the analysis of 

variables relating to occupancy. For occupancy, any variable with a p-value < 0.25 was 

considered significant and selected for the multivariate analysis (Hosmer and Lemeshow 2000). I 

also tested the variables for multicollinearity among themselves using the ‘cor’ function in 
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Program R. Variables that were found to be colinear were evaluated against each other and the 

variable with the more significant p-value was selected for the multivariate analysis (Hosmer & 

Lemeshow 2000). 

For the resource selection model, I performed the univariate analysis using the ‘zeroinlf’ 

function to fit a ZIP regression in the R package ‘pscl’ (Jackman 2024).  Again, I evaluated the 

effect of number of cameras per cell on detection while the count regression was null. If the 

number of cameras had a p-value < 0.05 it was considered significant and served as the null for 

the analysis of variables in the count regression. For the count regression, any variable with a p-

value < 0.25 was considered significant and selected for the multivariate analysis. Again, I used 

the ‘cor’ function in R to test the variables for multicollinearity and any variables found to be 

colinear were evaluated against each other, with the more significant variable being used in the 

multivariate analysis (Hosmer & Lemeshow 2000). 

Model Building and Selection 

I used a reverse-stepwise model building process as described in Hosmer and Lemeshow 

(2000) to select a model with statistically and ecologically significant covariates. For the 

occupancy model, I first built the model for detection while occupancy was null. If the number of 

cameras per cell was shown to have a significant effect on probability of detection (p-value < 

0.05) then it was incorporated, if not, then detectability was be held constant across all cells. 

Then, the model for detectability acted as the null constant while I performed the reverse-

stepwise process for the covariates for occupancy. I determined the top model for occupancy by 

comparing the difference in Akaike Information Criterion (AIC). The model building process for 

the ZIP regression was the same; the zero-inflation side of the ZIP model is comparable to the 

detection side of the model for occupancy and was evaluated for an effect of the number of 
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cameras in the same way. I then used the zero-inflation model as a null model to perform the 

reverse-stepwise process for the covariates that may affect the number of detections per cell. I 

determined the top ZIP model by comparing differences in AIC values.  

VALIDATION 

 To validate the main effects model produced by the model building process I used a 

Pearson Chi-Square goodness of fit test (Franke et al. 2012). For the ZIP model, I predicted a 

count value for each surveyed cell using the main effects model and also calculated a Pearson 

chi-square test statistic using the observed count values. I then determined if the two sets of data 

follow the same distribution, H0, or if they followed different distributions, HA, with a standard 

level of significance of p < 0.05. Rejection of the null indicates a poor fit of the model to the 

data. I performed the same test for the occupancy model but to properly interpret the test statistic 

I would generate random data using the probability of occupancy that I calculated from my 

sample and then fit a model with the same structure as the main effects model. I would then 

calculate a test statistic from the generated data. I would repeat this process many times to create 

a distribution of test statistics to compare against the test statistic produced by the sample and 

calculate a p-value (MacKenzie & Bailey 2004). Instead I only produced a test statistic from the 

sampled data which I compared against the degrees of freedom of the data to get an approximate 

guess of model fit.  

RESULTS 

 Average survey duration per camera was 205 days. Eight cells detected elk at least once 

during the survey period with a total of 32 detections for the entire season. The data produced by 

the sampling design follows a Poisson distribution (Figure 3). The total estimated occupancy for 
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the surveyed area was 12.600 percent (Y = 0.126). For occupancy, the number of cameras per 

cell was negatively related to detection and additionally was non-significant (bcameras = -0.851, 

SE = 0.468, p-value = 0.069) so it was removed from the model building process (Table 2). The 

univariate analysis for the occupancy model only produced one significant covariate so there was 

only one model that could be produced by the model building procedure (Table 3). The 

occupancy model held detection constant across each cell and incorporated average annual EVI 

to predict occupancy (Occupancy (~1, ~EVI), bEVI = 1.520, SE = 0.551, p-value = .006, Table 4). 

It should be noted that the Land cover class variable was removed from analysis for both models 

because the data was insufficient for calculating a potential effect of 10 different land cover 

classes in addition to the other variables.  

The number of cameras per cell was not significantly related to the zero-inflation side of 

the ZIP model (bcameras = -0.171, SE = 0.634, p-value = 0.787) and was removed from the model 

building process (Table 2). The univariate analysis produced three significant covariates, so I 

performed the reverse-stepwise model building procedure (Table 3). The procedure produced a 

lowest AIC model in which elevation was the only significant covariate and was negatively 

related to count (ZIP (Count ~ Elevation | 1), belevation = -1.783, SE = 0.521, p-value = .001, Table 

4). A second model was produced with a D AIC < 2 which uses elevation and the distance to 

paved roads (ZIP (Count ~ Elevation + Distance to roads | 1), belevation = -1.576, SE = 0.618, p-

value = 0.011; bdistance = -0.276, SE = 0.442, p-value = 0.532; Table 4).  

The Pearson chi-square statistic for the occupancy model is high for the number of 

degrees of freedom (𝜒2 = 7682.174, df = 66). This is further explored in the discussion. The 

Pearson chi-square statistic for the ZIP model is also high for the number of degrees of freedom 
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and the p-value produced is less than 0.05 (𝜒2 = 180.196, df = 66, p-value = 2.580e-12). I plotted 

the relationship between probability of detecting a non-zero and elevation for the ZIP model 

(Figure 4). This relationship is further explored in the discussion and compared to the 

relationship between occupancy and EVI (Figure 5) and the regression component of the ZIP 

model (Figure 6).  

I projected both main effect models to the entire Olympic Peninsula and each provided 

different estimates of probability of habitat use. The occupancy model was conservative of where 

it predicted higher probabilities of habitat use (Figure 7). The ZIP model projection shows the 

expected probability of returning a positive count, given the cell does not produce a zero as a 

result of the zero-inflation component of the model. The probability associated with each cell is 

therefore a probability of presence, which is directly comparable to the probability of occupancy 

produced by the occupancy model. With this in mind, we can see that the ZIP model predicted 

more of the peninsula to experience greater use by elk than the occupancy model (Figure 8).  

DISCUSSION 

The results of this study seem to indicate that there is a great difference in the probability 

of use estimates produced by using logistic regression and linear regression, specifically 

occupancy modeling and zero-inflated Poisson regression in this case. However, this initial 

exploratory analysis does not provide solid evidence that can justify the use of one model over 

the other, but it does provide food for thought to researchers who are trying to determine by 

which method they will estimate probability of habitat use.  

When validated, both models performed poorly. The occupancy model was not properly 

validated using bootstrapped data but the large Pearson chi-square statistic in combination with a 
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relatively small number of degrees of freedom provides some evidence that it may not fit the data 

well. The ZIP model also performed poorly when validated; the p-value produced is far below 

the significance level of 0.05, indicating that the null hypothesis of the Pearson chi-square test 

should be rejected and that the model does not properly fit the data. The ZIP also produced 

estimated probabilities of returning a non-zero that are greater than 1 (Figure 3); I attribute this to 

the poor fit of the model to the data. However, the occupancy model predicts probabilities 

between 1 and 0 despite also potentially being a poor fit to the data. I would like to further 

examine the nature of this discrepancy in future projects. Additionally, the linear relationship 

between count and elevation seems to be reasonable despite the model’s overall lack of fit. I 

propose that the lack of fit of both models is the result of trying to build predictive models with 

insufficient data.  

Some difficulties presented by the use of small data sets are that it is difficult to evaluate 

the assumptions of the associated analysis, the evaluation of the selected model is often 

ambiguous, and when the number of fitted parameters are a moderate proportion of the sample 

size, most model selection procedures will select variables that are not truly related to the 

response (Bissonette 1999). I think this study, while subject to all such issues, especially suffers 

from the selection of variables that are not truly related to the response. For instance, the ZIP 

model only uses elevation to explain elk habitat use, which appears to be inaccurate. Many of the 

places predicted to have the highest elk use are close to the coast and densely inhabited by 

humans. Whereas many places, such as montane mixed conifer forests above a certain elevation 

were predicted to be devoid of elk. This is unusual because other studies in this region have 

shown that elk do use this forest type and that elevation influences elk habitat use, but only 

within suitable patches of habitat (Rowland et al. 2018).  
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The data was too small to properly capture the true behavior of the elk to any reasonable 

degree with only 67 surveyed cells, 24 independent weekly detections over the entire survey 

period to make a total of 8 cells with actual detections of elk. Land cover class was not able to be 

evaluated with so little data and I was ultimately forced to remove it from the analysis. The 

occupancy model was unable to contend with the 10 different land classes presented and could 

not compute an effect. I deemed the removal of land cover acceptable due to the fact that the 

analysis is already incorporating a continuous habitat indicating variable, EVI (Coops & Wulder 

2019). Another interesting result of the analysis was the negative correlation between detections 

and the number of cameras per cell. This result is unexpected but may be explained by the fact 

that relatively few cells had more than one camera, most cells that recorded detections only had 

one camera and others with more cameras did not record detections. Again, this is presumably a 

result of stochastic effects overriding true effects due to the small sample size.  

There were many interesting developments in the univariate analyses as well. Firstly, 

when performing the univariate analysis for occupancy, the only significant variable found was 

EVI. This removed all other variables from consideration for the occupancy model. I would like 

to note that occupancy models were built with the other covariates and AIC values compared for 

the sake of redundancy and the model using EVI was found to have a significantly lower AIC 

than the other models (DAIC > 2). However, when performing the univariate analysis for the ZIP 

model, EVI was the only variable found to be non-significant. Elevation, slope, and distance to 

roads were all significant and were used in the reverse-stepwise model building process to 

determine a significant effect on elk habitat use. As mentioned in the results, the model using 

elevation performed the best.  
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Perhaps the most interesting and potentially indicative result from this analysis is the 

opposite predicted effect of EVI on habitat use between the two models. In the occupancy model 

it was the only variable that passed the univariate analysis, whereas it was the only one that was 

excluded from the multivariate analysis when building the ZIP model. My best explanation of 

this result is that several sample cells below average elevation had many detections of elk by 

comparison to other cells, which heavily swayed the ZIP model towards favoring sites at lower 

elevations while essentially overpowering the effect of EVI. While the occupancy model ignores 

multiple detections at one location, the ZIP model estimates importance of a location based on 

the number of detections. This discrepancy between the models comes from the difference in the 

purposes for which each were designed. To determine occupancy, only one animal needs to be 

found at a site. But, in resource selection, the number of animals found at a site is important 

because it may indicate a strong preference for a site-specific factor. In this application, both 

models served as proxies of probability of habitat use but the difference between probability of 

habitat use, occupancy, and resource selection are extremely nuanced. The nuance of these 

models becomes even greater when considering that all of the data was collected by camera 

traps, which changes little for the occupancy model, but is not how resource selection models 

were originally designed to be surveyed for (Manly et al. 2002). This creates problems for the 

resource selection model because multiple detections at a single site could indicate a high 

preference for that site, or it could indicate the presence of a single, highly consistent outlier. 

This problem is exacerbated by the fact that outliers will have stronger effects on models 

produced by small data sets, such as this one. 

Unfortunately, this project has left many questions unanswered. The biggest and most 

glaring of which being whether or not the predictions of each model would converge with an 
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appropriate amount of data. This is something that should be resolved in the future as more 

research on these methods is performed. If both methods are indeed effective at predicting elk 

habitat use with sufficient data, then the same variables should be found to be explanatory for 

each model and the resulting predictions of use would be similar. However, a common theme in 

ecological study is a lack of abundant or even sufficient data (Bissonette 1999). This study re-

emphasizes the level of caution and consideration required when analyzing small data sets. In 

fact, it may even be reasonable to expect researchers to justify their use of a specific analysis 

rather than simply reporting it in the work they publish. This would force researchers to dive 

even deeper into the theory behind the methods they wish to use to describe relationships 

between ecological variables.  
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Model Covariate Predicted 
Effect Justification 

Detection/ 
Zero-inflation 

Number of 
Cameras per Cell + 

The more cameras there are in a cell, the more likely it is that 
one of those cameras will detect an elk at some point during 

the survey period (Hofmeester et al., 2021). 

Occupancy/ 
Zero-Inflated 

Poisson 

Enhanced 
Vegetation Index 

(EVI) 
+ 

EVI is able to detect differences in forage quality for 
ungulates, its predictive ability is strongest during times of 

increasing or decreasing greenness (spring and fall) 
(Villamuelas et al., 2016). The understory of the study area 

was not directly measured but canopy EVI values can act as a 
proxy variable. 

 Land Cover + 

The distance to cover-forage edge affects elk use; elk prefer to 
stay close to cover if possible (Rowland et al. 2018). In this 

study, I used land cover type as a proxy for cover-forage edge 
and predict that elk select for forested areas. 

 Elevation + 

Elevational gradients influence the forage composition of an 
area and elk selection for use. High elevation forests are better 

able to support lactating females in terms of available 
digestible energy (Cook et al. 2016). 

 Distance to Roads + 
Elk prefer to avoid anthropogenic features and disturbances 
like roads and highways and are more likely to use habitat 

farther from those features (Rowland et al. 2018) 

 Slope - 

The average slope of a cell can influence the quality of forage 
present and the ease at which elk can access the area. Flatter 

areas are more easily accessed by elk and may be selected for 
where available (Rowland et al. 2018). 

Table 1. All potential covariates that were analyzed for univariate and multivariate significance, organized 
by model. 

Figure 3. Visualization of count data collected by the camera trapping 
procedure. 
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Model Covariate b SE P 

Occupancy (Detection) Number of 
cameras per cell -0.851 0.468 0.069 

Zero-inflated Poisson (Zero-
inflation) 

Number of 
cameras per cell -0.171 0.634 0.787 

Model Covariate b SE P 

Occupancy (Presence) EVI 1.520 0.551 0.006 

 Elevation -0.461 0.457 0.313 

 Distance to roads 0.116 0.366 0.752 

 Slope -0.081 0.388 0.834 

Zero-inflated Poisson 
(Count) EVI 0.244 0.260 0.347 

 Elevation -1.783 0.521 0.001 

 Distance to Roads -1.180 0.394 0.003 

 Slope -1.059 0.378 0.005 

Table 2. Results of univariate analysis for number of cameras per cell on detection. 

Table 3. Results of univariate analysis for potential covariates for presence/absence in the occupancy model and count in 
the Zero-Inflated Poisson model. 
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Model type Model Rank Model D AIC 

Occupancy 1 Occu (~ 1, ~ EVI) 0.00 

Zero-Inflated Poisson 1 ZIP (Count ~ Elevation | 1) 0.00 

 2 ZIP (Count ~ Elevation + Distance to roads | 1) 1.60 

 3 ZIP (Count ~ Elevation + Distance to roads + Slope | 1) 3.55 

Table 4. Comparison of models produced for each method. Note that detection is constant in the occupancy model and 
the zero-inflation term is constant in the ZIP models. 

Figure 4. Probability of returning a non-zero as related to change in 
elevation. Note: probability estimates exceed 1; I believe this to be a 
result of poor model fit.  
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