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Abstract 

As the field of computational genomics continues to expand in both potential and 

application, it is now more imperative than ever to ensure that massive genetic sequencing 

datasets are properly stored in an accessible manner. This project sought to establish a practical, 

user-friendly, secure system for a genomics research lab (the Good Lab; thegoodlab.org) at the 

University of Montana. A MySQL database and connected web application was ruled the best 

configuration to maximize utility and accessibility for the lab’s researchers. Building the logical 

framework for the database, creating the server, and sourcing data occurred over several months. 

The dataset ranged from experimental details of sequencing (such as experiment dates, 

sequencing platform, and provider) to metadata of the samples (specific biological specimen 

information, molecular protocols). A combination of lab notebooks and a master Excel 

spreadsheet yielded over 3,500 individual biological sequencing samples that spanned terabytes 

of archived data. These data represent 10 years of lab sequencing efforts, with numerous 

examples of incomplete or non-standardized documentation. Once the database was seeded with 

these data, efforts transitioned to user functionality and the front end. One goal became the 

creation of a web application that allows efficient execution of basic functions (insertions, 

selective deletions, updates, and queries) for individuals without a MySQL background. 

However, due to such an interfaces’ complexity, a temporary substitute in the form of a thorough 

backend users’ guide was designed to allow for maximum usability of the system in the 

immediate future. Ultimately, the fundamental goal was accomplished: a clear, organized system 

for sequencing data was created with a structure and function that will permit many years of 

continued data collection and recall in a manner befitting the importance of the data being 

collected. Areas for future improvement and development for the stack were also identified. 
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Background 

Arising in the 1990s and continuing to expand into the modern age, the next 

technological revolution has already brought about groundbreaking advancements such as the 

world wide web, bionic prosthetics, and artificial intelligence. Herein, it is the intersection of two 

undervalued advancements- high-throughput genome sequencing and digital data storage- that 

provide a valuable guidebook and, perhaps, cautionary tale regarding the future of computational 

genomics. To better elucidate the later methodologies and results, it is essential to first provide a 

framework of understanding around genomics, data storage, and their intersection. 

To begin, what is a genome? As most people learned in biology class, all of life is based 

on its deoxyribonucleic acids, or “DNA” (with some viruses possessing a ribonucleic acid, 

“RNA” genome). The unique arrangements and patterns of DNA are what create the structures 

and molecules that create life. Ultimately, a genome is the full, organized collection of DNA base 

pairs that an organism carries in each of its cells (Giani 2020). Genomics is the study of the 

“structure, function, and inheritance” of genomes and how genomes can be used to learn more 

about individuals, populations, and species (Griffiths 2023). But for any meaningful genomic 

analysis to be performed, DNA sequencing must first be conducted. DNA sequencing is the 

process of determining the order of nucleotides within DNA fragments and delineating the 

fragments by source individual (NHGRI 2023).  Sequencing has changed dramatically over the 

last several decades, and understanding the accelerating trajectory of sequencing technology is 

useful to understanding the changing landscape of genomics (Hutchison III 2007). 

 Since 1953 when Rosalind Franklin and Maurice Wilkins first observed the three-

dimensional structure of DNA (famously analyzed by Watson and Crick), the study of DNA has 

advanced at an impressive clip (Heather and Chain 2016). Only 23 years later, the first complete 
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bacteriophage genome was sequenced, followed a year later by the first DNA genome (Fiers et. 

al. 1976, Sanger et. al. 1977). Over the next several decades, sequencing techniques advanced 

dramatically, culminating with the first whole genome synthesis of a free-living organism in 

1995, that of bacteria Haemophilus influenzae Rd. (Fleischmann et. al. 1995). Following this 

genomic advancement, many more bacterial and several eukaryotic genomes were synthesized 

(NHGRI 2022). Then, in 2001, the first draft of the highly-publicized, whole human genome 

(and subsequent 2004 high-quality assembly) was sequenced by the Human Genome Project 

(International Human Genome Sequencing Consortium 2001, 2004). The Human Genome 

Project was the first successful genome sequencing of a mammal, proving to be a major step in 

genome sequencing. The project took an estimated 3 billion dollars and over a decade to 

complete (Hood and Rowen 2013).  

Since the late 1990s and early 2000s, the industry has experienced a radiation event 

rivaling its subject material; by 2015, over 30,000 distinct genomes had been sequenced (Hug et. 

al. 2016). The cause of this industry growth has been an on-going technological leap in 

sequencing through the development of “second generation” and “third generation” methods 

(Slatko et al 2018). One of the first groups of advancing “second generation” sequencing 

techniques was “Sequencing by synthesis” (SBS), a technique derived from the earlier Sanger 

sequencing (Slatko et al 2018). The first marketed SBS method was pyrosequencing which 

utilized pyrophosphate (a nucleotide incorporation byproduct) to determine DNA chain base 

order (Margulies et. al. 2005). However, the most prevalent SBS technique is Illumina 

sequencing (based on Solexa and Lynx Therapeutics processes), which uses the process of 

amplified DNA fragments clustering along oligonucleotide fragments to allow parallel 

sequencing (Brenner et al 2000, Slatko et al 2018). The 2010s and beyond saw the rise of “third 
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generation” sequencing, namely Single Nucleotide Real-Time sequencing by Pacific Biosciences 

and Nanopore sequencing by Oxford Nanopore Technologies (Giani et al 2020, Braslavsky et. al. 

2003, Church et. al. 1998). These processes allow for the parallel sequencing of longer reads, 

creating an even more efficient sequencing approach (Slatko et al 2018). With these new 

technologies, projects like the Earth BioGenome Project are arising, seeking to sequence an 

additional 1.5 million eukaryotic species over the next 10 years, backed by billions in funding 

(“Roadmap: Project Plan” 2022). However, the challenge with all second and third generation 

sequencing is that these parallelized methods generate millions of sequencing reads, resulting in 

extensive data storage requirements (Slatko et al 2018). 

With the history of genome sequencing established, the very reasonable question is raised 

as to why genome sequencing matters. In response to these questions, numerous articles have 

been published regarding the value of genome sequencing. Perhaps most importantly to the 

populous, since the Human Genome Project’s publication and due to sequencing advancements, 

human genome sequencing has declined to a cost of less than $1000 per individual, meaning that 

the applications of genome sequencing in medical treatments are becoming increasingly 

economically possible (Wetterstrand 2023). Among the areas highlighted for potential genome 

sequencing use include prenatal, newborn, and adult disease screening, targeted tumor therapy, 

and disease monitoring (McCormick and Calzone 2016). Such applications may allow for 

significantly improved preventive care, as well as more effective treatments of various diseases 

including many types of cancer (McCormick and Calzone 2016). Likewise, genome sequencing 

significantly contributed to the rapid and effective response to the SARS-CoV-2 (Covid-19) 

pandemic, as sequencing helped determine probable origins, diversity, and evolutionary 

trajectory and ultimately contributed significantly to the development of the Covid-19 vaccine 
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(Saravanan et. al. 2022). In parallel, genomics can tell researchers a great deal about the natural, 

non-human world as well. Access to a species’ genomic code allows researchers greater insights 

into evolutionary histories, species diversity, hybridization, inbreeding potential, and a myriad of 

other valuable measurements useful to conservation efforts (Theissinger et. al. 2023). In fact, the 

ability to understand species is critical to defining populations and regions of conservation 

concern, as well as understanding how historical and current management practices may be 

impacting species (Cook et. al. 2023). Such efforts are exceptionally valuable in the face of 

growing climate concerns and limited funding to the field. Clearly, whether anthropocentric or 

not, genomics is a powerful tool that has the potential to improve lives and reshape humanity’s 

understanding of the natural world.  

However, there is a steep cost to genome sequencing. This cost comes from several 

sources: time investment, monetary investment, and data storage.  Given the scope of this 

specific project, the remainder of the discussion will focus on non-human sequencing, as that is 

the type sequencing data presented herein. Firstly, preparing samples for sequencing can be a 

time-intensive process. From collecting samples from wild, captive, or museum specimens, to 

extracting the DNA, to cleaning the DNA of contaminants, segment repair and amplification, 

labeling samples with unique DNA “barcodes”, pooling samples, shipping the samples to the 

sequencing facility, and then the formal sequencing itself, a complete preparation and sequencing 

can take several weeks’ worth of time. While several of these steps can be done on many samples 

simultaneously, the investment of time into this process is not insignificant. Likewise, the 

financial cost is comprised of many sub-elements from paying staff to prepare the sequences, to 

the special kits needed to prepare the samples, and the sequencing cost itself. While the kits may 

only run about $30 to $50 for any given sample (in the instance of Illumina preparations), 
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consider that an ideal sample size is usually over 50 individuals and may stretch far higher 

(Thermo Fischer Scientific 2024). Likewise, while sequencing has reached a record low, down 

from $1000 per Megabase (one million base pairs) in 2004 to under $0.01 per Megabase in 2022, 

if the sample is eukaryotic this can still mean sequencing costs of upwards of $1000 per 

individual for high coverage methods (Wetterstrand 2023). Finally, the data storage cost for 

genomics can be substantial. While raw sequencing run FASTQ files may only take 1-10 

Gigabytes per individual, projects often require tens or hundreds of individuals to gain key 

insights into variation between individuals and groups. Put into perspective, a 256 Gigabyte 

laptop (a relatively standard capacity in 2024) could contain hundreds of raw sequencing files. 

But potentially thousands of samples may be generated for various projects and comparisons. 

Additionally, some file types including genome assemblies can be terabytes in size, greatly 

exacerbating the issue of data storage for genomics. Ultimately, decades of sequencing and the 

necessities of many, much larger files for analysis means that much larger storage systems are 

required to handle the data complexity required for genomics. Clearly, not only is further 

monetary cost required to obtain means of storing such data, but storing tens or hundreds of 

genome sequences is simply challenging to achieve.  

Given the immense cost and complexity of genome sequencing, it becomes readily 

apparent that ensuring sequencing data is never lost is vitally important. Importantly though, this 

goes beyond the raw sequencing data and encompasses the much broader collection of metadata. 

The metadata of a sequence is all the information surrounding its origins, preparations, 

functional sequencing, and later uses. The loss of any element of this metadata means the loss of 

valuable information regarding its’ sample. For instance, if information on the source individual 

is lost, understanding sex-linked traits may be impossible. If how the sample was prepared is 
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lost, then it calls into question the quality of the sequence. The loss of any of this information 

may require resequencing or the removal of that sequence from study, resulting in unnecessary 

expenditure either way. As such, a system to consistently track and securely store genome 

sequencing metadata.  

 Unfortunately, with the bulk of genomics labs populated with biologists, geneticists, 

ecologists, and conservationists, individuals with the skill set necessary for implementing and 

maintaining systems for storage of genome metadata are uncommon. With some labs having 

Figure 1. Visual representation of the complex costs associated with creating a 

complete genome sequence. Major cost areas are time, money, and storage. 
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done genomics for upwards of two decades, such storage problems are becoming increasingly 

concerning.  Sifting through files of information of potentially thousands of individuals, often 

with erroneous or insufficient content, has led many organizations to start considering options in 

terms of storage. While professionally-developed digital organizational systems have begun to 

emerge in response to this growing problem, many are developed by individuals removed from 

genomics or with such a broad user base in mind that useful functionalities are overlooked or 

misapplied. As such, many labs have yet to find a system that works well for their specific, 

genomic needs. This project outlines the necessary considerations and methodology needed to 

create one possible solution to the complex problem of genome metadata storage. 

Introduction 

 One genomics lab struggling to find a permanent metadata storage solution was the 

University of Montana’s Good Lab, helmed by Dr. Jeffrey Good. Founded in 2010, the lab set 

quickly to researching mice and other mammals, focusing on genome evolution, speciation, and 

genetic causes of phenotypic variation. Throughout that time, Good Lab was using genome 

sequencing. This extensive use resulted in an expansive collection of genome sequences and 

metadata. A robust, redundant system of raw data storage with synchronized cloud-backups has 

ensured that all data are secured prior to depositing into public databases at publication. 

However, the full scope of these datasets, projects, and metadata were not effectively and 

centrally organized. For many years, Good Lab relied on a stand-alone Microsoft Excel 

spreadsheet to organize the metadata. The earliest recorded instance of the spreadsheet’s usage 

was summer 2011, suggesting that the spreadsheet should have contained over a decade’s worth 

of sequencing efforts.  
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However, the last recorded additions to the sheet occurred in 2020, coinciding with the 

global Covid-19 pandemic and a significant turnover in the Good Lab staff. A combination of 

these events led to lax enforcement of data archiving protocols, resulting in the datasheet’s lack 

of use. The subject of this spreadsheet arose in spring of 2023 in a Good Lab weekly meeting, as 

concerns flared about proper data storage following a handful of private server issues. It quickly 

became apparent that not only were years of sequencing metadata missing from the repository, 

but years of misuse had occurred with inconsistent formatting or data missing altogether. The lab 

unanimously decided that a new, permanent, user-friendly system was needed to ensure that over 

a decade’s worth of genome sequencing remained usable to avoid incurring costs for 

resequencing. 

But therein lay a secondary decision, on what type of system should be used. As 

previously stated, expensive organizational systems do exist for metadata storage; but oftentimes, 

these systems fail to consider the complexity of genome metadata. Additionally, having a system 

that allows extremely complex searches across all elements of metadata was also deemed 

important by the lab, as it allows pin-point searches for specific clusters of sequences that may 

not otherwise be clustered together. The need for greater metadata complexity and organization 

lends itself exceptionally well to a database. 

Ultimately, given my background in both genomics and computer science, we identified 

this project as an ideal focus for my Senior Thesis. By keeping the database’s construction 

internal, greater attention could be paid to Good Lab’s specific needs and goals, generating the 

best possible product to serve the lab. Thus, a year-long project to create the ideal Good Lab 

Genome Sequencing Database began in early summer of 2023.  
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Methods 

 The implementation of a database has become a relatively standardized procedure over 

the last several decades, with small but significant modifications made each step to create custom 

systems for projects ranging from simple systems like an employee catalogue to highly complex 

systems like that behind platforms such as Amazon. This project closely followed the standard 

steps of database design, such as those outlined in the textbook Fundamentals of Database 

Systems (Elmasri and Navathe 2016). 

 Like with projects spanning from review papers to experimental studies, the first step to 

database design was the data collection. The data was sourced from the outdated Good Lab 

spreadsheet, lab sample preparation notebooks, conversations with current lab members about 

valued metadata elements, and reviewing existing literature. Of these sources, the most data was 

sourced from the spreadsheet, with 300 Kilobytes of data to organize. The underlying structure 

of the spreadsheet was one central page housing the submissions of sequencing preps as groups 

done at the same time (Figure 2A) and a linked page for each submission housing the metadata 

for each sequence within that submission (Figure 2B).  Notebooks also took a substantial amount 

of time to process, with an estimated 1,000 pages of data to sift through and organize by 

preparation methods and source. Ultimately, with the initial data survey complete, the process of 

categorizing data into metadata elements began. Within the spreadsheet, data was already largely 

categorized by metadata type, such as submission title, sequencing facility, and sequence sample 

source. This facilitated an efficient development of the general metadata categorization.  

 The goal with this categorization is to visualize what one complete instance of data will 

contain or, in other words, all the domains that data should be added to every time someone add 

new data. The importance of this “data abstraction” is that it enforces a uniform structure for 
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data, versus leaving the types of data added up to user discretion. With this complete set of data, 

an initial structure for a MySQL relational database was designed (Figure 3A). This model is 

dubbed the Entity-Relationship (ER) Model, as it consolidates domains of data into broader 

 

Figure 2. Pages of the Good Lab metadata spreadsheet that served as the basis for much of the 

database’s original structure. (A) The central page of the original Good Lab genome metadata 

spreadsheet. Contains details about each of the 97 submissions made between 2011 and 2020.  (B)  

A representative sequencing data page which represents the metadata for each sequencing sample 

that occurred within the same broader submission.  

B 

A 



13 
 

tables (or “entities”) that contain domains (now referred to as “attributes”) that are important to 

that entity. Entities are then connected to each other, via “relationships”. For instance, the entity 

“Submission” is the abstract table wherein all attributes about the broad sequencing submission 

(such as date submitted and the unique name of the submission), which is then connected or 

“related” to the specific sequence’s “Sample” entity that may be found within that submission, 

via a relationship “Contained”. This relational structure is what fundamentally allows the degree 

of “querying” (or searching) through the data in the database. 

However, the ER model is extremely convoluted and overlooks key elements such as the 

fact that each sequencing facility will always belong to one and only one university or 

commercial lab, or that a project may have lots of publications- which the ER model does not 

account for in its structure. Thus, the ER model underwent “normalization” to ensure that each 

data table properly accounts for elements such as a single element of entity A may have many 

possible relationships with entity B, an attribute in entity C may be directly correlated with entity 

D, or several other possibilities. The goal of normalization is to fulfill the cardinal rule of coding: 

Do Not Repeat Yourself. If there are ways to minimize the number of times the same information 

must be entered without diminishing the structural framework of the database, it is best practice 

to take that action. Once normalization is completed, a much more legible “relational schema” 

arose which consisted of entities as tables, containing their attributes, but with additional tables 

and “foreign keys” (those highlighted in blue) that mimic the role of the relationships in the ER 

model (Figure 3B).  
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 With this fleshed-out relational schema, the database had to be implemented, as the 

schema was still little more than a complex drawing. To do so, a server to host the data was 

necessary. While initially a Microsoft Azure database server was initialized, a combination of 

cost and unneeded features resulted in a transition to an Akamai Linode server with built-in 

 

A 

B 

Figure 3. The starting and end points of the visual constructure of the Good Lab Genome 

Sequencing Database. (A) The complete, Entity Relationship Model of the Good Lab Genome 

Sequencing Database. Rectangles represent entities, diamonds relationships, and ovals 

attributes. (B)  The normalized database schema. Each green label is a data table, and sub-

elements are attributes. Blue cells are foreign keys that reference other tables. 
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MySQL functionality. Given that database data, even in large quantities, takes up little storage 

space, the specifications of the Linode were a “Nanode” with 1 Gigabyte of RAM, 1 CPU core, 

and 25 Gigabytes of storage. MySQL was initialized at version 8.0.36, the most recent publicly 

available version. While many relational database programming languages exist, MySQL was 

chosen based on personal experience with the language, its wide-spread use, and relatively 

straightforward structure.   

To initialize the database itself, the design schema was translated into its equivalent 

MySQL database notation. Attention was paid to the data types of each attribute in each table, 

ensuring that there was as limited room for human error as possible; attributes were set to 

integers, dates, decimals, set-length text, et cetera based on what the attribute required. Certain 

attributes of high importance such as essential preparation details, sequence specimen 

identification, and submission dates were made mandatory using the “NOT NULL” command, 

ensuring that new additions to the database do not overlook the most important database 

elements. The file containing the complete database table framework was then added to the 

Linode server and run to initialize the database and its structure.  

 Following the formal creation of the database, extensive time was spent on compiling the 

known genome metadata into the form necessary for uploading to the database. Given the wide 

spread of data sources and inconsistencies in data forms, to complete the full collection, 

organization, and uploading of data took several months of daily work. However, it was deemed 

a necessary use of time, as the database is only so useful as its contents.  

 With the completion of data uploads to the database server, the lab could theoretically 

begin to use the database. However, given the Good Lab’s focus on programming languages 

designed for genomic analysis, only Dr. Good and one postdoc had database programing 
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language like MySQL. As such, a “Backend User’s Manual” was developed, walking the lab 

members through each step from remotely connecting to the database server, to how to upload 

and add data, to how to query for a wide variety of needs based on what the lab had indicated as 

priorities. However, due to the amount of time devoted to database initialization, the formal 

meeting to walk lab members through this manual has yet to occur, however it will ideally 

happen prior to the end of the spring 2024 semester or shortly thereafter. Additional work is also 

planned for a user-interface through a hosted website to further insulate the database while 

giving lab members with low coding comfort the ability to add data, query the database, and 

update information more efficiently.  

Results 

 After almost one year of backend (database) development of the Good Lab Genome 

Sequencing Database, it is a fully functional system. All data available over the last year has 

been “seeded” into the database, allowing over a decade’s worth of sequencing metadata to be 

available to present and future members of Dr. Jeffery Good’s lab. The formal definition for the 

database’s functionality is, ironically, CRUD . Based on user restrictions put into place at their 

addition to the database server, users will be able to create (or add) new sequencing metadata to 

the database, read (or query) the database for any combination of data requirements, update data 

as new information is uncovered, or (under very limited conditions) delete information from the 

tables. 

 As reported earlier, the quantity and form of metadata added was extensive. Ultimately, 

there were 97 batch sequencing submissions from Good Lab to various sequencing facilities. The 

first data was added in 2011 and the last was dated from 2020, likely due to the disruptions that 

occurred in Good Lab at that time. Across the submissions, 3,403 unique samples were 
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sequenced meaning that, on average, roughly one sample was sequenced every day from 2011 

through 2020. Interestingly, while the largest submission consisted of 312 biological samples 

while several other submissions contained only 1 sample. With a mean of 40.5 samples per 

submission and a median of 29.5 samples per submission, while there were some extremely large 
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Figure 4. Trends in Good Lab genome sequencing volume from 2011 through 2020 based on 

database data. (A) Number of genome sequences generated collectively over each year. An evident 

“peak” in annual sequencing occurred in the mid-2010s, but importantly later data may be absent 

due to lack of reporting. (B) Daily sequencing efforts from 2011 to 2020. Trends appear to show in 

increase over time in the number of sequences done on days any sequencing was done, but also a 

decline in the frequency of sequencing days. 
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submissions, Good Lab tended towards smaller groups and more frequent submissions. 

Interestingly, despite an observed decrease in samples sequenced per year since 2014 (Figure 

4A), the trend in the number of samples sequenced per event (represented in day) has increased 

over time (Figure 4B). However, it is important to consider that the declines in sequencing may 

be the result of declines in user reports, not actual Good Lab sequencing trends.  

 Beyond when and how much Good Lab is sequencing, what the lab is sequencing and 

where the specimens sequenced were from is also interestingly elucidated by the databases’ 

efficiency. Evidently, Good Lab has sequenced roughly 135 distinct species collected across 15 

U.S. states, 10 countries, and 3 continents. However, despite the high number of animals 

observed, most sequences came from only a handful of species. The most prevalent species  (in 

terms of number of sub-classifications and sequencing individuals) was mice (spp. Mus), 

followed by hares (spp. Lepus), chipmunks (spp. Tamias), hamsters (spp. Phodopus), and pine 

Figure 5. Proportional representation of species sequenced by Good Lab from 2011-2020. 

Trends follow logical patterns based on species usage in current and historic research. 

Proportion of pine beetle dates to mid-2010s studies into the growing epidemic of pine 

beetles in Montana. 
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beetles (Figure 5). The remaining portion of samples appear to largely originate from single 

sequencing events used to create complex phylogenetic trees to understand the evolutionary 

histories of mice, hares, chipmunks, and hamsters. 

 The completed database is sufficient results to have made this project worthwhile, but the 

interesting trends within the fundamental mechanics that make Good Lab tick are fascinating as 

well. However, much remains to be done to make the system as useful in perpetuity as possible.  

Discussion and Future Suggestions 

 Despite database design having a streamlined methodology to follow, there are many 

pathways that can be taken along that methodical path can and do lead to both interesting and 

challenging results. Throughout this project, the structure of the database explored several 

different functional paths. Additionally, some paths are still being explored, despite the core 

projects’ completion. These future paths include data recovery, universalizability, and, most 

pressingly, a front-end user interface (put simply, a website). 

 The first explored path was the use of a relational database design via MySQL, rather 

than a document database. Document databases store all contents from (in this case) a 

sequencing submission in a single file, while relational databases create more fragmented 

clusters of closely related data. In certain projects, document databases are exceptionally useful. 

However, the connectivity between different sequencing instances was considered exceptionally 

important by the members of the lab. This led to the logical preference for a relational database 

rather than a document database. 

Furthermore, there was a period of about a month wherein an alternative form of data 

storage was being considered on the suggestion of Dr. Travis Wheeler. The alternative form 
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consisted of a text file for each submission, mirroring the structure of a document database. A 

complex GUI (graphical user interface) would then be used to query keywords within each 

document. Ultimately, while such a process would create an easier initial uploading process for 

users, it allows for a significant amount of flexibility in terms of documentation, which was to be 

avoided. Likewise, the quality and complexity of queries would have been limited significantly. 

It was for these reasons that a relational database built on MySQL was returned to and used for 

the remainder of the project.   

 Moving forward, it cannot be ignored that almost 4 years of sequencing data is still 

absent from this database due to lack of systemic backlogs and records. Certainly, that metadata 

does exist, but presently it is not centralized. One consideration is that in the upcoming 

“onboarding” to the database, individuals will be required to bring any truant data and will use 

that as a means of practicing using the database to not only ensure users can manipulate the 

database, but simultaneously adding necessary and currently absent data. 

Another path that poses a future challenge and reward is that of disseminating the “white 

label” version of this database. The “white label” version of software is the version without any 

customized elements, which can be bought and sold to other organizations to minimize repetitive 

invention of software. As mentioned in the background review, while systems do exist for 

genome metadata storage, many lack widespread applicability or are extremely costly. 

Simultaneously, many organizations are searching for systems that fulfil their data storage 

requirements. The generalized structure of this genome metadata database lends itself well to 

applications beyond Good Lab. In fact, talks have already begun with several prospective clients 

on how to implement the Good Lab Genome Sequencing Database schema into several other 
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labs at the University of Montana. Such work is ongoing and is slowed by the need to ensure that 

the generalized version fulfills consumers’ needs. 

Finally, and most significantly, the next steps into advancing the quality of this database 

are being explored. While a backend system works well for those with a moderate level of 

comfort with database coding, Good Lab has many members who do not have this level of 

confidence. As such, a secondary, more user-friendly interface would prove beneficial towards 

ensuring the longevity of this database. By creating a website linked with several of Good Lab’s 

other web properties, users would be able to add, update, and query the database remotely with 

less coding. Users would simply select the program type they are interested in using, type in a 

few key words as prompted, and the system will perform the commands internally. Ideally, this 

element of the project would have been completed within the year since the project’s start, but a 

strong desire to ensure the database’s contents and structure were as sound as possible, as well as 

detours through other possible approaches delayed the project significantly. 

 However, despite the mutli-faceted future efforts necessary to take the Good Lab Genome 

Sequencing Database to the next level of usability and value, the database itself has already 

begun to prove useful. The ability to filter through the data has allowed rapid retrieval of 

valuable data needed for projects, presentations, and reviews. With any luck, these efforts are 

only the beginning of the database’s usefulness, and it will provide Good Lab with a structurally 

strong, accessible, efficient means of sorting through an ever-growing mountain of genome 

sequencing metadata. 
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