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ABSTRACT: Hermite polynomials arise when dealing with functions of normally distributed vari-
ables, and are commonly thought of as the analog of the simple polynomials on functions of regular
variables. Therefore the Hermite expansion should be an analog of the Taylor expansion. Indeed there is
a strong connection between the two – the general coefficient in the Hermite expansion is the weighted
integral of the nth derivative, as compared to the nth derivative evaluated at zero in the case of Taylor.
This fact can be used to derive the Hermite expansion for the integral and the derivative of a function.
Furthermore, it provides a method of providing simple proofs of many of the Hermite identities. This
connection is used to derive the Hermite expansions of the normal probability distribution function, the
normal cumulative distribution function and the indicator function. Finally, an algorithm to numerically
perform a Hermite expansion is presented, which is efficient in the sense that is only requires a single call
to a quadrature method.
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Introduction

The Hermite polynomials are a ubiquitous set of orthogonal polynomials (see, for instance [1, 2]) that
appear wherever a Gaussian distribution is used, and thus naturally arise in many disciplines such as
physics (e.g. quantum harmonic oscillator), statistics (e.g. Gram-Charlier Type A and Edgeworth ex-
pansions, Hermite series estimators and sequential Hermite series estimators) and finance (e.g. option
pricing). Hermite polynomials are defined by the Rodrigues formula [9]

Hn(x) =
(−1)n

ω(x)

∂n

∂xn
ω(x), (0.1)

with the Gaussian weighting function

ω(x) =
1√
2π

exp

(
−x2

2

)
. (0.2)

As the Hermite polynomials form a complete basis of polynomials, any polynomial of degree m can
be written in the Hermite basis

pm(x) =

m∑
n=0

dnHn(x). (0.3)

Furthermore, they can be used to approximate any L2(R, ω(x)dx) function via the Hermite expansion

f(x) =

∞∑
n=0

dnHn(x) (0.4)

since the Hermite polynomials are an orthogonal basis for L2(R, ω(x)dx) where the coefficients can be
calculated by orthogonality

dn =
1

n!

∫ ∞

−∞
f(x)Hn(x)ω(x)dx. (0.5)

In this paper, a general expression for the coefficients dn is presented, which can be used to easily
calculate Hermite identities. In the light of this expression, derivatives and integrals of Hermite expansions
take on a simple form, reminiscent of Ito integrals and Malliavin derivatives of the Weiner chaos expansion
[6, 4].

This expression can be used to find simple and novel proofs of the following Hermite identities:

� The generating function of a normally distributed variable – Theorem 2.1

� The Hermite inversion theorem – Theorem 2.2

� The three term Hermite recurrence relation – Theorem 2.3

� The Hermite multiplication theorem – Theorem 2.4

� A Hermite convolution integral – Theorem 2.7

� A novel proof of the Hermite linearization theorem – Theorem 2.8

Subsequently, the Hermite expansions are calculated for functions of interest:

� The probability distribution function of a N (0, σ2) distributed variable – Theorem 2.9

� The cumulative distribution function – Theorem 2.10

� The indicator function – Theorem 2.11

Although these identities are all known, this approach provides alternative, and simpler, proofs. For
example, Kagawa calculates the the Hermite coefficients for the indicator function by direct integration
[7], and in Chihara et. al. calculate the same by means of a Bargmann transform [3]. The proof in this
paper does not rely on the detailed analysis present in the earlier proofs.

Finally, an algorithm for computing the coefficients using Gauss-Hermite quadrature (GHQ) is pre-
sented, where these coefficients arise naturally. In particular, the algorithm is efficient, since it only
requires a single call to N th order GHQ, from which all dn can be calculated for n ∈ {0, N − 1}, with
accuracy decreasing as n increases. In order to precisely define the accuracy, an analysis of the error of
this algorithm is performed.
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1 A General Expression for the Coefficients of a Hermite Ex-
pansion

Theorem 1.1. Given a function f(x) ∈ L2(R, ω(x)dx) that is square integrable with respect to the
Gaussian weighting function ∫ ∞

−∞
|f(x)|2ω(x)dx < ∞, (1.1)

and further

lim
x→±∞

f(x)ω(x) = 0, (1.2)

then the coefficients of the Hermite polynomial expansion

f(x) =

M∑
n=0

dnHn(x) (1.3)

are given by the weighted integral of the nth derivative of f(x)

dn =
1

n!

∫ ∞

−∞

∂nf(x)

∂xn
ω(x)dx. (1.4)

The constant M can be an integer or infinite.

Proof. The nth coefficient in the Hermite expansion is given by Equation (0.5)

dn =
1

n!

∫ ∞

−∞
f(x)Hn(x)ω(x)dx, (1.5)

which, by definition of Hermite polynomials in Equation (0.1), can be written

dn =
1

n!

∫ ∞

−∞
f(x)(−1)n

∂n

∂xn
ω(x)dx. (1.6)

By assumption, the function f(x) is square integrable and the product of it and the Gaussian weighting
function vanishes at infinity. Therefore (1.6) can be integrated by parts n times to obtain the expression
in Equation (1.4).

Just as the coefficients of a Taylor expansion are the derivatives of the function evaluated at zero,
the coefficients of the Hermite polynomial expansion are also related to the derivatives – they are the
weighted integrals of the derivatives over the entire real line.

Unfortunately this method is not generalizable to other sets of orthogonal polynomials, since it relies
on the simple structure of the Hermite Rodrigues formula (0.1). The general form of the Rodrigues
formula is

Pn(x) =
an
ω(x)

∂n

∂xn
[(B(x))

n
ω(x)] , (1.7)

and the integration by parts relies on the fact that B(x) = 1 which is only true for the Gaussian weighting
function.

Theorem 1.2. Given a function f(x) ∈ C(M) that obeys the same integrability conditions as in Theorem
1.1 and has coefficients of a Hermite expansion dn, then the Hermite expansion of the derivative is given
by

∂f(x)

∂x
=

M−1∑
n=0

(n+ 1)dn+1Hn(x). (1.8)
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Proof. The derivative ∂f(x)
∂x has a Hermite expansion

∂f(x)

∂x
=

M−1∑
n=0

cnHn(x), (1.9)

with nth term

cn =
1

n!

∫ ∞

−∞

∂n+1f(x)

∂xn+1
ω(x)dx. (1.10)

Compare this to the (n+ 1)st term in the Hermite expansion for f(x)

dn+1 =
1

(n+ 1)!

∫ ∞

−∞

∂n+1f(x)

∂xn+1
ω(x)dx (1.11)

demonstrates that cn = (n+ 1)dn+1, resulting in Equation (1.8).

Theorem 1.3. Given a function f(x) ∈ C(M) that obeys the same integrability conditions as in Theorem
1.1 and has coefficients of a Hermite expansion dn, then the Hermite expansion of its anti-derivative
F (x) defined by ∫ x

C

f(y)dy = F (x) (1.12)

is

F (x) = b0 +

M+1∑
n=1

1

n
dn−1Hn(x), (1.13)

where b0 =
∫∞
−∞ F (x)ω(x)dx and C is some (possibly infinite) constant.

Proof. The function F (x) has a Hermite expansion

F (x) =

M+1∑
n=0

bnHn(x) (1.14)

where the n = 0 term is given by

b0 =

∫ ∞

−∞
F (x)ω(x)dx (1.15)

and subsequent terms are given by

bn =
1

n!

∫ ∞

−∞

∂n−1f(x)

∂xn−1
ω(x)dx (1.16)

where ∂0f(x)
∂x0 = f(x) has been used. Compare this to the (n − 1)st term in the Hermite expansion for

f(x)

dn−1 =
1

(n− 1)!

∫ ∞

−∞

∂n−1f(x)

∂xn−1
ω(x)dx (1.17)

demonstrates that bn = 1
ndn−1, resulting in Equation (1.13).
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2 Applications

2.1 Hermite Identities

Hermite identities have very simple proofs as a result of Theorem 1.1.

Theorem 2.1 (Generating function of the normal distribution). The generating function for the normal
distribution is given by

ext−
1
2 t

2

=

∞∑
n=0

tn

n!
Hn(x). (2.1)

Proof. Take f(x) = ext. The nth order coefficient of the Hermite expansion is given by

dn =
tn

n!

∫ ∞

−∞
extω(x)dx (2.2)

= e
1
2 t

2 tn

n!
(2.3)

leading to the Hermite expansion that is exactly Equation (2.1).

Theorem 2.2 (Hermite inversion Theorem). The polynomials have an expansion in terms of Hermite
polynomials given by

xm = m!

⌊m
2 ⌋∑

k=0

1

2kk!(m− 2k)!
Hm−2k(x). (2.4)

Proof. Take f(x) = xm. The nth coefficient of the Hermite expansion is given by

dn =
1

n!

∫ ∞

−∞

∂n

∂xn
xmω(x)dx (2.5)

=

{(
m
n

)
(m− n− 1)!! m− n even

0 m− n odd.
(2.6)

Therefore

xm =

m∑
n=0

(
m

n

)
(m− n− 1)!!Hn(x) (2.7)

where the sum runs over terms where m − n is even. To enforce this, the summation index is relabeled
m − n = 2k and by the well-known property of the double factorial, this sum simplifies to Equation
(2.4).

Theorem 2.3 (Three term Hermite recurrence relation). The Hermite polynomials obey the following
three term recurrence relation

Hn+1(x) = xHn(x)− nHn−1(x). (2.8)

Proof. Take f(x) = xHn(x). The formula for the mth term of the Hermite expansion

dm =
1

m!

∫ ∞

−∞

[
x
∂m

∂xm
Hn(x) +

(
m

1

)
∂m−1

∂xm−1
Hn(x)

]
ω(x)dx (2.9)

=

(
n

m

)∫ ∞

−∞
xHn−m(x)ω(x)dx+

(
n

m− 1

)∫ ∞

−∞
Hn−m+1(x)ω(x)dx. (2.10)
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The first integral will only produce a non-zero result when m = n− 1, since x is equal to H1(x), and the
second term is only non-zero when m = n+ 1. Therefore

dm = nδm,n−1 + δm,n+1 (2.11)

and the three term recurrence relation in Equation (2.8) is obtained.

Theorem 2.4 (Hermite multiplication Theorem). The Hermite expansion of Hn(γx) is given by

Hn(γx) = n!

⌊n
2 ⌋∑

k=0

1

2kk!(n− 2k)!
γn−2k

(
γ2 − 1

)k
Hn−2k(x) (2.12)

Two lemmas are required for this proof.

Lemma 2.5. The nth order Hermite polynomial is written in terms of the usual polynomials (the inverse
of the “inversion” formula (2.4)) by the expression

Hn(x) = n!

⌊n
2 ⌋∑

k=0

(−1)k

2kk!(n− 2k)!
xn−2k. (2.13)

Proof. Performing a Taylor series of the nth order Hermite polynomial results in the expression

Hn(x) =

n∑
m=0

(
n

m

)
Hn−m(0)xm. (2.14)

The Hermite polynomials evaluated at x = 0 are known as the Hermite numbers and only take values for
(n−m) even, in which case

Hn−m(0) = (−1)
n−m

2 (n−m− 1)!!. (2.15)

Therefore relabeling (n − m) = 2k leads to (2.13) again by the well-known expression for the double
factorial.

Lemma 2.6. The integral of the stretched Hermite polynomial

Iα =

∫ ∞

−∞
Hα(γx)ω(x)dx (2.16)

is only non-zero for even α and has the value

Iα = (α− 1)!!
(
γ2 − 1

)α
2 . (2.17)

Proof. Lemma 2.5 is used to Taylor expand the Hermite polynomial

Iα =

α∑
β=0

(
α

β

)
Hα−β(0)γ

β

∫ ∞

−∞
xβω(x)dx. (2.18)

The Hermite polynomial evaluated at zero is given in Equation (2.15), and is only non-zero when α− β
is even, and enforce this by writing α− β = 2j

Iα =

⌊α
2 ⌋∑

j=0

(
α

α− 2j

)
H2j(0)γ

α−2j

∫ ∞

−∞
xα−2jω(x)dx, (2.19)
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this shows that α must be even as well, as the integral over the polynomial in x is also only non-zero
when the exponent is even – this is equivalent to saying the original integral is only non-zero for even α
which is true as any odd function will integrate to zero. This is enforced by setting α = 2M

I2M =

M∑
k=0

(
2M

2M − 2k

)
(2k − 1)!!(2M − 2k − 1)!!

(
γ2

)M−k
(−1)k (2.20)

which, after using the definition of the double factorial, and the binomial theorem, reduces to

I2M = (2M − 1)!!
(
γ2 − 1

)M
. (2.21)

Hermite multiplication Theorem. Take f(x) = Hn(γx), the mth coefficient in the Hermite expansion is
given by

dm =
γm

(n−m)!

∫ ∞

−∞
Hn−m(γx)ω(x)dx. (2.22)

This integral is precisely what is calculated in Lemma 2.6. Using this result for the coefficient in Equation
(2.22) leads to the simple form

dm =

(
n

m

)
(n−m− 1)!!γm

(
γ2 − 1

)n−m
2 (2.23)

whenever n−m is even and equal to zero otherwise, resulting in

Hn(γx) =

n∑
m=0

(
n

m

)
(n−m− 1)!!γm

(
γ2 − 1

)n−m
2 (2.24)

where the sum only runs over even values of m. Making the change of index n−m = 2k recovers Equation
(2.12) as needed.

Theorem 2.7. The weighted integral of a Hermite polynomial evaluated at the sum x + y has a simple
form given by ∫ ∞

−∞
Hn(x+ y)ω(x)dx = yn. (2.25)

Proof. The nth order Hermite polynomial evaluated at the sum x + y can be Taylor expanded in y to
obtain

Hn(x+ y) =

n∑
m=0

(
n

m

)
ymHn−m(x). (2.26)

Reversing the summation variable k = n−m results in a Hermite expansion for Hn(x+ y) and therefore
the weighted integrals of the derivatives are these coefficients∫ ∞

−∞

∂k

∂xk
Hn(x+ y)ω(x) =

n!

(n− k)!
yn−k, (2.27)

the k = 0 term is precisely Equation (2.25).

Theorem 1.1 can also be used to provide an alternative proof of the Hermite polynomial linearization
theorem [8].

Theorem 2.8 (Hermite Polynomial Linearization Theorem). The product of two Hermite polynomials
can be written as a sum of Hermite polynomials in the following way

Hn(x)Hm(x) =

min(n,m)∑
j=0

(
m

j

)(
n

j

)
j!Hn+m−2j(x). (2.28)
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Proof. Set

f(x) = Hn(x)Hm(x) =

n+m∑
α=0

dαHα(x). (2.29)

The α derivative is given by

∂αf(x)

∂xα
=

α∑
β=0

(
α

β

)
n!

(n− β)!

m!

(m− α+ β)!
Hn−β(x)Hm−α+β(x). (2.30)

The maximum α can be is n+m, which will obtain for at least one term. It is understood at this stage
that terms with negative Hermite coefficient are zero, since they arise from the derivative operator acting
on H0(x). The limits of the summation will become more precise below.

When integrating against the Gaussian weighting function, the only term that will be non-zero is
when

β∗ =
n−m+ α

2
, (2.31)

and this will not occur for every set of {n,m,α, β}. For instance, for β∗ to be an integer, α must have
the same parity as n−m (or equivalently n+m), guaranteeing that the Hermite expansion respects the
odd or even nature of the product Hn(x)Hm(x). The expression resulting from the β∗ term is∫ ∞

−∞

∂αf(x)

∂xα
ω(x)dx = α!

(
n

n+m−α
2

)(
m

n+m−α
2

)(
n+m− α

2

)
! (2.32)

Furthermore, the index on Hermite polynomials can never go below zero, and together with (2.31) gives
rise to a lower bound on α = max(n−m,m− n).

Therefore the Hermite expansion becomes

Hn(x)Hn(x) =

n+m∑
α=max(n−m,m−x)

(
n

n+m−α
2

)(
m

n+m−α
2

)(
n+m− α

2

)
!Hα(x). (2.33)

Making the index substitution j = n+m−α
2 leads to Equation (2.28).

2.2 Hermite Expansions

Theorem 1.1 can be used to determine the Hermite expansions of other function of interest, such as the
Gaussian distribution function itself.

Theorem 2.9. The Hermite expansion of the probability distribution function for N (0, σ2)

ωσ(x) =
1√
2πσ2

e−
x2

2σ2 (2.34)

is

ωσ(x) =

∞∑
m=0

(−1)m

m!2m
√
2π (σ2 + 1)

2m+1
H2m(x). (2.35)

Proof. Successive derivatives of the distribution in Equation (2.34) gives rise to the scaled Hermite poly-
nomials

Hn

(x
σ

)
=

(−σ)n

ωσ(x)

∂n

∂xn
ωσ(x) (2.36)

and therefore the nth term in the Hermite expansion is given by

dn =
1

(−σ)nn!
√
2πσ2

∫ ∞

−∞
Hn

(x
σ

)
ωσ(x)ω(x)dx. (2.37)
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The product ωσ(x)ω(x) can be transformed into ω(y) by the change of variables y = x
σ

√
σ2 + 1. Leading

to an integral that is covered by Lemma 2.6

dn =

 1

σnn!
√

2π(σ2+1)
(n− 1)!!

(
−σ2

σ2+1

)n
2

n even

0 n odd.
(2.38)

Using the definition of the double factorial and changing the summation to m = 2n results in Equation
(2.35).

Theorem 2.10. The cumulative distribution function of a normal N (0, σ2)

Φσ(x) =

∫ x

−∞
ωσ(x)dx =

1

2

[
1 + erf

(
x√
2σ

)]
(2.39)

has Hermite expansion

Φσ(x) =
1

2
+

∞∑
k=0

(−1)k

(2k + 1)k!2k
√

2π(σ2 + 1)2k+1
H2k+1(x) (2.40)

Proof. Applying Theorem 1.3 to the function ωσ(x) results in the series

Φσ(x) =

∫ ∞

−∞

∫ x

−∞
ωσ(y)dyω(x)dx+

∞∑
n=1

1

n
dn−1Hn(x) (2.41)

where the dn are the coefficients of the Hermite expansion of ωσ(x). Performing the integral and inserting
the coefficients leads to

Φσ(x) =
1

2
+

∞∑
n=1


(−1)

n−1
2

n(n−1
2 )!2

n−1
2

√
2π(σ2+1)n

Hn(x) n− 1 even

0 n− 1 odd

. (2.42)

Making the index substitution 2k = n− 1 leads to Equation (2.40).

Theorem 2.11. The Hermite expansion of the indicator function

1(x) =


1 x > 0
1
2 x = 0

0 x < 0

(2.43)

is

1(x) =
1

2
+

∞∑
k=0

(−1)k

(2k + 1)k!2k
√
2π

H2k+1(x). (2.44)

Proof. The indicator function can be written as a limit of the cumulative normal distribution

1(x) = lim
σ→0

Φσ(x). (2.45)

This limit can be taken on each term in the Hermite expression for Φσ(x) resulting in the Hermite
expansion for the indicator function given in Equation (2.44).
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3 Gauss-Hermite Quadrature and theWeighted Integral of Deriva-
tives

N th order Gauss- Hermite quadrature (GHQ) approximates Gaussian integrals by a sum

I[f ] =

∫ ∞

−∞
f(x)ω(x)dx ≈

N−1∑
i=0

wif (xi) , (3.1)

where the weighting function is given in Equation (0.2). The weights abscissa xi are chosen to be the
roots of the N th Hermite polynomial xi ∈ {x|HN (x) = 0} of which there are exactly N − 1 and they are
all real (see, for example, Theorem 3.6.12 in Stoer and Bulirsch [11]).

The weights wi come from the solution of the N − 1 “tower equations”

N−1∑
i=0

wiHj(xi) = c0δj0 (3.2)

where

cm =

∫ ∞

−∞
H2

m(x)ω(x)dx = m! (3.3)

The tower equations actually hold for j ∈ [0, 2N − 1] as shown in Theorem 3.6.24 of [11], which states
that the error in this approximation

E[f ] ≡ I[f ]−
N−1∑
i=0

wif(xi) (3.4)

is given by

E[f ] =
f (2N)(ξ)

(2N)!
cN (3.5)

where ξ is some point in the interval (−∞,∞). Therefore any polynomial of degree less than 2N will
have a vanishing error term, and therefore is exact.

This can be understood intuitively by the following argument: if f(x) is a polynomial of order 2N ,
it can be written as f(x) = HN (x)q(x) + r(x), where the quotient and remainder polynomials, q(x) and
r(x) respectively, are of order at most N − 1. The quotient term vanishes in the Gaussian quadrature
technique since the abscissa are chosen to be roots of HN (x) and the remainder term is exactly integrated
by virtue of the tower equations.

It turns out that more than just the integral can be approximated by a single call to GHQ. The same
weights and abscissa can be used to approximate the weighted integral of the first M derivatives of the
integrand

I

[
∂nf

∂xn

]
=

∫ ∞

−∞

∂nf

∂xn
ω(x)dx. (3.6)

Furthermore, these integrals are precisely n! times the coefficients dn of the Hermite expansion

f(x) =

∞∑
n=0

dnHn(x), (3.7)

which leads to an efficient algorithm to numerically determine these coefficients.

Lemma 3.1. The error term for Gauss-Hermite quadrature

E [f ] =
N !

(2N)!
f (2N)(ξ′) (3.8)
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bounded by

l
N !

(2N)!
≤ E[f ] ≤ u

N !

(2N)!
(3.9)

where

l = inf{f (2N)(x)|x ∈ [−xN−1, xN−1]}, (3.10)

u = sup{f (2N)(x)|x ∈ [−xN−1, xN−1]} (3.11)

and xN−1 is the largest zero of HN (x).

Proof. Theorem 2.1.5.9 in [11] states that for every x ∈ (−∞,∞) there exists a point ξ within an interval
of the support abscissae such that the error of the interpolating polynomial is

f(x)− h(x) =
H2

N (x)f (2N)(ξ)

(2N)!
. (3.12)

This ξ is therefore bounded by the maximum and minimum support abscissae, which in the case of
Gauss-Hermite quadrature, are the zeros of the N th Hermite polynomial. The error (3.12) is integrated
against the Gaussian weighting function results in the error of the integral

E[f ] =
1

(2N)!

∫ ∞

−∞
f (2N)(ξ(x))HN (x)2ω(x)dx. (3.13)

The next step involves the mean value theorem of integral calculus, which results in the derivative term
being evaluated at an unknown point ξ′(x) where x ∈ (−∞,∞). However, since ξ′ is bounded by the
maximal root of HN (x), a maximum and minimum error can be determined by finding the infimum and
supremum of the function inside this range, resulting in the bounds presented in Equation (3.9).

Theorem 3.2. Given the weights wi and abscissa xi of N th order Gauss-Hermite quadrature, which
satisfy

N−1∑
i=0

wiHj(xi) = δj,0 (3.14)

xi ∈ {xi|HN (xi) = 0}, (3.15)

and an integrand f(x) ∈ C(2n) which obeys then the integral of the nth order derivative of f(x), where
n < N , can be approximated by

I

[
∂nf

∂xn

]
≈

N−1∑
i=0

wiHn(xi)f(xi). (3.16)

The leading term in the error of the nth derivative is given by

E

[
∂nf

∂xn

]
=

N !

(2N − n)!
f (2N−n)(ξ′) (3.17)

for some ξ′ ∈ [−xN−1, xN−1], where xN−1 is the largest root of HN (x).

Proof. The integral for the nth derivative

I

[
∂nf

∂xn

]
=

∫ ∞

−∞

∂nf(x)

∂xn
ω(x)dx (3.18)

can be integrated by parts n times, at each point we use the property of the integrand in Equation (1.2)
to ensure the boundary term vanishes, to obtain

I

[
∂nf

∂xn

]
=

∫ ∞

−∞
f(x)(−1)n

∂n

∂xn
ω(x)dx. (3.19)



Davis, p. 82

This derivative is exactly ω(x)Hn(x) by the definition of Hermite polynomials in Equation (0.1). There-
fore, the integral of the nth derivative is given by the expression

I

[
∂nf

∂xn

]
=

∫ ∞

−∞
f(x)Hn(x)ω(x)dx, (3.20)

which can be approximated by N th order Gauss-Hermite quadrature

I

[
∂nf

∂xn

]
≈

N−1∑
i=0

wiHn(xi)f(xi), (3.21)

which is Equation (3.16) as desired.
The error term for the integral of the nth derivative can be found by applying the same method

that leads to Equation (3.5) with a new function g(x) = f(x)Hn(x), since E
[
∂nf
∂xn

]
= E[f ·Hn] = E[g].

Applying Theorem 3.6.24 in [11] gives the error

E[g] =
N !

(2N)!
g(2N)(ξ′) (3.22)

for some ξ′ ∈ [−xN−1, xN−1] by Lemma 3.1. Application of the product rule gives

g(2N)(x) =

2N∑
k=1

(
2N

k

)
∂k

∂xk
Hn(x)f

(2N−k)(x) (3.23)

which, since ∂
∂xHn(x) = nHn−1(x) gives for the error

E

[
∂nf

∂xn

]
=

n∑
k=1

(
n

k

)
N !

(2N − k)!
Hn−k(ξ

′)f (2N−k)(ξ′). (3.24)

Setting k = n produces the term with the lowest derivative of f(x), and gives the leading term shown in
Equation (3.17).

3.1 Error Analysis

To demonstrate the lower and upper bounds numerically, Gauss-Hermite quadrature is used on the simple
integrand f(x) = ex. In this case the weighted integral of all order of derivatives is equal to e

1
2 , l = e−xN−1

and u = exN−1 . The error is still given by Equation (3.17) with n = 0, and the error indeed falls between
these bounds for all orders of quadrature as shown in Figure 1.

The coefficient N !/(2N −n)! determines the approximation of the weighted integral of the derivative,
and increases with n, implying higher order derivatives are less accurate. Furthermore, this coefficient
approaches 1 for n = N and therefore the approximation will not be accurate after some order M . In
order to determine this level, Stirling’s approximation is used ([10]) on Equation (3.17) leading to

E

[
∂nf

∂xn

]
=

1

eN−n

NN+ 1
2

(2N − n)2N−n+ 1
2

f (2N−n)(ξ′). (3.25)

This approximation is very good for even moderate values ofN . For the purposes of this paper, “accurate”
will indicate an error that is less than machine precision, E ≈ 10−16. Therefore, assuming that the
derivative term is of order 1, M can be found by solving the following equation

N lnN +N −M − (2N −M) ln(2N −M) ≈ −16 ln 10 (3.26)

for fixed N . The result of solving this transcendental equation numerically are found in Table 1. These
points can be seen graphically in Figure 2 as the points where the error in the weighted integral of the
nth derivative crosses the horizontal line indicating machine precision.
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Figure 1: The error of Gauss-Hermite quadrature for the integrand f(x) = ex, together with the lower
and upper bounds as defined in the body of the paper, as a function of the order of quadrature.

N M
10 0
20 9
30 20
40 30
50 41
60 51

Table 1: Order of derivative where the Gauss-Hermite quadrature no longer produces an accurate weighted
integral of the derivative.
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Figure 2: Error in the weighted integral of the nth derivative given by a single call to Gauss-Hermite
quadrature, shown orders N ∈ [10, 20, 30, 40, 50, 60]. The horizontal line indicates machine precision
≈ 10−16, where the routine no longer will provide an accurate result.
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3.2 Numerical Hermite Expansion

Theorem 3.2 also lends itself to an algorithm to numerically approximate functions by Hermite polyno-
mials by using a single call to a quadrature method. Naively, one could determine the coefficients in the
Hermite expansion via Equation (1.5) for n ∈ {0,M} by calling a quadrature routine M + 1 times. The
following algorithm uses only one single call to a quadrature routine.

Algorithm 1.

Calculate the abscissa X = (x0, x1, . . . , xM )T , and weights W = (w0, w1, . . . , wN−1) (one efficient method
is the Golub-Welsch algorithm ([5]))

Calculate the square matrix Hij = wiHj(xi), i, j ∈ [0, N − 1]

Calculate the vector of function evaluations F = (f(x0), f(x1), . . . , f(xN−1))

Form the matrix product J = HF

Choose some integer M where the approximation error is significant

The Hermite expansion of f(x) is given by the sum

f(x) ≈
M∑
n=0

Jn
n!

Hi(x) (3.27)

As an example, this algorithm is used to numerically determine the Hermite polynomial expansion of
the two functions which were of interest calculated in this paper – the normal probability distribution
and the normal cumulative distribution function – with the results shows in Figure 3.

4 Conclusion and Remarks

In this paper, a general expression for the coefficients of a Hermite expansion of a function, the integral
of a function and the derivative of a function, are derived. These expressions can be used to simply prove
many Hermite identities, including a novel proof of the Hermite linearization theorem.

Furthermore, this expressions makes Hermite expansions simple to calculate. As a demonstration, the
Hermite expansion of the normal probability distribution function, the cumulative distribution function
and the indicator function are presented.

Finally, an efficient algorithm to numerically calculate these coefficients is presented, which is based
on Gauss-Hermite quadrature. The paper concludes with an analysis on the error and accuracy of the
algorithm.
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