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Part 2: Sailor on the Seas of Infinity 

 

Luis Moreno-Armella*; Corey Brady 

CINVESTAV-IPN; Southern Methodist University  

 

Abstract: Mathematics is the result of a long process of research with the instruments of rationality 
that each age makes available to its members. Euclidean geometry crystallizes an impulse of 
deductive rationality. But this impulse has not always been the dominant one. At other times, such 
as the one we are going to explain in this part, a form of inductive reasoning has been given primacy. 
We will see the development of ideas that today constitute the foundations of the Calculus and that 
indicated the future task of its deductive consolidation. Our protagonist, the bold sailor, was 
identified as one who calculated without apparent inductive effort, just as eagles hover in the air.   

Keywords: Logarithmic areas, infinitesimal, infinity, symbolic apparatus, inductive thinking. 
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Leonardo 

The young Leonardo followed the steps of Guillermo. He had learned that integrating the 

function y=1/x might unlock secrets of logarithms. He knew that the area under that function from 

x=1 to x=ab was the same as the sum of areas between x=1 and x=a plus x=1 and x=b:  

Figure 1 

Logarithmic Areas 

 

 
 

If we write L(a) the area between x=1 and x=a, then what Leonardo knew was that the 

function L satisfies:  L(ab)=L(a)+L(b). In other words: L behaves as a logarithm function, 

converting products into sums.  

The question Leonardo then asked himself was: what is the base of this particular 

logarithmic function? To answer this question Leonardo proceeded as follows, using the new 

infinitesimal idea: Integrate the function L between 1 and 1+w, where w is an infinitesimal.  The 

graph, if we could see it with the naked eye, would look like this: 

Figure 2 

Microscopic Vision 

 
But 1+w is infinitely close to 1, so the function y=1/x between 1 and 1+w actually looks 

like this ––thanks to the mathematical microscope, which he possessed: 
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Figure 3 

Infinitesimal Area 

 
 

Then L(1+w) corresponds to the area between 1 and 1+w. Then, we arrive at a very 

important conclusion: L(1+w)=w, the area of the infinitesimal rectangle shown above. 

Leonardo chose e to denote the base of these logarithms. By applying the exponential to 

both sides he got: 

w = L(1+w) 

𝑒𝑒𝑤𝑤 = 1 + 𝑤𝑤 

Since w is an infinitesimal, he represented it as 1/N, where N is an infinitely large integer. 

Consequently, by raising both sides to the power of N:  

𝑒𝑒
1
𝑁𝑁  =  1 +  

1
𝑁𝑁

 

𝑒𝑒 = (1 +
1
𝑁𝑁

)𝑁𝑁 

Then Leonardo developed the expression (1 + 1
𝑁𝑁

)𝑁𝑁 by means of Newton's binomial 

formula: 

𝑒𝑒 = �
𝑁𝑁
𝑘𝑘

𝑁𝑁

𝑘𝑘=0

�
𝑁𝑁
𝑘𝑘
�  �

1
𝑁𝑁𝑘𝑘� = �

𝑁𝑁(𝑁𝑁 − 1)(𝑁𝑁 − 2) … (𝑁𝑁 − 𝑘𝑘 + 1)
𝑁𝑁𝑘𝑘

1
𝑘𝑘!

𝑁𝑁

𝑘𝑘=0

 

 

Each factor 𝑁𝑁−𝑟𝑟
𝑁𝑁

= 1 − 𝑟𝑟
𝑁𝑁

, with r is a finite number.  Since N is infinitely large, 𝑟𝑟
𝑁𝑁

 is an 

infinitesimal! Remembering Guillermo´s lessons about working with infinitesimals, Leonardo 

wrote:  
𝑁𝑁 − 𝑟𝑟
𝑁𝑁

= 1 −
𝑟𝑟
𝑁𝑁

= 1 

Again, because 𝑟𝑟
𝑁𝑁

 is an infinitesimal compared to 1. He thus achieved a wonderful result: 

 
e=∑ 1

𝑘𝑘!
 ∞

0 = 2+1
2!

+ 1
3!

+ 1
4!

+ ⋯ 
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This was an analytical way of proceeding: a way of proceeding in which Leonardo became 

an excellent master. The partial sums (of this infinite sum) are rapidly approaching the value of e: 

Table 1 

Increasing Approximation 

 

 
 

 

 

Going a bit further…( as Leonardo liked it): e=2.7182818284590452353…  

Guided by Leonardo's master hand, we enlarge the numerical field allowing the presence 

of infinitesimals and infinite numbers with which we have more room to maneuver ––in the large 

and in the small––to operate on algebraic expressions. In the end, given the ‘replacement rules’ of 

Guillermo, these infinitesimals and infinite numbers disappear: The results remain in terms of 

finite numbers. 

This invites a reflection that goes beyond what Leonardo has just shown us: It is the actions 

of human beings that force us to expand the numerical domains.  

Continuing, Leonardo knew the formula: 𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 + 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 = 𝑒𝑒𝑖𝑖𝑖𝑖 . Then, assuming his 

work above extended to imaginary arguments… 

𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 + 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 = 𝑒𝑒𝑖𝑖𝑖𝑖 = �
(𝑖𝑖𝑖𝑖)𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

= 1 + 𝑖𝑖𝑖𝑖 −
𝑥𝑥2

2!
+
𝑖𝑖𝑥𝑥3

3!
−
𝑥𝑥4

4!
+
𝑖𝑖𝑥𝑥5

5!
−
𝑥𝑥6

6!
+ ⋯ 

 

Separating the real part and the imaginary part we have: 

𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 + 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 = �
(𝑖𝑖𝑖𝑖)𝑛𝑛

𝑛𝑛!

∞

𝑛𝑛=0

= �1 −
𝑥𝑥2

2!
+
𝑥𝑥4

4!
−
𝑥𝑥6

6!
+ ⋯� + 𝑖𝑖 �𝑥𝑥 −

𝑥𝑥3

3!
+
𝑥𝑥5

5!
−
𝑥𝑥7

7!
+ ⋯� 

 

Consequently, 
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cos (x)  = �1 −
𝑥𝑥2

2!
+
𝑥𝑥4

4!
−
𝑥𝑥6

6!
+ ⋯�  ;    sin (x)  = �𝑥𝑥 −

𝑥𝑥3

3!
+
𝑥𝑥5

5!
−
𝑥𝑥7

7!
+ ⋯� 

 

And finally, remembering Guillermo´s basic rules, he arrived at: 

 

𝑠𝑠i𝑛𝑛(𝑑𝑑𝑑𝑑) = 𝑑𝑑𝑑𝑑,   𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑𝑑𝑑) = 1 

 

The deep intention of his work was to fully develop the symbolic apparatus of his master, 

Guillermo, and to realize its fully analytical operative field. By working with infinitely small and 

infinitely large quantities, he facilitated algebraic manipulations, and this is most remarkable, the 

results are expressed in terms of finite quantities (numbers). 

Leonardo’s contributions are monumental. But if we had to choose just one of his 

marvelous discoveries, we would choose the following: 

�
1
𝑛𝑛2

∞

𝑛𝑛=1

=
𝜋𝜋2

6
 

Now, we will try to explain it. When Leonardo approached the study of this infinite sum: 

�
1
𝑛𝑛2

∞

𝑛𝑛=1

 

It was known that its numerical value was less than 2. But what was the exact value?  He put his 

marvelous inductive thinking into play. Leonardo knew that a polynomial P(x), of second degree, 

with two non-zero roots a, b has the following structure: 

 

𝑃𝑃(𝑥𝑥) = �1 −
𝑥𝑥
𝑎𝑎
� �1 −

𝑥𝑥
𝑏𝑏
� =

𝑥𝑥2

𝑎𝑎𝑎𝑎
− �

1
𝑎𝑎

+
1
𝑏𝑏
� 𝑥𝑥 + 1 

 

A polynomial of degree 4 with non-zero double roots ±a, ±b can be written as: 

𝑃𝑃(𝑥𝑥) = �1 −
𝑥𝑥
𝑎𝑎
� �1 +

𝑥𝑥
𝑎𝑎
� �1 −

𝑥𝑥
𝑏𝑏
� �1 +

𝑥𝑥
𝑏𝑏
� = �1 −

𝑥𝑥2

𝑎𝑎2
� �1 −

𝑥𝑥2

𝑏𝑏2
� 

𝑃𝑃(𝑥𝑥) =
𝑥𝑥4

𝑎𝑎2𝑏𝑏2
− �

1
𝑎𝑎2

+
1
𝑏𝑏2
� 𝑥𝑥2 + 1 
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Note that the coefficient of x2 contains the sum of the squares of the double roots.   

If the polynomial has six non-zero roots, ±a, ±b, ±c, then: 

 

𝑃𝑃(𝑥𝑥) = � 𝑥𝑥4

𝑎𝑎2𝑏𝑏2
− � 1

𝑎𝑎2
+ 1

𝑏𝑏2
� 𝑥𝑥2 + 1� �1 − 𝑥𝑥2

𝑐𝑐2
�, or: 

 

𝑃𝑃(𝑥𝑥) = −
𝑥𝑥6

𝑎𝑎2𝑏𝑏2𝑐𝑐2
+ �

1
𝑎𝑎2𝑏𝑏2

+
1

𝑏𝑏2𝑐𝑐2
+

1
𝑎𝑎2𝑐𝑐2

� 𝑥𝑥4 − �
1
𝑎𝑎2

+
1
𝑏𝑏2

+
1
𝑐𝑐2
� 𝑥𝑥2 + 1 

Here again, the coefficients of x2 contains the sum of the squares of the double roots. 

Now the inductive reasoning, one of Leonardo's specialties when it comes to algebraic 

(analytical) expressions: If a polynomial has non-zero roots ±𝑎𝑎1, ±𝑎𝑎2, ±𝑎𝑎3, … , ±𝑎𝑎𝑛𝑛, then the 

coefficient of x2 is given by: −∑ 1
(𝑎𝑎𝑖𝑖)2

𝑛𝑛
𝑖𝑖=1  

Leonardo's heuristic genius is present: the passage from the finite to the infinite.  

Now he claims that if there exists a polynomial with an infinite number of non-zero roots 

𝑎𝑎𝑖𝑖, its quadratic coefficient will be: −∑ 1
(𝑎𝑎𝑖𝑖)2

∞
𝑖𝑖=1  ;  

This polynomial “almost-exists.” Leonardo affirms that it does exist, and that it is given 

by the expression (in power series) of the function: 

sin(x) 
𝑥𝑥

= 1 −
𝑥𝑥2  

3!
+
𝑥𝑥4

5!
−
𝑥𝑥6

7!
+ ⋯ 

 

The roots of this polynomial are: ±𝜋𝜋, ±2𝜋𝜋, ±3𝜋𝜋, … , ±𝑛𝑛𝜋𝜋…. Considering that the quadratic term 

of this polynomial has coefficient: − 1
3!

, then:  

−−1
3!

= 1
6

= ∑ 1
(n𝜋𝜋)2

∞
𝑛𝑛=1 = ∑ 1

𝑛𝑛2𝜋𝜋2
∞
𝑛𝑛=1 = 1

𝜋𝜋2
∑ 1

𝑛𝑛2
∞
𝑛𝑛=1  , 

 

Moving the factor of 𝜋𝜋2 to the left-hand side, he has, explicitly: 

 
 

This was the result that made Leonardo famous, a result of enormous value for inductive 

thinking. Leonardo was a master in the art of reading in the face of the finite, that which was valid 

in the domain of infinity.  
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It has been written of Leonardo that he exercised his algebraic, analytical, skills as naturally 

as an eagle exercises its abilities in flight. His boldness was such that he himself sought over the 

years various confirmations of his procedures to solve this problem. One day he managed to see 

that his solution led smoothly to the answer that years earlier an islander, Juan, had discovered. It 

was one way the ubiquitous number π could be expressed. Let's see this expression, achieved by 

Juan, which gave him great prestige among his contemporaries. His result: 
𝜋𝜋
2

= �
2 ∗ 2
1 ∗ 3

� �
4 ∗ 4
3 ∗ 5

� �
6 ∗ 6
5 ∗ 7

� �
8 ∗ 8
7 ∗ 9

�… 

 

That is, Juan managed to find an expression for the number π, as an infinite product! Now, what 

did Leonardo see in his own result that allowed him to link it to Juan’s infinite product?  

The key that opens the window from which Leonardo contemplates Juan, is in the 

expression of Leonardo’s infinite polynomial, when it is factored. Recall that its roots come in 

pairs: nπ and -nπ (n=1, 2, 3, …), and recall that Leonardo thought about the expression in terms of 

product of the terms ( 1 − 𝑥𝑥
𝑟𝑟
 ), for each root, r. Since our roots come in pairs, we have �1 − x

r
� ∗

�1 + x
r
�  =  �1 − 𝑥𝑥2

𝑟𝑟2
�. 

So, with roots of  ±𝑛𝑛𝑛𝑛,𝑃𝑃(𝑥𝑥) = �1 − 𝑥𝑥2

𝜋𝜋2
� �1 − 𝑥𝑥2

4𝜋𝜋2
� �1 − 𝑥𝑥2

9𝜋𝜋2
� . . . = ∏ �1 − 𝑥𝑥2

𝑛𝑛2𝜋𝜋2
�∞

𝑛𝑛=1  

If 𝑥𝑥 = 𝜋𝜋
2
 , then sin (π/2) =1, and we have: 

sin �𝜋𝜋2�

�𝜋𝜋2�
=

2
𝜋𝜋

. 

And, substituting 𝑥𝑥 = 𝜋𝜋
2

  into the general term: 

P(x)  =  ��1 −
𝑥𝑥2

𝑛𝑛2𝜋𝜋2
�

∞

𝑛𝑛=1

 

…we get:   

�1 −
(𝜋𝜋2)2

𝑛𝑛2𝜋𝜋2
�=(1 - 1

22𝑛𝑛2
)  = ��4𝑛𝑛

2 − 1�
4𝑛𝑛2

� =  �(2𝑛𝑛−1)(2𝑛𝑛+1)
(2𝑛𝑛)2 �. 

 

Thus: 
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2
𝜋𝜋

= ��
(2𝑛𝑛 − 1)(2𝑛𝑛 + 1)

(2𝑛𝑛)2 �
∞

𝑛𝑛=1

 

Now, inverting each term: 

𝜋𝜋
2

= ��
(2𝑛𝑛)2

(2𝑛𝑛 − 1)(2𝑛𝑛 + 1)�
∞

𝑛𝑛=1

= �
2 ∗ 2
1 ∙ 3

� �
4 ∗ 4
3 ∙ 5

� �
6 ∗ 6
5 ∙ 7

� �
8 ∗ 8
7 ∙ 9

�… 

This is the result obtained by Juan, reproduced by Leonardo through an extremely complex 

and audacious procedure motivated by analogy and intuition. He obtained it as a consequence of 

his own inductive way of thinking.  

The study of this type of relations highlights the appearance of infinity as an object and as 

a process, one of the most characteristic features of the mathematical way of thinking. An infinite 

process such as the infinite sum or the infinite product, results in a mathematical object. Processes 

and objects, in mathematics, can constitute a single, or hybrid idea, and represent the same thing. 

This is very different from in real life: the process of making a table is not the table itself. The 

process is not the object in this case.  

Leonardo kept a piece of paper on which it was written: 

It will suffice to make use of them [infinitesimals and infinitely large 
quantities] as a tool that has advantages for the purposes of calculating, just as 
the algebraist works with imaginary roots to great advantage. We do so 
because in them [in the infinitesimals] there is at hand a tool for calculating, as 
is clearly verified in each case by the method we have already presented. 
 

We do not know if these lines were original to him, but there is no doubt that he made them 

his own as a profound approach for dealing with infinity. 

There is in all of this a tension between the finite and the infinite, both as processes and as 

the results (objects) of such processes. The infinite, so elusive, seems always to disappear. But it 

always reappears with another face. Here, with Leonardo´s face… 

Finally, although his mathematical audacity led him into previously unexplored territories, 

Leonardo never ceased to think that mathematics bore the deep imprint of nature.  However, his 

mathematical elaborations seemed to move away from their physical referents and with that, their 

legitimacy, which until then had been fundamental, almost vanished in front of the eyes of his 

contemporaries. 

These concerns reached the doors of the academies, which offered the scientific community 

a prize for anyone who could explain in a clear and precise manner what is called the infinite in 
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mathematics. The die was cast. It was now a matter of finding a way to overcome the dissonance 

between Leonardo's inductive methods and the need for a foundation that would trace a safe path.  

Searching for models in mathematical culture, eyes turned their gaze to the deductive 

methods of Euclid's Elements. Agustín's eyes tried to meet the challenge. A new time was opening 

to a new century.  
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