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ABSTRACT: Undergraduate research in tertiary education offers mathematics students a pathway to
engage in high-impact practices. Using a simple sum equals product identity from number theory as
a motivator, we build a series of inclusion-exclusion identities for convex polygons using the symmetry
inherent in the tangent function. The techniques used are simple and accessible, illuminating and gen-
eralizable, in a manner that rejects a singular line of inquiry in favor of a plurality of mathematical
ideas.
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Introduction

Mathematics educators have long recognized the importance of introducing the right blend of research
opportunities for students by creating lines of inquiry that connect different branches of mathematics.
Utilizing small teaching techniques, the necessary scaffolding can be built to connect diverse areas of
mathematics. The critical interconnections that get developed between different mathematical concepts
can be used to create pathways to uncover the richness of mathematics, broaden access, and promote
equity. This article explores connections between two areas of mathematics to develop a line of inquiry
that leads to an inclusion-exclusion identity which explores the symmetry inherent in the tangent func-
tion. In Section 1 we introduce a tangent identity for convex polygons, motivated by a result in number
theory, and develop two illuminating Lemmas for odd and even cases. The inclusion-exclusion identit-
ies are developed in Section 2. The ideas presented in this article should be accessible to upper level
undergraduates in mathematics who have completed courses in trigonometry and discrete mathematics.

1 A tangent identity for polygons

It is known that the sum equals product equation a1 + a2 + · · · + an = a1a2 · · · an has positive integer
solutions. For example,

ai = 1 for 1 ≤ i ≤ n− 2, an−1 = 2, an = n,

is a solution to the equation [BR, GU]. It has been shown that n = 2, 3, 4, 6, 24, 114, 174, and 444 are the
only numbers n < 1000 for which the above is the only solution (up to permutations) [MI]. This result
has been extended to n ≤ 1011 [WE]. To see that a case such as n = 5 admits other positive integer
solutions, observe that by setting a1 = 1, a2 = 1, a3 = 2, a4 = 2, a5 = 2 we obtain a solution different from
the first set. Positive integer solutions can be constructed by padding as many 1’s as necessary, since
these do not alter the product [EC]. The notion of exceptional values of the positive integer solutions
have also been studied [EC]. Of course, if we allow for non-integer solutions, there are other interesting
solutions one can consider. For example, ai = n

1
n−1 for i = 1, · · · , n is a solution to the sum equals

product equation.

The sum equals product identity has provided the author viable avenues to inspire undergraduate
research projects [KA]. Undergraduate research helps promote excellence in tertiary education by offering
opportunities for students in the upper end of the mathematics spectrum to engage in high-impact
practices [PR] . In this article, we attempt to juxtapose a line of inquiry from one branch of mathematics
(number theory) with that of another branch of mathematics (trigonometry), to challenge ourselves to
discover a pathway to a generalized result. The path of inquiry into the sum equals product equation
becomes engrossing and illuminating if trigonometry enters the landscape.

Tangent identities in trigonometry have elegant structure. For the n = 3 case, a simple trigonometric
identity for a plane triangle provides yet another non-integer solution to the sum equals product identity.
Let the interior angles of the triangle be α1, α2, and α3. The following identity connects the sum of
tangents to their product. Namely,

3∑
i=1

tanαi = tanα1 tanα2 tanα3. (1.1)

A proof uses the simple sum formula for tangent,

tan(α1 + α2) =
tanα1 + tanα2
1− tanα1 · tanα2

.

Indeed, using
[
0, π2

)
∪
(
π
2 , π

)
as the domain of tangent, an elementary proof can be established, starting
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with the interior angle formula for a triangle: α1 + α2 + α3 = π,

tan(α1 + α2 + α3) = 0,

tan(α1 + α2) + tanα3
1− tan(α1 + α2) tanα3

= 0,

tanα1+tanα2
1−tanα1 tanα2 + tanα3

1− tanα1+tanα2
1−tanα1 tanα2 tanα3

= 0,

3∑
i=1

tanαi − tanα1 tanα2 tanα3

1−
2∑

i1=1

3∑
i2>i1

tanαi1 tanαi2

= 0.

The last statement establishes identity (1.1). Note that if one of the interior angles equals π
2 , then

(1.1) holds true in the limit sense.

At the same time, we obtain the following useful identity for tan

(
3∑
i=1

αi

)
.

tan

(
3∑
i=1

αi

)
=

3∑
i=1

tanαi − tanα1 tanα2 tanα3

1−
2∑

i1=1

3∑
i2>i1

tanαi1 tanαi2

(1.2)

Next let us also explore the case n = 4. A convex quadrilateral in a plane has the property that all of
its diagonals lie entirely inside of it. When we consider a plane convex quadrilateral, with interior angles
α1, α2, α3, and α4, the identity that connects the sum of tangents to their product slightly changes its
form. Namely,

4∑
i=1

tanαi =

2∑
i1=1

3∑
i2>i1

4∑
i3>i2

tanαi1 tanαi2 tanαi3 (1.3)

= tanα1 tanα2 tanα3 + tanα1 tanα2 tanα4 + tanα2 tanα3 tanα4

Using
[
0, π2

)
∪
(
π
2 , π

)
as the domain of tangent, the proof follows a similar pattern as before, starting

with α1 + α2 + α3 + α4 = 2π,

tan(α1 + α2 + α3 + α4) = 0,

tan(α1 + α2) + tan(α3 + α4)

1− tan(α1 + α2) tan(α3 + α4)
= 0,

tanα1+tanα2
1−tanα1 tanα2 +

tanα3+tanα4
1−tanα3 tanα4

1− tanα1+tanα2
1−tanα1 tanα2 ·

tanα3+tanα4
1−tanα3 tanα4

= 0,

4∑
i=1

tanαi −
2∑

i1=1

3∑
i2>i1

4∑
i3>i2

tanαi1 tanαi2 tanαi3

1−
3∑

i1=1

4∑
i2>i1

tanαi1 tanαi2 + tanα1 tanα2 tanα3 tanα4

= 0.

The last statement establishes identity (1.3).
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At the same time, we obtain the following identity for tan

(
4∑
i=1

αi

)
.

tan

(
4∑
i=1

αi

)
=

4∑
i=1

tanαi −
2∑

i1=1

3∑
i2>i1

4∑
i3>i2

tanαi1 tanαi2 tanαi3

1−
3∑

i1=1

4∑
i2>i1

tanαi1 tanαi2 + tanα1 tanα2 tanα3 tanα4

(1.4)

If we want to explore the generalization of identity (1.1) and identity (1.3) for other closed convex
polygons, it is desirable to separate the odd and even cases. A closer inspection of identity (1.2) and
identity (1.4) reveals an inclusion-exclusion principle for the tangent products. We begin with two results
that generalize identities (1.2) and (1.4). The proofs of these generalized results require mathematical
induction, the details of which present opportunities to explore nuanced techniques, in much the same
way as we can study fruit in a bowl. Before we do so, let us introduce new notation to simplify several
results to follow.

For convenience we define a n-tuple notation to capture products of tangents. Indeed, define the
products as follows.

(αi) = tanαi

(αi, αj) = tanαi tanαj
...

(α1, α2, · · · , αn) = tanα1 tanα2 · · · tanαn.

Lemma 1. For any odd set of angles α1, α2, · · · , α2n−1, with n ≥ 2, the following identity is true.

tan

(
2n−1∑
i=1

αi

)

=

2n−1∑
i=1

(αi)−
2n−3∑
i1=1

2n−2∑
i2>i1

2n−1∑
i3>i2

(αi1 , αi2 , αi3) +

2n−5∑
i1=1

2n−4∑
i2>i1

2n−3∑
i3>i2

2n−2∑
i4>i3

2n−1∑
i5>i4

(αi1 , αi2 , αi3 , αi4 , αi5)

− · · ·+ (−1)n−1(α1, α2, · · · , α2n−2, α2n−1)

1−
2n−2∑
i1=1

2n−1∑
i2>i1

(αi1 , αi2) +

2n−4∑
i1=1

2n−3∑
i2>i1

2n−2∑
i3>i2

2n−1∑
i4>i3

(αi1 , αi2 , αi3 , αi4)

− · · ·+ (−1)n−1
2∑

i1=1

3∑
i2>i1

· · ·
2n−2∑

i2n−3>i2n−4

2n−1∑
i2n−2>i2n−3

(αi1 , αi2 , · · · , αi2n−3 , αi2n−2)

Proof. By induction.

The case n = 2, holds true from (1.2). Assume the result for 2n− 1. Then,

tan

(
2n+1∑
i=1

αi

)

= tan

[(
2n−1∑
i=1

αi

)
+ α2n + α2n+1

]
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Simplify the above by using the sum of tangents for two angles.

tan

(
2n+1∑
i=1

αi

)

=

tan

(
2n−1∑
i=1

αi

)
+ tan(α2n + α2n+1)

1− tan
(
2n−1∑
i=1

αi

)
tan(α2n + α2n+1)

=

tan

(
2n−1∑
i=1

αi

)
+ tanα2n+tanα2n+1

1−tanα2n tanα2n+1

1− tan

(
2n−1∑
i=1

αi

)
tanα2n+tanα2n+1
1−tanα2n tanα2n+1

By substituting for the term in the "box" using the inductive assumption and after a considerable
amount of careful simplifications, we obtain the following:

tan

(
2n+1∑
i=1

αi

)

=

2n+1∑
i=1

(αi)−
2n−1∑
i1=1

2n∑
i2>i1

2n+1∑
i3>i2

(αi1 , αi2 , αi3) +

2n−3∑
i1=1

2n−2∑
i2>i1

2n−1∑
i3>i2

2n∑
i4>i3

2n+1∑
i5>i4

(αi1 , αi2 , αi3 , αi4 , αi5)

− · · ·+ (−1)n(α1, α2, · · · , α2n, α2n+1)

1−
2n∑
i1=1

2n+1∑
i2>i1

(αi1 , αi2) +

2n−2∑
i1=1

2n−1∑
i2>i1

2n∑
i3>i2

2n+1∑
i4>i3

(αi1 , αi2 , αi3 , αi4)− · · ·+

· · ·+ (−1)n
2∑

i1=1

3∑
i2>i1

· · ·
2n−1∑

i2n−2>i2n−3

2n∑
i2n−1>i2n−2

(αi1 , αi2 , · · · , αi2n−2 , αi2n−1)

This establishes the inductive step. �

Lemma 2. For any even set of angles α1, α2, · · · , α2n, with n ≥ 2, the following identity is true.

tan

(
2n∑
i=1

αi

)

=

2n∑
i=1

(αi)−
2n−2∑
i1=1

2n−1∑
i2>i1

2n∑
i3>i2

(αi1 , αi2 , αi3) +

2n−4∑
i1=1

2n−3∑
i2>i1

2n−2∑
i3>i2

2n−1∑
i4>i3

2n∑
i5>i4

(αi1 , αi2 , αi3 , αi4 , αi5)

− · · ·+ (−1)n−1
2∑

i1=1

3∑
i2>i1

· · ·
2n−1∑

i2n−2>i2n−3

2n∑
i2n−1>i2n−2

(αi1 , αi2 , · · · , αi2n−2 , αi2n−1)

1−
2n−1∑
i1=1

2n∑
i2>i1

(αi1 , αi2) +

2n−3∑
i1=1

2n−2∑
i2>i1

2n−1∑
i3>i2

2n∑
i4>i3

(αi1 , αi2 , αi3 , αi4)

− · · ·+ (−1)n−1(α1, α2, · · · , α2n−1, α2n)

Proof. By induction.
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The case n = 2, holds true from (1.4). Assume the result for 2n. Then,

tan

(
2n+2∑
i=1

αi

)

= tan

[(
2n∑
i=1

αi

)
+ α2n+1 + α2n+2

]
Simplify the above by using the sum of tangents for two angles.

tan

(
2n+2∑
i=1

αi

)

=

tan

(
2n∑
i=1

αi

)
+ tan(α2n+1 + α2n+2)

1− tan
(

2n∑
i=1

αi

)
tan(α2n+1 + α2n+2)

=

tan

(
2n∑
i=1

αi

)
+ tanα2n+1+tanα2n+2

1−tanα2n+1 tanα2n+2

1− tan

(
2n∑
i=1

αi

)
tanα2n+1+tanα2n+2
1−tanα2n+1 tanα2n+2

By substituting for the term in the "box" using the inductive assumption and, as before, after careful
simplifications, we obtain the following:

tan

(
2n+2∑
i=1

αi

)

=

2n+2∑
i=1

(αi)−
2n∑
i1=1

2n+1∑
i2>i1

2n+2∑
i3>i2

(αi1 , αi2 , αi3) +

2n−2∑
i1=1

2n−1∑
i2>i1

2n∑
i3>i2

2n+1∑
i4>i3

2n+2∑
i5>i4

(αi1 , αi2 , αi3 , αi4 , αi5)

− · · ·+ (−1)n
2∑

i1=1

3∑
i2>i1

· · ·
2n+1∑

i2n>i2n−1

2n+2∑
i2n+1>i2n

(αi1 , αi2 , · · · , αi2n , αi2n+1)

1−
2n+1∑
i1=1

2n+2∑
i2>i1

(αi1 , αi2) +

2n−1∑
i1=1

2n∑
i2>i1

2n+1∑
i3>i2

2n+2∑
i4>i3

(αi1 , αi2 , αi3 , αi4)− · · ·+

· · ·+ (−1)n−1(α1, α2, · · · , α2n+1, α2n+2)

This establishes the inductive step. �

2 Inclusion-exclusion identities

The next two propositions generalize the identities in (1.1) and (1.3) for odd and even convex polygons
respectively. These two results provide an inclusion-exclusion identity for the sum of tangents of the
interior angles of a convex polygon, using odd powers of products of tangents. Before we establish these
two propositions, it is worth noting how the product terms of tangent on the right-hand-side are arranged
in Lemma 1 and Lemma 2. In both odd and even convex polygons the product of tangent terms in the
numerator have an odd number of products in each summand, while tangent terms in the denominator
have an even number of products in each summand. We have summarized the types of product terms in
Table 1 by referring to them as single, double, triple, ..., n− 1 terms, n terms etc.
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# of angles Numerator (types of tan term) Denominator (types of tan term)

3 1 (single), 3 (triple product) 2 (double product)
4 1, 3 2, 4
5 1, 3, 5 2, 4
6 1, 3, 5 2, 4, 6
7 1, 3, 5, 7 2, 4, 6
8 1, 3, 5, 7 2, 4, 6, 8
9 1, 3, 5, 7, 9 2, 4, 6, 8
10 1, 3, 5, 7, 9 2, 4, 6, 8, 10
...

...
...

2n− 1 1, 3, · · · , 2n− 1 (n terms) 2, 4, · · · , 2n− 2 (n− 1 terms)
2n 1, 3, · · · , 2n− 1 (n terms) 2, 4, · · · , 2n− 2, 2n (n terms)

Table 1: Arrangement of tangent products in Lemma 1 & 2

Proposition 3. For any odd sided convex polygon with interior angles α1, α2, · · · , α2n−1, with n ≥ 2,
the following inclusion-exclusion identity holds true.

2n−1∑
i=1

tanαi

=

2n−3∑
i1=1

2n−2∑
i2>i1

2n−1∑
i3>i2

(αi1 , αi2 , αi3)−
2n−5∑
i1=1

2n−4∑
i2>i1

2n−3∑
i3>i2

2n−2∑
i4>i3

2n−1∑
i5>i4

(αi1 , αi2 , αi3 , αi4 , αi5)

+ · · ·+ (−1)n(α1, α2, · · · , α2n−2, α2n−1).

Proof. The interior angles α1, α2, · · · , α2n−1, with n ≥ 2 satisfy
2n−1∑
i=1

αi = (2n−3)π. Applying the tangent

function to both sides, with domain as
[
0, π2

)
∪
(
π
2 , π

)
for each interior angle, we have tan

(
2n−1∑
i=1

αi

)
= 0.

The inclusion-exclusion identity for an odd sided convex polygon follows from Lemma 1.

Proposition 4. For any even sided convex polygon with interior angles α1, α2, · · · , α2n, with n ≥ 2, the
following inclusion-exclusion identity holds true.

2n∑
i=1

tanαi

=

2n−2∑
i1=1

2n−1∑
i2>i1

2n∑
i3>i2

(αi1 , αi2 , αi3)−
2n−4∑
i1=1

2n−3∑
i2>i1

2n−2∑
i3>i2

2n−1∑
i4>i3

2n∑
i5>i4

(αi1 , αi2 , αi3 , αi4 , αi5)

+ · · ·+ (−1)n
2∑

i1=1

3∑
i2>i1

· · ·
2n−1∑

i2n−2>i2n−3

2n∑
i2n−1>i2n−2

(αi1 , αi2 , · · · , αi2n−2 , αi2n−1).

Proof. The interior angles α1, α2, · · · , α2n, with n ≥ 2 satisfy
2n∑
i=1

αi = (2n − 2)π. Applying the tangent

function to both sides, with domain as
[
0, π2

)
∪
(
π
2 , π

)
for each interior angle, we have tan

(
2n∑
i=1

αi

)
= 0.

The inclusion-exclusion identity for an even sided convex polygon follows from Lemma 2.

3 Conclusion and Remark

Motivated by a result in number theory, using as a prototype a simple sum equals product identity for
triangles involving the tangent function, we established a more general inclusion-exclusion identity for
higher order convex polygons. The techniques used are interesting, simple, and highlight the symmetry
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inherent in the tangent function. It would be interesting to investigate the inclusion-exclusion results
for regular convex polygons, with interior angle α, and construct algebraic equations satisfied by tanα.
We hope the reader found motivation through this article to uncover similar number theoretic results to
break open new lines of inquiry that reach other branches of mathematics. One such idea suitable for
graduate students is to extend the sum equals product identity to include Gaussian integers. Earnest
interrogation of diverse mathematical concepts can lead to new discoveries. The point is, perhaps above
all, about new mathematical tools that will become available as a result.

Acknowledgment. The author is grateful to Kent State University for supporting this research with
release time granted through the Faculty Professional Improvement Leave (FPIL) program. Sincere thanks
extend to an anonymous referee for sharing valuable suggestions.
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