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Archimedes’ Works in Conoids as a Basis for the Development of Mathematics 

Kenton Ke1 

University of Montana- Missoula 

 

 

Abstract: This paper explores Archimedes’ works in conoids, which are three dimensional 
versions of conic sections, and will discuss ideas that came up in Archimedes’ book On Conoids 
and Spheroids. In particular, paraboloids, or three dimensional parabolas, will be the primary focus, 
and a proof of one of the propositions is provided for a clearer understanding of how Archimedes 
proved many of his propositions. His main method is called method of exhaustion, with results 
justified by double contradiction. This paper will compare the ideas and problems brought up in 
On Conoids and Spheroids and how they relate to modern day calculus. This paper will also look 
into some basic details on the method of exhaustion and how it allowed the ancient Greek 
mathematicians to prove propositions without any knowledge of calculus. In addition, this paper 
will discuss some mathematical contributions made by Arabic mathematicians such as Ibn al-
Haytham and how his work connects to mathematics in the seventeenth Century regarding sums 
of powers of whole numbers and the Basel Problem. Complicated forms of conoids such as 
hyperbolic paraboloids and other shapes that came after Archimedes will not be covered. 
 
Keywords: Conoids; Archimedes; Paraboloids; Method of exhaustion; Double contradiction; 
Arabic contributions; Ibn al-Haytham; Sums of powers of whole numbers; Seventeenth Century 
mathematics; Basel Problem 
 

Introduction to Conoids 

 Archimedes was a famous mathematician in ancient Greece. Born in 287 B.C.E., he lived 

during the Hellenistic period. The story about Archimedes leaping out of a bathtub and running 

around the streets naked shouting “Heurēka!” (“I have found it!”) is known by many, and that 

was how he supposedly discovered a method to find the volume of any object by placing it in 
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water and measuring the water’s displacement. However, Archimedes is also important for his 

works in conoids and his discovery of the volume of a conoid (Toomer, 2018). 

 Throughout his life, Archimedes produced many works. One of them is On Conoids and 

Spheroids, in which Archimedes dealt with finding the volume of solids formed by conic 

sections (Toomer, 2018). According to Weisstein at Wolfram Research (2019), conic sections 

are defined as the nondegenerate curves generated by intersecting a plane with one or both pieces 

of a double cone. A picture depicting conic sections is shown in Figure 1:  

 

  

 

 

 

 

 

 

 
Conic Sections. Retrieved from 
http://mathworld.wolfram.com/ConicSection.html  
 

Figure 1 

http://mathworld.wolfram.com/ConicSection.html
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Conoids, however, are conic sections revolved around one of their axes (Toomer, 2018). 

A circle becomes a sphere, a parabola becomes a paraboloid of revolution, a hyperbola becomes 

a hyperboloid of revolution, and an ellipse 

becomes an ellipsoid of revolution, also known 

as a spheroid. One thing that must be noted is 

that not all ellipsoids are ellipsoids of 

revolution. An ellipsoid can have three 

different values for its axes, but two of an 

ellipsoid of revolution’s axes must be equal; 

see Figure 2. An ellipsoid of revolution is a 

special case of an ellipsoid, and a sphere is a 

special case of an ellipsoid of revolution. In 

other words, Spheres ⊆ Ellipsoids of revolution ⊆ Ellipsoids. 

 

The first solid that Archimedes discusses in On Conoids and 

Spheroids is a right angled conoid. Archimedes describes a 

right angled conoid, also called a paraboloid of revolution, as 

follows: Take a right angled cone and revolve it around its 

diameter until returning to the position where the revolution 

began. A right angled cone is just a parabola, and its diameter 

is its axis (Archimedes, ~250 B.C.E., p. 99-100). The result is 

a paraboloid, as depicted in Figure 3:  

Sphere: 
 

Ellipsoid of 
 

Ellipsoid: 

Figure 2 

Ellipsoid. Retrieved from: 
https://commons.wikimedia.org/wiki/File:Ellip
soide.svg; Edited using Google Drawing 

Paraboloid. Retrieved from 
https://encyclopedia2.thefreedict
ionary.com/paraboloid 

Figure 3 

https://commons.wikimedia.org/wiki/File:Ellipsoide.svg
https://commons.wikimedia.org/wiki/File:Ellipsoide.svg
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In Figure 3, the z-axis is the diameter, and the origin is 

the vertex. Archimedes (~250 B.C.E.) then poses a situation. 

Suppose a plane touches the paraboloid, that is, a plane is 

tangent to the paraboloid. Then draw another plane parallel to 

the first one and intersecting the paraboloid. If the tangent 

plane touches the vertex of the paraboloid, then the intersection 

that the second plane creates would be a circle with center A on 

the z-axis, as shown in Figure 4. The axis of this segment of the 

paraboloid is the segment connecting the points O and A. Here, Archimedes mentions two 

questions for consideration: 1) Why, if a segment of the right-angled conoid be cut off by a plane 

at right angles to the axis, will the segment so cut off be half as large again as the cylinder which 

has the same base as the segment and the same axis, and 2) Why, if two segments be cut off from 

the right-angled conoid by planes drawn in any manner, will the segments so cut off have to one 

another the duplicate ratio of their axes (p. 100)? He proves both of these later in On Conoids 

and Spheroids, but for the first question, instead of proving the case for planes perpendicular to 

the axis, he proves it for all cases. Observe: a plane tangent to the paraboloid does not always 

have to touch the vertex; it can touch any other point on the surface, which would mean that the 

plane might not be perpendicular to the paraboloid’s axis. Constructing the second plane parallel 

to the first, the segment of the paraboloid that has been cut off would be “tilted,” and the 

intersection formed by the second plane and the original paraboloid would be an ellipse. An 

example of this case is  

Paraboloid. Retrieved from 
https://encyclopedia2.thefreedict
ionary.com/paraboloid; Edited 
using Google  Drawing 

 A 

Figure 4 

https://encyclopedia2.thefreedictionary.com/paraboloid
https://encyclopedia2.thefreedictionary.com/paraboloid
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shown in Figure 5. So now the proposition that Archimedes 

proves is “any segment of a paraboloid of revolution is half 

as large again as the cylinder or segment of a cylinder which 

has the same base and the same axis.”(Archimedes, ~250 

B.C.E., p. 131) Archimedes uses a method called “method of 

exhaustion,” and justifies his results using “double 

contradiction” or “double reductio ad absurdum.” According 

to Saito (2013),  

Schematically, the model can be described in the following terms. Let P be the figure 

whose magnitude we wish to determine (for example, a sphere), and X be a ‘better 

known’ figure (for example, a cylinder) to which P is equal (in Archimedes and in Greek 

geometry the concepts of ‘area’ and ‘volume’ are lacking: the measurement always 

occurs by direct comparison of two magnitudes). Two series of figures are constructed, I 

and C, respectively inscribed in and circumscribed about P such that they satisfy two  

conditions: 

 1. I < X < C; 

 2. The difference C − I can be made infinitely small: given a magnitude E, there 

can be an inscribed figure I and a circumscribed figure C such that C − I < E.  

In this case it is easy to prove that P is equal to X. In fact, if P is less than X, let E = X − 

P; by condition 2, it is possible to take C and I such that C − I < E. Then we would have 

X − I < C − I < E = X − P, that is, P < I, which is impossible because I is inscribed in P. If 

Paraboloid. Retrieved from 
https://encyclopedia2.thefreedictionar
y.com/paraboloid; Edited using 
Google Drawing 

Figure 5 

A 
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P > X, let E = P − X; by condition 2, it is possible to take C and I such that C − I < E. 

Then X − I < C − I < E = P − X. Since I < X, P − X < P − I, and it follows that X − I < C 

− I < P − I. So there exists a C that would satisfy P > C > X, which contradicts the fact 

that C is circumscribed about P. (p. 97) 

 
The following proof is paraphrased from On Conoids and Spheroids: 

 Proof. Set up the cross section of a segment of a paraboloid through its axis. The trace is 

a parabola, and label the endpoints as B and C. Let EF be a line tangent to the parabola and 

parallel to the base BC, and let A be the tangent point. Two possibilities are shown in Figure 6: 

The base of the segment is perpendicular to its axis, and so the tangent line intersects the 

parabola at its vertex A; and the base of the segment is not perpendicular to its axis. In the first  

case, the axis AD bisects the segment BC. In the second case, the axis does not bisect the 

segment BC, but the line through the tangent point A and parallel to the axis does. So BD=DC.  

  
  
  
 

 

 

 

 

 

 

 

 

C C B B 

F 

F 

E 

E 

A 

A 

Quadratic Functions. Retrieved from 
https://www.shmoop.com/functions/quadratic-
functions.html; Edited using Google Drawing 

Figure 6 

D D 
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Constructing this in the third dimension, the plane through EF and parallel to the base 

touches the paraboloid at point A. In the first case, the base is a circle with diameter BC, and in 

the second case, the base is an ellipse with major axis BC. A cylinder whose surface passes 

through the circle or ellipse, with AD as its axis, can be found. Similarly, a cone whose surface 

passes through the circle or ellipse, with AD as its axis and A as its vertex, can be found. 

Suppose X is a cone equal to 3
2

× (segment of cone ABC). It has already been proven that 

a cylinder is three times as large as a cone, given that they have the same base and height. So the 

cone ABC is equal to 1
3

× (cylinder bounded by E and C), and it follows that cone X is equal to 

half of cylinder EC. Want to show: the volume of the segment of the paraboloid is equal to X. If 

not, then the segment must either be greater than or less than X.  

I. Suppose the volume of the segment is greater than X. We can then inscribe and 

circumscribe figures made up of cylinders of equal height as shown in Figure 7 

such that  

(Circumscribed figure) - (Inscribed figure) < (segment) - X.  

  
  
 

 

 

 

 

 

C B 

F E 
A 

Quadratic Functions. Retrieved from 
https://www.shmoop.com/functions/quadratic-functions.html; Edited using 
Google Drawing 

Figure 7 

D 
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S N 
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Then (First section of the cylinder EC) : (First inscribed figure)  

= BD : TO 

and (Second section of the cylinder EC) : (Second inscribed figure)  

= HO : SN 

and the rest of the ratios follow. 

So (Cylinder EC) : (Inscribed figure) = (BD + HO + … ) : (TO + SN + … ). 

It has already been proven that n(𝐴𝐴𝑛𝑛) > 2(𝐴𝐴1 + 𝐴𝐴2 + ⋯+ 𝐴𝐴𝑛𝑛−1) if the common 

difference is equal to 𝐴𝐴1. In this case, BD = HO = ... = 𝐴𝐴𝑛𝑛 and TO = 𝐴𝐴𝑛𝑛−1, SN = 

𝐴𝐴𝑛𝑛−2, etc. Then (Cylinder EC) > 2(Inscribed figure), and it follows that  

X > (Inscribed figure). 

However, since (Circumscribed figure) - (Inscribed figure) < (segment) - X, it 

follows that (Inscribed figure) > [(Circumscribed figure) - (segment)] + X. Since 

the circumscribed figure is greater than the segment, we conclude that  

(Inscribed figure) > X, 

which creates a contradiction. 

II. Now suppose that the segment is less than X. We can inscribe and circumscribe 

cylinders the same way as before such that  

(Circumscribed figure) - (Inscribed figure) < X - (segment) 

Then (First section of the cylinder EC) : (First circumscribed figure)  

= BD : BD  

and (Second section of the cylinder EC) : (Second circumscribed figure)  

= HO : TO 

  and so on. 
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  So (Cylinder EC) : (Circumscribed figure) = (BD + HO + … ) : (BD + TO + … ). 

It has also been proven that n(𝐴𝐴𝑛𝑛) < 2(𝐴𝐴1 + 𝐴𝐴2 + ⋯+ 𝐴𝐴𝑛𝑛) if the common 

difference is equal to 𝐴𝐴1. In this case, BD = HO = ... = 𝐴𝐴𝑛𝑛 and TO = 𝐴𝐴𝑛𝑛−1, etc.  

Then (Cylinder EC) < 2(Circumscribed figure), and it follows that  

X < (Circumscribed figure). 

However, since (Circumscribed figure) - (Inscribed figure) < X - (segment), it 

follows that (Circumscribed figure) < [(Inscribed figure) - (segment)] + X. Since 

the inscribed figure is less than the segment, we conclude that  

(Circumscribed figure) < X, 

which creates a contradiction. 

 Thus, the segment is neither greater than nor less than X, so it must be equal to it, and 

therefore to 1
2

× (cylinder EC). (Archimedes, ~250 B.C.E., p. 131-133) 

☐ 

  

A Numerical Example 

Let’s look at an example: Suppose we have a paraboloid of revolution 𝑧𝑧 = 𝑥𝑥2 + 𝑦𝑦2 and the plane 

𝑧𝑧 = 2𝑥𝑥 + 3𝑦𝑦 + 1.We want to find the volume enclosed by these two curves using the idea given 

in the proof above. The graphs intersect in an ellipse, and if we project the image onto the xy-

plane, we get the circle (𝑥𝑥 − 1)2 + (𝑦𝑦 − 3
2
)2 = 17

4
 , and the points farthest from and closest to the 

origin lie on the line 𝑦𝑦 = 3
2
𝑥𝑥.This line and the circle intersect at the points (-0.14354375, -

0.21531562) and (2.14354375, 3.21531562). Plugging these two points into 𝑧𝑧 = 𝑥𝑥2 + 𝑦𝑦2 or  
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𝑧𝑧 = 2𝑥𝑥 + 3𝑦𝑦 + 1, we see that (-0.14354375, -0.21531562, 0.0669656) and (2.14354375, 

3.21531562,14.933034) are the endpoints of the major axes of the ellipse. The major axis a is 

half of the distance between these two points, which is 7.71362. To find the minor axis b, we 

find the intersections between (𝑥𝑥 − 1)2 + (𝑦𝑦 − 3
2
)2 = 17

4
 and 𝑦𝑦 = −2

3
𝑥𝑥 + 13

6
 because this line is 

perpendicular to 𝑦𝑦 = 3
2
𝑥𝑥 and passes through the circle’s center (1, 3

2
). They intersect at               

(-0.71531562, 2.64354375) and (2.71531562, 0.35645625). Then (-0.71531562, 2.64354375, 

7.5) and (2.71531562, 0.35645625, 7.5) are the endpoints of the minor axes of the ellipse. Then b 

is half the distance between these two points, which is 2.06155. Now we find the height of the 

segment of paraboloid, or the distance from the vertex to the plane. Using the property that the 

line through the vertex parallel to the axis bisects the opposite side, we can project the graphs 

onto the xy-plane; then the vertex of the paraboloid has the same (x, y) coordinates as the center 

of the circle, which is �1, 3
2
�. Plugging �1, 3

2
� into 𝑧𝑧 = 𝑥𝑥2 + 𝑦𝑦2, we see that the vertex of the 

paraboloid is �1, 3
2

, 13
4
�. The distance between the point �1, 3

2
, 13
4
� and the plane −2𝑥𝑥 − 3𝑦𝑦 + 𝑧𝑧 −

1 = 0 is given by 
|(−2)(1)+(−3)�32�+(1)�134 �−1|

�(−2)2+(−3)2+(1)2
 , which is 

17
4

√14
= 17√14

56
 . The volume of the cylinder is 

base area times height, and the area of the ellipse is given by πab. So the volume of the cylinder 

is πabh = 7.713622.06155171456 = 18.0625.The volume of the segment of paraboloid is       

𝜋𝜋𝜋𝜋𝜋𝜋ℎ
2

 = 9.03125. 

According to Toomer (2018), this is a problem of integration if put into modern terms. To 

find the volume of a region bounded by these two curves in the third dimension, we would use  
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multiple integrals: ∭1 𝑑𝑑𝑧𝑧𝑑𝑑𝑦𝑦𝑑𝑑𝑥𝑥. The variable z is bounded by 𝑥𝑥2 + 𝑦𝑦2 and 2𝑥𝑥 + 3𝑦𝑦 + 1; setting 

𝑥𝑥2 + 𝑦𝑦2 = 2𝑥𝑥 + 3𝑦𝑦 + 1, we get a circle (𝑥𝑥 − 1)2 + (𝑦𝑦 − 3
2
)2 = 17

4
. Solving for y, we get that y is 

bounded by 3
2

± �17
4
− (𝑥𝑥 − 1)2 ; and x is bounded by 1 ± √17

2
. So now we have 

∫ ∫ ∫ 𝑑𝑑𝑧𝑧𝑑𝑑𝑦𝑦𝑑𝑑𝑥𝑥2𝑥𝑥+3𝑦𝑦+1
𝑥𝑥2+𝑦𝑦2

3
2+�

17
4 −(𝑥𝑥−1)2

3
2−�

17
4 −(𝑥𝑥−1)2

1+√172
1−√172

.By using the transformations 𝑥𝑥 = 1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃) and 𝑦𝑦 =

3
2

+ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜃𝜃), we get ∫ ∫ �17
4
− 𝑟𝑟2� 𝑟𝑟 𝑑𝑑𝑟𝑟𝑑𝑑𝜃𝜃

√17
2

0
2𝜋𝜋
0 . This evaluates to 289𝜋𝜋

32
= 9.03125, which is the 

exact same answer we got using Archimedes’ proposition.  

Many teachers today teach integration by drawing rectangles of equal width under a 

curve and then explaining how the sum of the areas of the rectangles would approximate the area 

under the curve. This is the same idea that Archimedes used when he inscribed and 

circumscribed figures in/around the segment of paraboloid. But when Archimedes proved this 

problem, there was no calculus. Instead, he used a common method that proved many 

propositions involving areas or volumes - method of exhaustion, which is mostly based on logic. 

In fact, there wasn’t a particular outline on how to prove something using this method. The 

outline that Saito (2013) provided, which is quoted before Archimedes’ proof, was derived from 

the various proofs undertaken by Archimedes (p. 97). 

 Archimedes’ method for proving volumes of conoids reveals the beauty of ancient Greek 

mathematics. Archimedes may not have been the first person to come up with the idea of a 

conoid, but he was one of the first people who made significant advancements in this area.  
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However, credit must also be given to Antiphon for coming up with the idea of method of 

exhaustion, and to Eudoxus and Euclid for advancing this method (Sack, 2014). As the concept 

of calculus did not exist during Archimedes’ time, it is quite profound to realise how a logical 

idea like double contradiction could prove many abstract ideas and propositions. Ultimately, 

Archimedes’ 32 propositions and their proofs in his book On Conoids and Spheroids served as a 

stepping stone towards the development of the conoids that we know today. 

 

Advances a Millennium after Archimedes 

 Approximately a thousand years after Archimedes, Hasan Thabit ibn Qurra Marwan al-

Harrani was born in Northern Mesopotamia in 836 CE. With his proficiency in Arabic and 

Greek, and a passion for mathematics, Thabit studied and translated many works from Greek 

mathematicians. Several of Archimedes’ works were translated, and Thabit built on his works on 

conic sections and the measurement of parabolas and paraboloids. He was able to find the 

volume of a paraboloid, and some people consider him as the essential link between Archimedes 

and later European mathematicians such as Cavalieri, Kepler, and Wallis (Joseph, 2011, p.459). 

In 940 CE, another Arabic mathematician, Abū Sahl al-Qūhī, was born. In his book Risala ft 

istikhraj misahat al-mujassam al-mukafi (“Measuring the Parabolic Body”), Al-Qūhī provided a 

clearer and simpler solution to finding the volume of a paraboloid than the proof written by 

Archimedes in On Conoids and Spheroids ("Al-Qūh.", 2019).  

 According to Rashed (2017, p. 143), the works of Thabit ibn Qurra and Al-Qūhī heavily 

influenced Ibn al-Haytham, an Arabic mathematician born in 965 C.E. His interest in optics led 

him to prove sums of powers of whole numbers, which then became an important part of his 

measurement of the volume of a certain kind of paraboloid (Joseph, 2011, p. 494). As Rashed  
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 (2017, p. 143) states, Ibn al-Haytham’s work was the last done in Arabic: no further 

contributions using the exhaustion method are seen after this, nor indeed was any further 

research undertaken. 

 Al-Haytham used a method slightly different from Archimedes’ to show that the volume 

of a paraboloid of revolution around a diameter is equal to half the volume of the circumscribed 

cylinder, but he also proved volumes of different types of paraboloids. One of the conjectures 

that he shows is “Let ABC be a semi-parabola, BC its diameter, AC its ordinate, v the volume of a 

paraboloid generated by the rotation of ABC around AC; V the volume of the circumscribed 

cylinder, then 𝑣𝑣 = 8
15
𝑉𝑉 ” (Rashed, 2017, p. 160). Figure 8 shows an example of what a semi-

parabola is and what it looks like after rotating around AC.  

  
  
  

 

 

 

 

 

To prove this, Al-Haytham uses a Lemma: 

          �(𝑟𝑟2 − 𝑘𝑘2)2
𝑛𝑛−1

𝑘𝑘=1

≤
8

15
𝑟𝑟 × 𝑟𝑟4 ≤ �(𝑟𝑟2 − 𝑘𝑘2)2

𝑛𝑛−1

𝑘𝑘=0

 

The following proof is paraphrased from Rashed’s (2017) book Ibn al-Haytham and 

Analytical Mathematics: 

Quadratic Functions. Retrieved from 
https://www.shmoop.com/functions/quadratic-functions.html; 
Edited using Google Drawing 

Figure 8 

A 

B C 

A 

B C 
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Proof. Let ABC be a semi-parabola, BC its diameter, AC its ordinate, v the volume of a 

paraboloid generated by the rotation of ABC around AC, and V the volume of the circumscribed 

cylinder. Notice that the angle ACB is not always a right angle, but we will only show the case 

when ∠ACB = 𝜋𝜋
2
. 

Case 1: Assume that ∠ACB = 𝜋𝜋
2
. 

I. First assume that 𝑣𝑣 > 8
15
𝑉𝑉; then 𝑣𝑣 − 8

15
𝑉𝑉 = 𝜀𝜀. 

Let H be the midpoint of AC and construct HS ∥ BC. HS intersects the semi-

parabola at M, and construct QO ∥ AC and passing through point M. Let K be the 

midpoint of AH and I be the midpoint of HC and construct KR ∥ IW ∥ BC. Let L 

be the intersecting point of the semi-parabola and KR, and construct UV ∥ AC and 

passing through L. Let N be the intersecting point of the semi-parabola and IW, 

and construct XP ∥ AC and passing through N, with X lying on HS.  

  
  
  

 

 

 

 

 

 

Let [U] be the volume generated by the rotation of the surface (U). 

 

Figure 9 

Ibn al-Haytham and Analytical Mathematics. (Rashed, 2017, p. 
160) 
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From Figure 9, [EM] = [MB] and [AM] = [MC], hence [EM] + [MC] = [AM] + 

[MB]  = 1
2
𝑉𝑉. 

In a similar manner, [QL] + [LH] = 1
2
 [AM] and [SN] + [NO] = 1

2
 [MB], and it 

follows that [QL] + [LH] + [SN] + [NO] = 1
2
 [AM]+1

2
[MB] = 1

2
�1
2
𝑉𝑉� = 1

4
𝑉𝑉. 

By continuing to take subdivisions and successively subtract 1
2
𝑉𝑉, 1

4
𝑉𝑉, etc, we will 

inevitably reach a point where the remainder is less than ε. 

Assume that we have reached that step in Figure 9, that is,  

[BN] + [NM] + [ML] + [LA] < ε. 

Let 𝑉𝑉𝑛𝑛 = [BN] + [NM] + [ML] + [LA], and let 𝑣𝑣𝑛𝑛be the volume of 𝑉𝑉𝑛𝑛 inside the 

paraboloid. 

With our assumption that 𝑣𝑣 − 8
15
𝑉𝑉 = 𝜀𝜀, we know that 𝑣𝑣 − 𝑣𝑣𝑛𝑛 > 8

15
𝑉𝑉. 

Because of the properties of a parabola, 𝐴𝐴𝐴𝐴
2

𝐿𝐿𝐿𝐿2
= 𝐵𝐵𝐴𝐴

𝐵𝐵𝐿𝐿
, 𝐿𝐿𝐿𝐿

2

𝑀𝑀𝑀𝑀2
= 𝐵𝐵𝐿𝐿

𝐵𝐵𝑀𝑀
, 𝑀𝑀𝑀𝑀

2

𝑁𝑁𝑁𝑁2
= 𝐵𝐵𝑀𝑀

𝐵𝐵𝑁𝑁
. 

MO = 2NP, LV = 3NP, AC = 4NP, so if we set NP = 1, then NP : MO : LV : AC = 

1: 2: 3: 4, which is the first four natural numbers. Then BP : BO : BV : BC = 

12: 22: 32: 42, which is the square of the first four natural numbers. It follows that 

WN : SM : RL : EA = 12: 22: 32: 42.But 

WI=SH=RK=EA 

and 

𝑊𝑊𝑁𝑁
𝑆𝑆𝑀𝑀

= 12

22
, … , 𝑅𝑅𝐿𝐿

𝐸𝐸𝐴𝐴
= 32

42
= (𝑛𝑛−1)2

𝑛𝑛2
. 

By Lemma, which states,  
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                    �(𝑟𝑟2 − 𝑘𝑘2)2
𝑛𝑛−1

𝑘𝑘=1

≤
8

15
𝑟𝑟 × 𝑟𝑟4 ≤ �(𝑟𝑟2 − 𝑘𝑘2)2

𝑛𝑛−1

𝑘𝑘=0

, 

we have  

𝑁𝑁𝑁𝑁2 + 𝑀𝑀𝑀𝑀2 + 𝐿𝐿𝐿𝐿2 ≤
8

15
(𝑊𝑊𝑁𝑁2 + 𝑆𝑆𝑀𝑀2 + 𝑅𝑅𝐿𝐿2 + 𝐴𝐴𝐴𝐴2) 

and 

8
15

(𝑊𝑊𝑁𝑁2 + 𝑆𝑆𝑀𝑀2 + 𝑅𝑅𝐿𝐿2 + 𝐴𝐴𝐴𝐴2) ≤ 𝐵𝐵𝐵𝐵2 + 𝑁𝑁𝑁𝑁2 + 𝑀𝑀𝑀𝑀2 + 𝐿𝐿𝐿𝐿2 

Areas of discs with respective radii are marked by 𝑆𝑆𝑖𝑖, so 𝑆𝑆𝑘𝑘 = 𝜋𝜋(𝑟𝑟2 − 𝑘𝑘2), and 

𝑆𝑆0 = 𝜋𝜋𝑟𝑟4. Therefore,  

                     �𝑆𝑆𝑘𝑘

𝑛𝑛−1

𝑘𝑘=1

≤
8

15
𝑟𝑟 × 𝑆𝑆0 ≤ �𝑆𝑆𝑘𝑘

𝑛𝑛−1

𝑘𝑘=0

. 

For cylinders with base 𝑆𝑆𝑘𝑘 and height ℎ = 𝐴𝐴𝐴𝐴
𝑛𝑛

, we mark as 𝑊𝑊𝑘𝑘. Then we get 

�𝑊𝑊𝑘𝑘 ≤
8

15
𝑉𝑉

𝑛𝑛−1

𝑘𝑘=1

. 

But by construction,  

�𝑊𝑊𝑘𝑘 = 𝑣𝑣 − 𝑣𝑣𝑛𝑛.
𝑛𝑛−1

𝑘𝑘=1

 

Therefore,  

𝑣𝑣 − 𝑣𝑣𝑛𝑛 < 8
15
𝑉𝑉, 

which is absurd, so we conclude that 

𝑣𝑣 ≤ 8
15
𝑉𝑉. 
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II. Now assume that 𝑣𝑣 < 8
15
𝑉𝑉; then 8

15
𝑉𝑉 − 𝑣𝑣 = 𝜀𝜀. 

Consider the same subdivision as used at the step where the total of surfaces 

which surround the parabola is smaller than ε. Let 𝑢𝑢𝑛𝑛 be the volume of 𝑉𝑉𝑛𝑛, outside 

the paraboloid; therefore 𝑢𝑢𝑛𝑛 < 𝜀𝜀, so 𝑣𝑣 + 𝑢𝑢𝑛𝑛 < 8
15
𝑉𝑉. The solid 𝑣𝑣 + 𝑢𝑢𝑛𝑛 is nothing 

more than a solid whose base is the disc of radius BC and whose vertex is the disc 

of radius AU, but we have shown that  

8
15

𝑟𝑟 × 𝑆𝑆0 ≤ �𝑆𝑆𝑘𝑘

𝑛𝑛−1

𝑘𝑘=0

; 

therefore, 

8
15

𝑉𝑉 ≤ �𝑊𝑊𝑘𝑘

𝑛𝑛−1

𝑘𝑘=0

, 

which is absurd, since 

�𝑊𝑊𝑘𝑘

𝑛𝑛−1

𝑘𝑘=0

= 𝑣𝑣 + 𝑢𝑢𝑛𝑛 <
8

15
𝑉𝑉. 

It follows that 

𝑣𝑣 ≥ 8
15
𝑉𝑉. 

 So from I and II, we conclude that 𝑣𝑣 = 8
15
𝑉𝑉.(Rashed, 2017, p. 160-163) 

☐ 

 For cases 2 and 3, Al-Haytham assumes that ∠ACB < 𝜋𝜋
2
 and ∠ACB > 𝜋𝜋

2
 and, using the 

same method, shows that 𝑣𝑣 = 8
15
𝑉𝑉. 

 While there are some minor differences, it can be seen that Archimedes’ and Al-

Haytham’s proofs are quite similar - Both used the method of exhaustion, both involved cutting 
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the segment into discs or cylinders, and both had ideas pertaining to summation. Al-Haytham’s 

proof came around thirteen centuries after Archimedes, and according to Rashed (2017, p. 143), 

“no further contributions using the exhaustion method are seen after  

this, nor indeed was any further research undertaken. This is an area that no historian can fail to 

investigate, as we now witness a second halt, just as brutal as the first had been, thirteen 

centuries before.” 

 At the same time, Al-Haytham’s works regarding the sums of powers of whole numbers 

was highly influential on calculus. According to Rashed (2017, p. 144), Al-Haytham derived the 

formulas for ∑ 𝑘𝑘𝑖𝑖𝑛𝑛
𝑘𝑘=1  for 𝑟𝑟 ∈ {1, 2, 3, 4}. 

 Let’s examine his proof for ∑ 𝑘𝑘2 = 1
3
𝑟𝑟3 + 1

2
𝑟𝑟2 + 1

6
𝑟𝑟𝑛𝑛

𝑘𝑘=1 . 

Proof. Let 𝑆𝑆𝑛𝑛 = ∑ 𝑘𝑘1𝑛𝑛
𝑘𝑘=1  and 𝑆𝑆𝑛𝑛

(2) = ∑ 𝑘𝑘2𝑛𝑛
𝑘𝑘=1 . 

Let 𝑃𝑃𝑘𝑘 = (𝑘𝑘 + 1)𝑆𝑆𝑘𝑘 = 𝑆𝑆𝑘𝑘
(2) + 𝑆𝑆𝑘𝑘 + 𝑆𝑆𝑘𝑘−1 + ⋯+ 𝑆𝑆1. 

1. 𝑃𝑃1 = 1(1 + 1) = 12 + 1 = 𝑆𝑆1
(2) + 𝑆𝑆1; 

2. 𝑃𝑃2 = (1 + 2)(2 + 1) = 22 + 12 + (1 + 2) + 1 = 𝑆𝑆2
(2) + 𝑆𝑆2 + 𝑆𝑆1; 

3. 𝑃𝑃3 = (1 + 2 + 3)(3 + 1) = 32 + 22 + 12 + (1 + 2 + 3) + (1 + 2) + 1 = 𝑆𝑆3
(2) +

𝑆𝑆3 + 𝑆𝑆2 + 𝑆𝑆1; 

4. 𝑃𝑃4 = (1 + 2 + 3 + 4)(4 + 1) = 42 + 32 + 22 + 12 + (1 + 2 + 3 + 4) +

(1 + 2 + 3) + (1 + 2) + 1 = 𝑆𝑆4
(2) + 𝑆𝑆4 + 𝑆𝑆3 + 𝑆𝑆2 + 𝑆𝑆1  

 

Now we assume 𝑃𝑃𝑘𝑘 = (𝑘𝑘 + 1)𝑆𝑆𝑘𝑘 = 𝑆𝑆𝑘𝑘
(2) + 𝑆𝑆𝑘𝑘 + 𝑆𝑆𝑘𝑘−1 + ⋯+ 𝑆𝑆1 is true for some 𝑘𝑘 and we prove 

that this property holds for 𝑘𝑘 + 1. 

𝑃𝑃𝑘𝑘+1 = [(𝑘𝑘 + 1) + 1]𝑆𝑆𝑘𝑘+1 = (𝑘𝑘 + 1)𝑆𝑆𝑘𝑘+1 + 𝑆𝑆𝑘𝑘+1 



  TME, vol. 18, nos.1&2, p.178 

= (𝑆𝑆𝑘𝑘 + (𝑘𝑘 + 1))(𝑘𝑘 + 1) + 𝑆𝑆𝑘𝑘+1 = 𝑃𝑃𝑘𝑘 + (𝑘𝑘 + 1)2 + 𝑆𝑆𝑘𝑘+1 

= 𝑆𝑆𝑘𝑘+1
(2) + 𝑆𝑆𝑘𝑘+1 + 𝑆𝑆𝑘𝑘 + ⋯+ 𝑆𝑆1. 

Observe: 𝑆𝑆𝑛𝑛 + 𝑆𝑆𝑛𝑛−1 + ⋯+ 𝑆𝑆1 = 1
2
�1 × (1 + 1) + 2 × (2 + 1) + ⋯+ 𝑟𝑟 × (𝑟𝑟 + 1)� =

1
2

(12 + 22 + ⋯+ 𝑟𝑟2 + 1 + 2 + ⋯+ 𝑟𝑟) = 1
2

(𝑆𝑆𝑛𝑛
(2) + 𝑆𝑆𝑛𝑛). 

Then, (𝑟𝑟 + 1)𝑆𝑆𝑛𝑛 = 𝑆𝑆𝑛𝑛
(2) + 1

2
𝑆𝑆𝑛𝑛

(2) + 1
2
𝑆𝑆𝑛𝑛. 

But (𝑟𝑟 + 1)𝑆𝑆𝑛𝑛 = �𝑟𝑟 + 1
2
� 𝑆𝑆𝑛𝑛 + 1

2
𝑆𝑆𝑛𝑛, so we can set 𝑆𝑆𝑛𝑛

(2) + 1
2
𝑆𝑆𝑛𝑛

(2) + 1
2
𝑆𝑆𝑛𝑛 = �𝑟𝑟 + 1

2
� 𝑆𝑆𝑛𝑛 +

1
2
𝑆𝑆𝑛𝑛. So 𝑆𝑆𝑛𝑛

(2) + 1
2
𝑆𝑆𝑛𝑛

(2) = 3
2
𝑆𝑆𝑛𝑛

(2) = �𝑟𝑟 + 1
2
� 𝑆𝑆𝑛𝑛. 

Then 𝑆𝑆𝑛𝑛
(2) = 2

3
�𝑟𝑟 + 1

2
� 𝑆𝑆𝑛𝑛 = 2

3
�𝑟𝑟 + 1

2
� �𝑛𝑛(𝑛𝑛+1)

2
� = 1

3
(𝑟𝑟 + 1)𝑟𝑟 �𝑟𝑟 + 1

2
� = 1

3
𝑟𝑟3 + 1

2
𝑟𝑟2 +

1
6
𝑟𝑟. (Rashed, 2017, p. 144-146) 

☐ 

In this proof, Al-Haytham used an archaic form of finite induction, which was still being 

used in the seventeenth century. He used the same method to prove the formulas for ∑ 𝑘𝑘3𝑛𝑛
𝑘𝑘=1  and 

∑ 𝑘𝑘4𝑛𝑛
𝑘𝑘=1 , and then he identified a general rule: (𝑟𝑟 + 1)∑ 𝑘𝑘𝑖𝑖𝑛𝑛

𝑘𝑘=1 = ∑ 𝑘𝑘𝑖𝑖+1 + ∑ [∑ 𝑘𝑘𝑖𝑖]𝑝𝑝
𝑘𝑘=1

𝑛𝑛
𝑝𝑝=1

𝑛𝑛
𝑘𝑘=1  

(Rashed, 2017, p. 144-148). According to Sebah and Gourdon (2002, p. 2), many 

mathematicians in the early years of calculus, such as Pierre de Fermat, Gilles de Roberval, 

Johann Faulhaber, and Jakob Bernoulli, had taken an interest in sums of powers of whole 

numbers. For example, on September 22, 1636, Fermat wrote to Roberval that he could “square 

infinitely many figures composed of curved lines,” and Roberval replied that he could do that too 

with the inequalities 𝑛𝑛
𝑘𝑘+1

𝑘𝑘+1
< ∑ 𝑟𝑟𝑘𝑘 < (𝑛𝑛+1)𝑘𝑘+1

𝑘𝑘+1
𝑛𝑛
𝑖𝑖=1  (Knoebel, Lodder, Laubenbacher, & Pengelley, 

2007, p. 9). As we learn in Calculus II today, summations are strongly related to integrals, and 
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these inequalities may look somewhat familiar as we see that ∫𝑟𝑟𝑘𝑘 𝑑𝑑𝑟𝑟 = (𝑛𝑛+1)𝑘𝑘+1

𝑘𝑘+1
+ 𝐵𝐵 from the 

power rule. 

 

A Basel Problem 

Regarding these sums, Jakob Bernoulli mainly looked into the following:𝑆𝑆𝑚𝑚(𝑟𝑟) = 0𝑚𝑚 +

1𝑚𝑚 + ⋯+ (𝑟𝑟 − 1)𝑚𝑚 = ∑ 𝑘𝑘𝑚𝑚𝑛𝑛−1
𝑘𝑘=0 . Bernoulli listed out the sequence of formulas: 

𝑆𝑆0(𝑟𝑟) = 𝑟𝑟 

𝑆𝑆1(𝑟𝑟) =
1
2
𝑟𝑟2 −

1
2
𝑟𝑟 

𝑆𝑆2(𝑟𝑟) =
1
3
𝑟𝑟3 −

1
2
𝑟𝑟2 +

1
6
𝑟𝑟 

𝑆𝑆3(𝑟𝑟) =
1
4
𝑟𝑟4 −

1
2
𝑟𝑟3 +

1
4
𝑟𝑟2 

𝑆𝑆4(𝑟𝑟) =
1
5
𝑟𝑟5 −

1
2
𝑟𝑟4 +

1
3
𝑟𝑟3 −

1
30

𝑟𝑟 

𝑆𝑆5(𝑟𝑟) =
1
6
𝑟𝑟6 −

1
2
𝑟𝑟5 +

5
12

𝑟𝑟4 −
1

12
𝑟𝑟2 

𝑆𝑆6(𝑟𝑟) =
1
7
𝑟𝑟7 −

1
2
𝑟𝑟6 +

1
2
𝑟𝑟5 −

1
6
𝑟𝑟3 +

1
42

𝑟𝑟 

𝑆𝑆7(𝑟𝑟) =
1
8
𝑟𝑟8 −

1
2
𝑟𝑟7 +

7
12

𝑟𝑟6 −
7

24
𝑟𝑟4 +

1
12

𝑟𝑟2 

𝑆𝑆8(𝑟𝑟) =
1
9
𝑟𝑟9 −

1
2
𝑟𝑟8 +

2
3
𝑟𝑟7 −

7
15

𝑟𝑟5 +
2
9
𝑟𝑟3 −

1
30

𝑟𝑟 

𝑆𝑆9(𝑟𝑟) =
1

10
𝑟𝑟10 −

1
2
𝑟𝑟9 +

3
4
𝑟𝑟8 −

7
10

𝑟𝑟6 +
1

12
𝑟𝑟4 −

3
20

𝑟𝑟2 

𝑆𝑆10(𝑟𝑟) =
1

11
𝑟𝑟11 −

1
2
𝑟𝑟10 +

5
6
𝑟𝑟9 − 𝑟𝑟7 + 𝑟𝑟5 −

1
2
𝑟𝑟3 +

5
66

𝑟𝑟 

 (Graham, Knuth, Patashnik, & .., 2017, p. 283) 
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He then empirically noticed that the polynomials 𝑆𝑆𝑚𝑚(𝑟𝑟) have the form 𝑆𝑆𝑚𝑚(𝑟𝑟) =

1
𝑚𝑚+1

𝑟𝑟𝑚𝑚+1 − 1
2
𝑟𝑟𝑚𝑚 + 𝑛𝑛

12
𝑟𝑟𝑚𝑚−1 + 0(𝑟𝑟𝑚𝑚−2) − +⋯ (Sebah & Gourdon, 2002). This form can also 

be written as 𝑆𝑆𝑚𝑚(𝑟𝑟) = 1
𝑚𝑚+1

�𝐵𝐵0𝑟𝑟𝑚𝑚+1 + �𝑚𝑚+1
1 �𝐵𝐵1𝑟𝑟𝑚𝑚 + ⋯+ �𝑚𝑚+1

𝑚𝑚 �𝐵𝐵𝑚𝑚𝑟𝑟� =

1
𝑚𝑚+1

∑ �𝑚𝑚+1
𝑘𝑘 �𝐵𝐵𝑘𝑘𝑟𝑟𝑚𝑚+1−𝑘𝑘𝑚𝑚

𝑘𝑘=0 , where 𝐵𝐵𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ Bernoulli number defined by a recurring relation 

∑ �𝑚𝑚+1
𝑗𝑗 � 𝐵𝐵𝑗𝑗 = 0 ∀𝑚𝑚 ≥ 0𝑚𝑚

𝑗𝑗=0 . (Graham, Knuth, Patashnik, & .., 2017, p.283-284). The first few 

Bernoulli numbers are:  

   k 0 1 2 3 4 5 6 7 8 9 10 11 12 

𝐵𝐵𝑘𝑘 1 −1
2

 
1
6

 0 −1
30

 0 1
42

 0 −1
30

 0 5
66

 
0 −691

2730
 

  

From the surface, Bernoulli numbers may seem quite odd and somewhat unimportant. 

However, Euler was able to utilize Bernoulli numbers to find a summation formula for a 

continuous function: ∑ 𝑓𝑓(𝑟𝑟) ≈ 𝐵𝐵 + � 𝑛𝑛𝑓𝑓(𝑥𝑥) 𝑑𝑑𝑥𝑥 + 𝑓𝑓(𝑛𝑛)
2

+ 𝐵𝐵2
𝑓𝑓′(𝑛𝑛)
2!

+ 𝐵𝐵3
𝑓𝑓′′(𝑛𝑛)
3!

+ 𝐵𝐵4
𝑓𝑓′′′(𝑛𝑛)
4!

+ ⋯𝑛𝑛
𝑖𝑖=1  

(Knoebel, Lodder, Laubenbacher, & Pengelley, 2007, p. 14). One of the first problems that Euler 

tackles using this formula is finding the value of ∑ 1
𝑘𝑘2

∞
𝑘𝑘=1 , also known as the Basel Problem. He 

used this formula to calculate this sum correctly to twenty decimals �≈ 𝜋𝜋2

6
� (Knoebel, Lodder, 

Laubenbacher, & Pengelley, 2007, p. 14).  

The above account demonstrates the significance of Greek contributions to mathematics. 

From Archimedes’ propositions on finding the volume of a segment of paraboloid, Al-Haytham 

devised his own proof and built on the idea of summing powers of whole numbers. This later 

became an area of interest for many mathematicians in the 17th Century, which led to 

the development of Bernoulli numbers and a solution to the Basel problem. Overall, Greek 
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contributions became the basis for calculus, and also indirectly led to developments in number 

theory through the works of Ibn Al-Haytham and Jakob Bernoulli. It is fair to say that 

mathematics would not be the way it is today without the Greeks. 
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