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ABSTRACT: In response to student evaluations I revised my undergraduate course in real analysis
to a slides-and-worksheets model. This is the story of that revision, including why and how it was done,
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1 Introduction

Would you be happy to receive this course evaluation?

. . . I felt as if I never truly understood the material. There needs to be more examples of the
topics rather than confusing proofs and theorems . . . expecting us to have unclear theorems
memorized was too much, especially since the material was difficult already. I really didn’t
enjoy this class . . . and I wish there was a better way to understand the course.

Neither would I. However, this was unfortunately one of the comments from my introductory course
in real analysis in the spring of 2019. As disappointing as these remarks were, they were not altogether
surprising. I had taught this subject many times, but had sensed of late that the course was beginning
to fall flat. This student comment just served to further confirm my suspicions. It was becoming clear
that my real analysis course had a problem; I needed to identify it and figure out how to fix it.

2 What was wrong?

I had always taught real analysis in a traditional manner, preparing my notes with great care and striving
to present the material with enthusiasm and clarity. I collected and marked homework, met with students
outside of class, and in general did everything that I thought a good professor should do. Further, the
course had met with student approval. And yet now things were no longer working quite as they once
had. Why? A closer look revealed two clear opportunities for improvement.

One was my tests, with which I had frankly always been dissatisfied; it was never clear to me just
what to ask on a one-hour exam in a course of this nature. My existing tests had three sections, namely
definitions, proofs of certain results we had demonstrated in class, and questions at large drawn from the
course material. For both the definitions and the proofs, the students were given a list of items that were
“fair game.” This approach seemed reasonable enough; a central purpose of real analysis is to establish a
body of theory, and so learning some of the proofs supporting that theory only made sense. However, in
the case of the above student, at least, the result was just the opposite of what I was trying to achieve:
“memorizing” the proofs of “unclear theorems” was if anything breeding confusion, not competence—and
the experience was not enjoyable! Meanwhile the remaining portion of the test, the unscripted questions,
posed its own set of problems. I found it difficult to write questions that were challenging enough to be
worthwhile and yet accessible to the class as a whole within the time allotted.

A deeper issue, however, lay in the manner in which the course material was being introduced to begin
with. Things were not getting across as intended, and the answer did not seem to lie simply in better
exposition on the part of the instructor. The problem, rather, I came to believe, was that the students
were watching me engage the subject in the classroom, rather than grapple with it themselves. It was as
though I was giving them answers when they had not yet felt the weight of the questions. This is what
I somehow needed to reverse. My students were good mathematics majors, but the format of the course
made them effectively spectators, at least during class. Could I turn them instead into researchers who
welcomed the theory of real analysis not as an alien world fraught with peril, but rather as the key to
unlocking important problems which they had already tried to solve?

To pursue such a vision would doubtless entail wholesale changes in the course, and this in itself carried
significant risk: I might pour countless hours into revising everything, only to see no improvement in my
students’ comprehension of real analysis. And yet, I could not shake the conviction that there was (to
repurpose my student’s phrase) “a better way to understand the course,” a better way to get my young
mathematicians from zero to epsilon.

3 Stealing a good idea

For some time I had noticed that a number of my colleagues at Baldwin Wallace University were using
in-class worksheets as an integral part of their teaching. There were many variations, but the general
idea was to use the board or slides to introduce a topic and then let the students take it from there,
working collaboratively on the worksheets. The instructor was on hand to assist where needed. I knew
these colleagues to be excellent teachers who got good results. Indeed, it was impossible not to admire
the way in which their students left the classroom having gained first-hand experience with the material
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right on the spot; truth to tell, they even seemed to enjoy the process. But when it came to considering
this approach for real analysis, I had many questions. Surely this way of doing things consumes a lot of
class time; can we still make it through the syllabus? What exactly is the instructor’s role under such
a model? Where does one find time to generate all of the new materials needed? Further, the courses
where I had seen this done were all calculus or below; could it work in an upper-division setting like real
analysis?

Upon reflection, however, I began to see that (with one exception) each of these concerns actually
presented an opportunity. For example, it occurred to me that often it was I who was guilty of wasting
class time with my long explanations; perhaps those minutes could be better spent with the students
at work on a well-chosen problem that gets the point across. And as the instructor, I would always
play a central role in presenting the material, regardless of how the class was structured; after all, few
of us are likely to independently formulate the Riemann integral or prove Taylor’s theorem. But there
are other important things that instructors do, such as address students’ questions and help them solve
problems, and in truth I had seldom fulfilled those aspects of the role to any great extent during class.
Moreover, perhaps real analysis was in fact an ideal course for an approach like this; it could provide
a perfect opportunity to mentor my budding mathematicians during class in a way that the traditional
format would not allow. So one by one my objections seemed to fade and I decided to give the slides-
and-worksheets model a try. (The exception: I was right to worry about the time required to create the
requisite class materials. Fortunately, it need be done only once!)

4 Assembling the materials

Now it was time to lay out a detailed plan for the course and to get busy creating everything that would
be needed. The only existing features of the course that I decided to leave in place were the textbook—
Steven Lay’s Analysis with an Introduction to Proof, whose exposition and approach I still admired—and
the homework problem sets. All else would have to be built from scratch.

4.1 Slides and worksheets

The slides and worksheets used in class had to dovetail. In most cases I would use the slides to introduce
a topic and then pass the baton to the students, who would develop the idea further via the worksheet.
However, the reverse approach could also be effective: often, with the right questions, the worksheet
could itself serve as the doorway into a new area. Further, the worksheets offered an opportunity to
model mathematical exposition for my students, provided I published solutions for them. And no more
handwritten notes on legal pads; instead, to set a professional example I used Beamer and LATEX for
everything. Thus, for any given section of the text I typically had three documents open at once, the
slides, worksheet, and worksheet solution, all moving forward together. The result was a complete unit
that would not only carry us through a section of the text but also serve as reference for my students.

When summed over the entire syllabus this was no small task, but it had the great virtue of forcing
me to lay the whole course out on the table and think it through piece by piece. Exactly what did I want
the next bullet point to say? Is this the right juncture at which to turn to the worksheet? What should I
ask on the worksheet to best serve the purpose here? How should I break down this larger question into
bite-sized pieces that will be accessible to the students? Very often, the act of writing out the solution to
a question led me to revise the question itself: no, that’s actually not what I wanted to ask, or the way in
which I wanted to ask it; it should be this instead. And so on, idea by idea, point by point, throughout
the course. Never, perhaps, had I passed introductory real analysis through such a fine sieve, nor thought
this carefully about what would be going through the student’s mind as each topic was developed.

The notoriously difficult topic of compactness furnishes a good test case. Powerful results such as
the Heine-Borel, Bolzano-Weierstrass, and Nested Intervals Theorems are the supporting pillars of real
analysis; on them rest such crucial results as the Extreme Value Theorem, the Mean Value Theorem (and
thus the “obvious” fact that functions with positive derivatives are increasing), Taylor’s Theorem, the
Fundamental Theorem of Calculus, and more. Yet beginners find the scaffolding that these pillars require,
namely the open cover definition of compactness, forbidding to say the least. How should I deploy my
slides and worksheets to introduce my students to this strange definition? I decided on a simple opening
slide, with just four points:
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� Let S be a subset of R.

� A family F of open sets whose union contains S is called an open cover of S.

� A family G ⊆ F of open sets whose union also contains S is called a subcover of S.

� If the family G happens to contain only finitely many open sets, then G is called a finite subcover
of S.

With that, we turned to the worksheet, where we could put these definitions immediately into practice.
Here are the first few questions:

1. The notion of compactness turns on whether, for a given subset S of R, every open cover of S
contains a finite subcover. In the case where S is the open interval (0, 1), we will see below that
some open covers have finite subcovers, but not all do. Therefore, S is not compact.

(a) Let F be the collection of intervals {(−n, n) : n ∈ N}. Explain why F is an open cover for
S = (0, 1).

(b) Explain why F has a finite subcover. That is, find a finite collection G ⊆ F such that the
union of all of the open intervals in G still covers S. (You don’t have to look too hard.)

(c) Now let’s look at a different open cover of S. Define F to be the collection of intervals{(
0, 1− 1

n

)
: n ∈ N

}
. Explain why this choice of F is also an open cover for S.

(d) Explain why this open cover F for S has no finite subcover.

2. Show that the interval [0,∞) is not compact by finding an open cover of [0,∞) that has no finite
subcover.

The students were at first quiet as they read the questions. Then gradually they began to compare notes,
ask each other questions, look at me inquiringly, go to the board to write things out, etc. The students’
initial answers were “diamonds in the rough.” For example, the “finite subcovers” called for in questions
1(b) and (d) above are not just sets, but collections of sets, introducing a new level of subtlety of notation.
Likewise, in addressing question 2, it took a while for the students to understand just what they were
supposed to find, namely, a collection of open sets in R which, as a collection, had a certain property.
However, in the end, everything came together: at least at the level of these questions, the class came to
an understanding of the open cover definition of compact set.

Whereas these worksheet questions are straightforward, they are the fruit of careful thought about
the definition of compactness and how my students could be led step-by-step to apply it. The crucial
issue, as noted above, is whether every open cover of the given set has a finite subcover. To put this in
bold relief I needed to place an open cover that does have a finite subcover alongside one that does not.
The format and wording of the questions were likewise important; I felt a great responsibility to express
things well and to use notation carefully. Not only did I want to set an example of quality mathematical
exposition in all of the course materials, but I also wanted to make sure that the only difficulties the class
encountered were mathematical, not the result of poor presentation.

4.2 Tests

For the tests I borrowed a page from the pandemic and used a take-home rather than in-class format.
This allowed me to ask questions that I would likely not have posed on a traditional test, for example:

� Let S denote the set of all infinite sequences of 0’s and 1’s, such as {1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, . . .},
for example. Prove that S is uncountable.

� Prove that cl (S ∩ T ) ⊆ (clS) ∩ (clT ) and find an example to show that equality need not hold.

� Define f : R → R by f (x) = x if x is rational and f (x) = 0 if x is irrational. Prove that f has a
limit at c iff c = 0.
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With the class being small (n = 5) and the students being required to sign an honor pledge, I had
little concern about security. Also I accepted questions about the test, and indeed these conversations
were the occasion, I believe, of some of the deepest learning that took place all term. Yes, this was a
test, but it was also another opportunity to help my students grow as mathematicians, one that I eagerly
seized.

4.3 Final presentations

The small class size also allowed for another innovation, that is, to devote the final exam period to student
presentations rather than to a traditional exam. This would require the students to learn and publicaly
exposit a topic in real analysis. (As it turned out, the “public” included departmental colleagues, who
enlivened the proceedings with friendly yet challenging questions for the presenters!) The quality of the
presentations led me to declare the experiment a success. However, this gambit was not without cost:
I had to develop a reasonably full menu of potential topics and supporting reference materials for this
assignment. These topics had to be carefully chosen so as to be accessible while articulating well with
the course material.

My general specifications for the talks were basic:

� The topic of the presentation can draw from any aspect of real analysis, as long as you include
statements and proofs of significant results.

� Please use Beamer to create slides supporting your presentation.

� Aim for a duration of half an hour.

Next, here are a few of the ten sample topics that I provided:

� Metric spaces. A metric on a set is a function satisfying certain assumptions that gives the
“distance” between any two elements of the set. The set R of real numbers with the usual metric
d (x, y) = |x− y| is probably the most familiar metric space, but there are many others. We have
defined topological notions such as neighborhood, open set, etc. in R using distance, and therefore
we can do the same in metric spaces.

Goals for this presentation:

– Define metric space and give examples.

– Define topological terms such as neighborhood, open set, boundary, etc. for metric spaces.

– Prove that any neighborhood of a point of a metric space is an open set.

– Give an example to show that in a metric space, a set can be closed and bounded without
being compact.

� The Peano Axioms. The Peano axioms represent an early, but important, attempt to axiomatize
the natural numbers, and from there the rational and real number systems.

Goals for this presentation:

– Set forth the Peano axioms and explain what each one says.

– Explain the definition of addition.

– Answer the questions in Exercise 33, Section 3.1 of our text. (Note the hints and commentary
in the back of the book.)

– Explain the definition of multiplication.

– Prove that multiplication is commutative.

� The Cantor Set. The Cantor set, a subset of the closed interval [0, 1], is celebrated for the
counterintuitive phenomena that it manifests. As just one example, the Cantor set is uncountable,
and yet its complement consists of intervals the sum of whose lengths is 1. This set arose from
Cantor’s efforts to determine the set of points for which Fourier series converge.

Goals for this presentation:
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– Define the Cantor set.

– Use drawings to illustrate as best you can how the set is constructed.

– Complete parts (a)-(e) of Exercise 11 following Section 3.5 of our text.

– If you have time, then also prove that the Cantor set is a perfect set, that is, it contains all of
its accumulation points.

� The Riemann Rearrangement Theorem. Convergent series of constants divide into two very
different types: absolutely convergent and conditionally convergent. One striking difference between
the two is that an absolutely convergent series converges to the same sum even if the terms are
rearranged, that is, taken in a different order, whereas really the very opposite is true for a condi-
tionally convergent series: given any real number as a target, we can always rearrange the terms of
a conditionally convergent series so as to converge to that number. This latter fact is known as the
Riemann rearrangement theorem, and its proof is outlined in Exercises 15-17(a) following Section
8.2 of the text.

Goals for this presentation:

– Review the definitions of absolute and conditional convergence of series.

– Carry out Exercises 15-17(a) following Section 8.2 of our text.

The students all adopted one of the suggested topics, even if in theory they were free to scour the
literature and come up with ideas of their own. They more than fulfilled my expectations by putting
great thought and care into their presentations and taking full ownership of their talks. One student, for
example, chose the Cantor set C as his topic, covering the subject admirably and creating a graphic in
support of his proof that C contains no interval (Figure 1). He argued that if c is any positive number,
then no matter how small c is, we can find a positive integer k with 1/3k < c; it follows from the
“middle-thirds” definition of C that C cannot contain an interval of length c.

Figure 1: The Cantor set C. The red boxes represent an interval alleged to lie in C.

Although a traditional final exam would of course have been a perfectly acceptable option, the sight
of my young mathematicians taking the stage and demonstrating mastery of their chosen topics left me
with no regrets over how we used the final exam period.

5 Conclusion: Was it a success?

From my perspective, this course revision brought a level of classroom engagement that I had rarely seen
using traditional instruction. In the past I taught and hoped that good things would happen; now I had
the privilege of watching good things happen, class after class, as my students wrestled with the subject
of real analysis. In fact, I now use this slides-and-worksheets approach in some of my other courses as
well, and have been similarly pleased with the results.

But what did the students think about all this? What were the course evaluations like this time
around? Well, I am grateful to say that they were all favorable. However, I am going to give the last
word to one class member in particular, who in three sentences captured and affirmed everything that I
had hoped that this transformed real analysis course would accomplish. In many ways, this evaluation
made it all worth it:



TME, vol. 21, nos. 1-2, p. 421

The structure of group-work made the class incredibly interesting. We each had to consistently
work hard to both understand the material, and be able to clearly explain it to others. The
assignments were challenging, but being able to discuss them in class when we were having
difficulties made it a very rewarding challenge.

Department of Mathematics and Statistics, Baldwin Wallace University, Berea, OH 44017

Email address: dcalvis@bw.edu
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