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ABSTRACT: Hexagons inscribed within circles have the mystic property that their three pairs of op-
posite sides (when extended) intersect on the same line. This surprisingly simple result seems to support
the Platonic notion that elegant mathematical relationships exist in some perfect realm awaiting human
discovery. To the contrary, this article introduces a transformational proof that provides for intuitive
understanding of the mystic property while supporting the idea that mathematical objects, and relation-
ships between them, arise from coordinations of our own mental actions.
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Most often it is not possible to set [intuition] out logically as in mathematics, because the
necessary principles are not ready to hand, and it would be an endless task to undertake.
The thing must be seen all at once, at a glance, and not as a result of progressive
reasoning, at least up to a point.

Blaise Pascal [Pas2]

Introduction

In the quote above, Pascal might have been reflecting on his early experience with the mystic hexagon.
Consider the case of self-intersecting hexagon ABCDEF inscribed in a circle (see Figure 1). Not only
do its three pairs of opposite sides form intersections along the same line (the Pascal line); its six interior
angles also relate in a mysterious way. Whereas the former property holds under projection so that
Pascal’s theorem generalizes to hexagons inscribed in any conic section, the latter property is unique to
circles and, so, invites a Euclidean proof. Here, I use Euclidean transformations to demonstrate what it
might mean to see the thing “all at once.”

Figure 1: A case of Pascal’s mystic hexagon.

Since 1639, when young Pascal first posed his theorem [Bur, Pas1], it has been proven many times,
with modern proofs ranging from “simple” [Yze] to “very simple” [SM]. Yzeren’s [Yze] simple proof relies
on the construction of a new circle (see the dashed circle in Figure 2) passing through two vertices of the
hexagon and the point of intersection of one pair of its opposite sides (P1). From there, the proof really is
straightforward, but the motivation for constructing the new circle is less intuitive and more than simple.

Augros [Aug] motivated a proof by engaging readers in a thought experiment to illustrate how Pascal
might have formulated his theorem in the first place [Aug]. The conjecture relied on changes in perspec-
tive, and its proof relied on projective geometry, to generalize from the special case of a hexagon with
two pairs of parallel sides (i.e., as if sides AB and EF were parallel, and sides DE and BC were parallel,
in Figure 1).

The allusiveness of an intuitive proof contributes to the mysticism of Pascal’s theorem. However,
formal proofs require delineation, which stands in contrast to the simultaneities and coincidences that
render the hexagon mystical. If “the thing must be seen all at once,” how can we unravel it?

In particular, notice that angles BAF and DCB sum to angle DAF (see Figure 1) We can see this
via the arc lengths that subtend them: arcs BF,DB, and DF , respectively. The same phenomenon
occurs among the three angles on the other side of the Pascal line. Moreover, segments P1P3, P3P2, and
P1P2 also have an accumulating effect: they subtend the two pairs of angles and their sums, respectively.
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Figure 2: Yzeren’s proof of Pasal’s theorem.

This happens all at once, on both sides of the line. To prove this relationship and this particular case of
Pascal’s theorem, I adopt an approach motivated by Felix Klein’s Erlangen program [Kle].

Originally used to classify geometries with corresponding groups of transformations (e.g., the group
of isometries and dilations for Euclidean geometry, extended to include projections for projective geom-
etry), the Erlangen program extends to the study of algebraic invariants, as seen in the work of Emmy
Noether [RK]. This framework has also impacted mathematics education, especially from a Piagetian
perspective [Pia], in which mathematical objects arise through a coordination of our own mental actions,
or transformations [Nor]. For example, multiplication might be understood as a transformation of units
not captured through the linear process of repeated addition [Bou, Bur], “transformational reasoning” un-
dergirds students’ understanding of mathematical systems [Sim], and “transformational proofs” support
students’ meaning-making for axiomatic proofs [HS]. A proof that relies on geometric transformations,
then, might provide insights into the inner workings of the mystic hexagon.

1 A Pair of Two-Chords Theorems

As an example of transformational reasoning, consider the pair of chords shown on left side of Figure 3.
What might we say about the angles and segments it forms? As it turns out, we can say quite a lot!
If we translate point P to center O, the angles remain invariant, but the pairs of opposite arcs, which
subtend the pairs of vertical angles at P , average out to reveal the measures of those angles. In other
words, each pair of vertical angles is measured by the average of the two opposite arc lengths.

Figure 3: Two two-chords theorems.

In the case of the angle marked in blue, the angle measure is the average of the blue and green arc
lengths. As P moves to O, what is added to the blue arc is taken from the green arc, by the symmetry of
the circle, until the two arcs have the same length and measure the central angle. This result is known
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as the two chords theorem, and the inscribed angles theorem arises as a special case, as one of the arc
lengths goes to zero.

As shown on the right side of Figure 3, we can use what we know about the angles to prove another
two-chords theorem: the intersecting chords theorem. This theorem appears as Proposition 35 in Book
III of Euclid’s Elements, where it is proved without appeal to inscribed angles or the first two-chords
theorem [Joy]. However, as demonstrated elsewhere [Bog], we can readily prove ab = cd by referencing
the two pairs of inscribed angles within two similar triangles.

2 A Pair of Subtended Angles

Here, we turn to another pair of angles, subtended by segments RS and ST , with lengths g and h,
respectively (see Figure 4). Whereas arcs provide for stable measures for inscribed angles, segments are
tricky things because their role as angle measures depends upon their particular position within the circle.
For instance, if we move P along the circumference of the circle, the lengths of RS and ST no longer
have the same significance in measuring the openness of the angles.

Figure 4: Segments RS and ST subtending angles APE and EPC.

3 A Pair of Transformations

Figure 5 shows what happens when we transform P in two different ways: once along the circumference
of the circle to point P1, while maintaining angle EPA; and once along the circumference to point P2,
while maintaining angle CPE. Notice that these particular transformations place point T in line with
points E and P1, and likewise place R in line with E and P2. In the process, segment RS is transformed
to segment R1S1, and segment ST is transformed to segment S2T2, with their positions changed but
lengths preserved. As we will see, we can further transform each of those segments back on to segment
RT . They will lie on opposite ends of RT and have different lengths than before, but those lengths will
still sum to the length of RT .

Take segment RS, which subtends angle EPA. When we move P to P1 and maintain angle EPA
(now EP1A), we transform triangle SPR into congruent triangle S1P1R1. Side R1S1 has the same length
as side RS but is rotated through angle PEP1 (as measured by half the length of arc PP1). Thus, we
have triangle Q1R1S1 similar to triangle TES. Likewise, triangle Q2T2S2 is similar to triangle RES.

Theorem 3.1. When triangle Q1P1R1 is dilated from point P1 so that Q1 coincides with T , and when
triangle Q2P2T is dilated from point P2 so that Q2 coincides with R, R1 and T2 will coincide at a common
intersection, I, along the segment RT .
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Figure 5: Transforming segments RS and ST.

Proof. To prove the claim, we will label segment lengths as indicated in Table 1.

Table 1: Labels for segment lengths
Label Length of Segment

a ER
b RP2

c ET
d TP1

g RS = R1S1

h ST = S2T2

g′ R1Q1

h′ S2T2

j Q2S2

k Q1S1

m ES
n SP
u UR
v TV

With respect to these values, as labeled in Figure 6, the triangle similarities noted above give us the
equalities mk = mj = gh. Note that these equalities also imply j = k.

Furthermore, the intersecting chords theorem provides us with the following three relations:

mn = (u+ g)(h+ v)

ab = u(g + h+ v)

cd = (u+ g + h)v

Now we can see how lengths g and h are transformed into new lengths, g′′ and h′′, along the line
through RT . First g is transformed to g′ by a factor of a/m. Then the dilation transforms g′ by a factor
of b/(n− j). h undergoes a corresponding transformation to h′ and then h′′, as indicted in the equations
below.

g′′ = g(c/m)(d/(n− k)) = g(cd)/(mn−mk) = g(cd)/(mn− gh)

h′′ = h(a/m)(b/(n− j)) = h(ab)/(mn−mj) = h(ab)/(mn− gh)

Finally, we show that the sum g+ h is maintained in the transformation of g and h. Here, we rely on
the relations provided by the intersecting chords theorem.
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Figure 6: The invariance of g+h.

g′′ + h′′ = [g(cd) + h(ab)]/(mn− gh) =

[g(u+ g + h)v + hu(g + h+ v)]/[(u+ g)(h+ v)− gh] =

[(g + h)(uh+ gv + uv)]/(uh+ gv + uv) = g + h

Because of this equality, we know that the two transformed segments, g′′ and h′′ meet at a common
endpoint, I, along the line through segment RT . Thus, with reference to Figure 1, hexagon sides AF
and CD intersect along the line through P1 and P2 — the Pascal line.

4 Conclusion and Remark

In this transformational proof of Pascal’s theorem, we find the substance of Pascal’s lament. Although
the transformations themselves are simple and provide for intuition, delineating and marking them for
others to see seems an endless and painstaking task. Existing proofs admit more elegance by appealing
to general principles from linear algebra or projective geometry but provide few insights into the mystical
phenomenon.

Transformational proofs are intuitive because they explicitly refer the reader to mental actions they
can perform rather than formal relationships between static figures. Following Felix Klein and Emmy
Noether, we can also consider figurative relationships that remain invariant under transformation. In the
present case, the sum of lengths of the subtending segments is unchanged by the pair of transformations.
When we consider that, as mathematical objects, the figures themselves are results of mental actions
(e.g., sweeping out a circle or a line, as allowed within Euclidean geometry), the whole enterprise of
mathematics becomes a coordination of our own mental actions.
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