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Part 3: Mathematical Thinking and Rigor, First Steps 

 

Luis Moreno-Armella*; Corey Brady 

CINVESTAV-IPN; Southern Methodist University  

 

Abstract: Agustín thus sought to abandon the unsafe use of inductive methods in algebra, as 
Leonardo had employed them, and to rather recover Euclid's ideal that is crystallized in the 
Elements of Geometry. Nevertheless, his idea of a limit is grounded in the dynamism of motion or 
a process: It is an embodied idea. From here, a conceptual exploration of functions and their 
possible properties begins. The effort of conceptual reorganization that Agustín undertakes is 
remarkable, and it prepares the ground for the in-depth research suggested by his work. With this 
arose a tangible need need to review the forms of existence of mathematical objects and what they 
meant. What was continuity in arithmetic reality? and How can we measure the size of a set? As 
mathematics pursued these questions, it became almost possible to abandon confidence in intuition 
completely, and this led to (among other consequences) a profound rupture: the dissociation of 
continuity from the differentiability of a function. All this awaits us below. 
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Geometric intuition and the Pursuit of Rigor  

Agustín proposed to abandon the method of reasoning by analogy (as practiced by 

Leonardo and Guillermo in passing from finite sums to infinite series); instead, he aimed to apply 

a standard of Euclidean rigor. In the opening of his text, Cours d'Analyse, he wrote:    
Regarding the methods, I have sought to give them all the rigor that one requires in geometry, 
so that one will never have to resort to reasons drawn from the generality of algebra (Cauchy, 
italics added). 

 
Agustín thus sought to abandon the unsafe use of inductive methods in algebra, as 

Leonardo had employed them, and to rather recover Euclid's ideal that is crystallized in the 

Elements of Geometry. A key component of this effort is to re-construct analysis on the basis of a 

clear definition of limit. This definition of limit reads as follows: 
When the successive values attributed to a variable approach indefinitely a fixed value so as 
to end by differing from it by as little as one wishes, this last [fixed value] is called the limit 
of all the others. Thus, for example, an irrational number is the limit of diverse fractions which 
furnish more and more approximate values of it. (Edwards, 2012, p.310) 

 
This is a dynamic, embodied, conception of limit. Just as Euclid was abstracting from 

objects and relations in the environment, Agustín was abstracting from motion and dynamic 

processes in the environment ––this is what has been called empirical abstraction.  

While this idea of a limit is grounded in the dynamism of motion or a process, the 

mathematical concept expands to describe situations that are not inherently dynamic processes.  

For example, an irrational number can be defined as the limit of a sequence of rational numbers. 

Underneath this statement (and making the definition valid) are camouflaged two central facts that 

will be identified later on, as crucial for the development, now arithmetically rigorous, of the 

analysis. These facts are (i) the density of rational numbers with respect the real numbers, and (ii) 

the completeness property of the set of real numbers. For Agustín, these properties are taken as 

given in advance. We feel it should be so in the teaching of Calculus, today. 

Let us insist: Agustín's initial concern with the foundations of analysis was due to the 

somewhat uncertain state of analysis at the close of the 18th century. Functions, for example, were 

identified with analytic expressions. In fact, a function was understood to be given by a single, 

closed analytic expression. However, problems such as the study of a vibrating string were also 
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key motivations and applications for analysis. The initial position of the string (at the moment of 

release) requires a description by more than one analytical expression.  

Furthermore, it was understood that an analytical expression defined a continuous function. 

In fact, uniqueness of the analytical expression defining a function was taken as synonymous with 

continuity. But again, by stretching a string, a V-like shape was produced, which required two 

analytical expressions. Therefore, the initial state was not continuous, according to that previous 

notion since it was not described by a single analytical expression.  

In addition to forcing the more general study of functions, modeling problems like the 

vibrating string raised the problem of analytical representation by means of trigonometric series 

of functions, and this entailed the consideration of convergence. That is, they again highlighted 

the need to study the notion of limit, now at the level of series and sequences of functions. Here it 

is necessary to distinguish notion from concept. Today, we would speak of the distinction between 

the concept image and the concept definition (Tall & Vinner, 1981).  

This was the somewhat confused state Agustín found himself in during the first decades of 

his century.  And in addition to the technical problems in analysis, a new social problem was 

looming before his eyes: commitment to education. All the work of his predecessors was guided 

by a deep intuition of mathematical correctness. However, their intuition was not, shall we say, 

democratically distributed. They shaped their findings for an audience of the few, for fellow 

initiates.  

Therefore, Agustín made the decision to reorganize, on the basis of clear principles, the 

elements of analysis he inherited from his predecessors ––Perhaps he was thinking of 

Leonardo…no one was like him. To put analysis in the hands of ordinary people (students, for 

instance), it was necessary to reconstruct the field..  

Following his general description of the notion of limit, Agustín dealt with continuous 

functions. He abandoned the narrow conception of functions as defined by an analytical 

expression. And he defined the continuity of a function f, which is defined between two real 

numbers a and b, as follows:  
The function f(x) is continuous at x between the values a and b, if an infinitesimal increment 
of the variable x produces an infinitesimal increment of the function itself. In other words 
f(x+r)-f(x) is infinitesimal if r is infinitesimal. 
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It should be understood here that Agustín used the word infinitesimal to refer to a variable 

quantity whose limit is zero—that is, whose (positive) “numerical values…decrease indefinitely.” 

Today, we would say that f is continuous at x if small changes in x produces small changes in the 

value of the function. This is a major departure from the previous definition of continuity in terms 

of the uniqueness of the analytical expression defining the function. 

Next, motivated by the problem of guaranteeing the existence of the roots of a polynomial, 

Agustín tackled what would later be known as the Intermediate Value Theorem. 
If the function f(x) is continuous with respect to the variable x between A and B, and if we 
call C an intermediate value between f(A) and f(B), then the equation f(x) = C can be 
satisfied for at least one value of x between A and B.  

 
Unlike his predecessors, Agustín was interested in properties common to families of 

functions (that is, functions that satisfy conditions—here, on values at endpoints of an interval) 

and not so much in particular functions. This theorem illustrates this fact. 

Illustrious predecessors such as Carlos Federico, when faced with the statement of this theorem, 

would have exclaimed: it is obvious, just look at the figure.  

Figure 1 

Looking for an Intermediate Value 

 
 

The way to reason about this result is as follows: The curve having equation y = f(x) in the 

plane, and the line y = C must meet for some value of x between A and B. This is evident if the 

hypotheses of the theorem are satisfied, but it also highlights the way that “continuous” is being 

conceptualized. Agustín is using a geometric conception, and in this view, the power of the image 

is overwhelming.  Perhaps this would have pleased Carlos Federico. We will say more about this 

theorem later on.  

Thus, continuity, for Agustín, is the geometrical continuity provided by intuition, like the 

Euclidean conception of the line: a synthetic object. If that is what lives in the concept image of 

continuity, then one should not expect something radically different from what here is offered as 

a proof. 
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Carlos Federico similarly conceived of continuous functions as those whose graphs have 

properties associated with geometric continuity, in the sense that we can trace their graph without 

lifting the pencil from the paper. So it is an action, the movement of the hand, which corresponds 

to continuity of the function. But once the graph of the function is on the paper, our movement is 

frozen: The graph is a frozen object. This could have been the way to conceive of the line in 

Euclidean geometry. Consequently, the line became a synthetic object. If we conceive of the graph 

as what we see on the paper, then the Intermediate Value Theorem is obvious. If this were the case 

in Euclidean geometry, and we think it is, then it is not surprising that their conception of the basic 

objects was synthetic. Movement was absent in their mathematical epistemology—an 

epistemology of the frozen trace of movement. 

Agustín's work can be described as a work of systematization based on the Euclidean 

continuum. It is not possible to attribute to him “deficiencies” such as those often attributed to 

Euclid when he is judged from today, that is, from a conceptual framework that did not exist in his 

time. We can close this section by reiterating that Agustín is to calculus what Euclid is to geometry. 

He objectified calculus as a field of mathematical exploration per se. That is, no longer to employ 

it purely as a tool for inquiry, but also to explore it for its own sake (which, for a time, coincided 

with the goals of striving to enable and improve the teaching of these ideas).  

An (almost) rupture within mathematics 

During the 19th century, beginning shortly after Agustín’s work to revise analysis, 

mathematics went through a deep rupture, which unsettled the ways in which it had been conceived 

in the preceding centuries and shaped its subsequent development. One of these episodes was the 

creation of non-Euclidean geometries. Until then, mathematics had been based, almost exclusively, 

on the conviction that its results corresponded intimately with facts of the physical world. 

Therefore, what could be obtained from mathematics equated to truths about the natural world. 

Mathematicians affirmed that the natural world was not only a source of inspiration par excellence 

for mathematical creation but also legitimized their findings. 

Non-Euclidean geometries shattered this conviction: the theorems of Euclidean geometry 

gradually lost their aura of absolute veracity and ended up merely constituting, like the theorems 

of other geometries, coherent possible models of space. Today it is difficult to imagine the 

disturbing effect that such a situation could have had on the mathematicians of the time.  



                                                                                                  Moreno-Armella & Brady p.      

 
 

234  

In this climate, the casual attitude of 18th century mathematicians about convergence of 

infinite series raised red flags at the very heart of Calculus. And though the focus was the same, 

the style of the new critique was very different from Agustín’s.  After Euclidean Geometry had 

been unseated, neither Agustín’s resort to Geometry as a standard nor his appeal to geometric 

intuitions as secure guides for thought were tenable. 

The trigonometric series had already filled many researchers with perplexity, and they 

began to see a panorama of will-o-wisps, tempting mathematical travelers off the path of secure 

knowledge to their doom. One of them wrote that very few theorems of analysis had been proved 

according to logical principles. It is not necessary to add further testimonies to understand that in 

the very heart of mathematics the conviction—that mathematics was as consistent as nature 

itself—had been shattered and another view was beginning to take shape: the validity of results 

can be guaranteed by logical rigor, but not the veracity. This is inevitable when mathematical 

structures are seen only as a plausible model:  a model is a map, not the modeled territory itself. 

That is the way things were when Ricardo began teaching analysis. In his own presentation 

of the field, at a certain point he had to use the fact that an increasing and bounded sequence is 

convergent. He wrote that in teaching this result, he was forced to resort to geometric evidence. 

And he added that resorting to geometric intuition in a first course is very useful from the didactic 

point of view. However, he wrote that this intuitive presentation of the aforementioned result 

cannot be said to be scientific. Here was a different perspective from Agustín’s, where the 

geometric and the rigorous were allied. For Ricardo, geometric reasoning was a scaffold for 

learners toward a more “scientific” endpoint. In his book Essays on the Theory of Numbers, 

Ricardo wrote that he thought continuity based in geometric intuition, was not providing the 

rigorous approach needed for developing a scientific foundation for differential calculus. In 

contrast, his work established that completeness, that is, continuity from an arithmetic point of 

view, was the DNA of the theory of analysis.  

There are several equivalent versions of completeness. It is important to remember that 

when Agustín introduced his definition of the limit of a sequence, he added that, for example, π 

can be obtained as the limit of a sequence of approximations by rational numbers. That every 

irrational could be obtained as the limit of a sequence of rational approximations, was something 

that Agustín took for granted. We recall here the sentence: we do not know what we see—which 

Agustín had before his eyes—rather, we see what we know... and Agustín knew it. He knew that 
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he could obtain an irrational as the limit of a succession of rational numbers, following the path of 

decimal representations: 3, 3.1, 3.14, 3.1415, 3.14159, ... 

His assertion thus depended on the (guaranteed) existence of the decimal representations 

of the real numbers.  That is, although we may not know how to generate the decimal expansion 

to an arbitrary degree of precision, we know that this expansion exists. Here we are venturing—

without going any further now—into a major theme of the epistemology of mathematics: the forms 

of existence of its objects. 

It has been explained that the episteme of a generation, of its culture, is constituted by ideas 

that penetrate so deeply in the collective thought, that they define to a great extent both how one 

thinks and about what one thinks in those historical moments. Agustín thought of the continuity 

of the line in synthetic terms and that object, the line, was colonized by the numbers that were 

represented (principally) by the positional decimal system. Between two numbers, let us say, 

between π and 3.2, there was room for an infinity of rational numbers. For example, 3.15, 3.19, 

and so on. Agustín thus had the mechanism to use the completeness of the arithmetized line, but 

he was not fully aware of what it meant.  He did not use the words “completeness” nor “dense.” 

But the inquisitive mind of Ricardo understood that in Agustín’s assertion was hidden the secret 

of continuity from a numerical/arithmetic point of view. The idea of decimal representation could 

be translated as approaching with destination. This is what we are trying to say with the 

expression: an increasing and bounded sequence is convergent. Of course, it too embodies a 

dynamic way of thinking. 

Let us insist: the most common statement of the completeness of the real numbers is that 

the set of all real numbers is exactly the set of all decimal representations. Agustín took this 

assertion as valid, and yet, as we have already mentioned, this was not an explicit decision on his 

part.  

Ricardo was aware of this fact, we believe, because the intellectual atmosphere of his time 

has changed. Now, mathematics itself was already an object of study in itself. 

Ricardo knew that if every real number has a decimal expansion, finite or infinite, then he 

could prove that a bounded increasing sequence is convergent. But his inquisitive mind led him to 

ask why one has to accept that any number has a decimal representation.  He did not want to take 

it as something given beforehand; rather, he set out to do something almost heroic: to construct 
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the irrational numbers from the rational ones. We will not discuss here the fine details of his 

original construction. Instead, just the idea which was its starting point.  

Here we return to an idea already discussed, but with an additional twist. Let's imagine the 

following: Ricardo knew that there are irrational numbers such as √2. Consider the set: 

A={1, 1.4, 1.41, 1.4142…} 

As we move forward in this sequence, we approach √2 with improved accuracy. If there 

were only rational numbers on the line, then this sequence would lead to a “hole” on the line 

instead of the number √2. This number would be missing! Therefore, arithmetic continuity 

(completeness) is equivalent to the absence of holes in the line when we colonize it with all the 

real numbers.                                

Figure 2 

Is There a Number There? 

                                                         ? √2 

 
First Agustín, with his eagerness to systematize the concept of limit, and then Ricardo, 

recognizing the need to make explicit the transition from geometric continuity to arithmetic 

continuity, opened the way to a new mathematical age. In a sense, Ricardo´s work relied on 

Agustín´s. What would have happened if they had met? Imagine the dialogue between them! 

As we have seen above in his comment about the pedagogical utility of geometric intuition, 

Ricardo makes explicit in a very few lines that mathematics and mathematics education--though 

they have different needs, can find a conciliatory ground. It would be desirable if today there were 

the same degree of sensitivity to the problems of teaching and learning about the problems of 

mathematics. The didactics of mathematics is a discipline that does not have to subordinate its 

lines of research to the lines of mathematics itself. However, we hasten to say, we do not ignore 

the intimate link between both fields of inquiry. Human cognition and the epistemology of 

mathematics are permanent participants in these educational reflections.  

We should try to communicate to our students the permanent attitude of developing deep 

thinking about the basic, elementary ideas of mathematics. These ideas are elementary in the sense 

that they are the building blocks out of which a plastic structure is assembled. As made clear by 



                                                                                                                  TME, vol. 22, no. 3, p. 237 

René Thom in 1972, in the teaching of mathematics it is the development of meaning that should 

be privileged, rather than rigor. (Here, he means artificial rigor.) 

Felix, a younger thinker, was very interested in the work of both Agustín and Ricardo. A 

permanent concern of his was to find a pedagogical bridge between elementary mathematics as 

taught in schools and university mathematics. He was aware that there was a discontinuity between 

these two educational levels. He wrote and lectured extensively on this issue. He was immersed in 

a cultural atmosphere of high mathematical density, and he deployed what today is called the 

pedagogical content knowledge of the mathematics teacher. Felix recalls that Carlos Federico, 

although he belonged to a generation that had gradually introduced a more critical spirit into 

mathematical work, used his intuition of space as the basis for his demonstrations. For Felix, there 

was a permanent tension between the new arithmetical rigor and intuitive thinking. His views are 

based on his epistemic concerns and his permanent involvement in the education of teachers, above 

all. Let us quote him fully: 
I do not grant that the arithmetized science is the essence of mathematics; and my remarks 
have therefore the two-fold character of positive approbation, and negative disapproval. For 
since I consider that the essential point is not the mere putting of the argument into the 
arithmetical form, but the more rigid logic obtained by means of this form, it seems to me 
desirable—and this is the positive side of my thesis—to subject the remaining divisions of 
mathematics to a fresh investigation based on the arithmetical foundation of analysis. On the 
other hand, I have to point out most emphatically—and this is the negative part of my task— 
that it is not possible to treat mathematics exhaustively by the method of logical deduction 
alone, but that, even at the present time, intuition has its special province.  

 

The movement, towards a version of mathematics with higher levels of mathematical rigor, 

was imminent. Mathematics was entering a new age. In addition to the inductive method, the 

deductive method claimed its place. But Felix recognized that neither would yield in favor of the 

other. A tension that had not been so intense since the times of Greek Euclidean geometry and 

more recently, since the advent of non-Euclidean geometries, was becoming tangible. There was 

not one voice in mathematics, but two. 

A new perspective and some proofs 

Accepting that every real number has a decimal representation, we will offer a possible 

proof in Ricardo's hands of the proposition:  

An increasing and bounded sequence is convergent. 
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Let us imagine that Ricardo took the existence of the decimal representation as a given and 

then explored its consequences. He would have proceeded as follows: 

Let (xn) be an increasing and bounded sequence. Let us suppose, without losing 

generality of the argument, that the elements of the sequence are positive. Let us write these 

elements: 

x1=N1. a11a12a13… 
x2=N2.a21a22a23… 
….. 
xn=Nn.an1an2an3an4…. and so on. 

The numbers N1, N2, N3, … are the integer parts of each element of the original sequence 

(xn). As the sequence is increasing and bounded, the integer parts have values from a finite set of 

integer values (if B is an integer upper bound, this set is a subset of the values {N1, N1+1, …, B}). 

The sequence of the Nk thus has a largest value. That is, from some element of the sequence (xn) 

on, the sequence of integer parts becomes constant. Let M be the largest (and constant) value of 

the Nk.  

Now let us consider the sequence formed by the first decimal places of each xn: 

(a11, a21, …, an1, …). As the original sequence is increasing, then this last sequence has to be 

increasing from some ark on (after the element for which the integer parts become constant). 

Moreover, this sequence also has to be bounded, and as it is a sequence of (one-digit) natural 

numbers, it must have a maximum value M1.  

Along the same line of argument, let M2 denote the maximum value reached by the 

sequence of the second decimal places (a12, a22, a32,…). Now it is clear how to continue: 

The limit of the sequence is denoted M.M1M2M3…and the proof is complete. This is 

the magic of decimal representation!  

Ricardo knew that completeness was the fundamental proposition needed for making 

calculus/analysis scientific. Now he could continue his teaching, knowing that the intuitive 

hypothesis he used to explain convergence, had a scientific foundation.  

Let us go a step further: Staying at the intuitive level, he could have used this example 

to explore the possible pathway that could lead to the proof: It was known that     

e=2.718281828459045…  

Let us write the first terms of the sequence converging to e:1+∑ 1
𝑘𝑘!

∞
𝑘𝑘=1  
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1) 2.000…(corresponding to n=1) 
2) 2.5000… 
3) 2.6666… 
4) 2.708333… 
5) 2.716666… 
6) 2.718055… 
7) 2.71853… 
8) 2.718277… 

In this partial list, one can detect from which term onwards, the sequence of the first 

digits reaches its maximum value and remains constant afterwards—similarly with the 

subsequent digits. For instance, the digit in the first decimal place (7) reaches its maximum (and 

constant) value when n=4. The second digit reaches its maximum when n=5. The reader can 

continue!  

Jorge, a good friend of Ricardo’s, was very interested in these mathematical subjects. 

He observed that if you consider a sequence of nested intervals: 

 [a1, b1] ⊇ [a2, b2] ⊇ [a3, b3] ⊇….⊇[an, bn] ⊇ … 

…such that the length bn-an → 0, then there is exactly one point (number) x common to 

all the members of the nested intervals. This follows from the fact that the sequence a1, a2, a3, 

…, an,… is increasing and bounded, and so convergent. Let A be the limit of this sequence. On 

the other hand, the sequence b1, b2, b3, …, bn,.. is decreasing and bounded, so it, too, is 

convergent. Let B be the limit of this sequence. By hypothesis bn-an→0, and therefore A=B=x. 

 

Figure 3 

Capturing the Number 

 

  
We can imagine the sequence a1, a2, a3, …, an,…is “walking” from the left (black) side of the 

line towards x, and the sequence b1, b2, b3, …, bn,.., from the right towards x . This is an 

embodied way of understanding the two convergence processes.  
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Here is an example to shed more clarity on this proposition: Consider the number π = 

3.1415….  This decimal expansion also gives us a condensed way to construct a nested 

sequence of intervals collapsing to π. For instance:  

[3, 4] ⊇ [3.1, 3.2] ⊇ [3.14, 3.15] ⊇ [3.141, 3.142] ⊇ [3.1415, 3.1416] ⊇… 

The number π is the unique element in the intersection of this sequence of nested 

intervals. 

Probably you have already realized the profound relations between the proposition on 

the convergence of a (decreasing or) increasing and bounded sequence and the principle of 

nested intervals. It is not by chance: they are equivalent. That is, if you accept one of them, you 

can obtain the other as a consequence.  

In the story we are telling you about the arithmetization of Calculus, we take as a starting 

point that every real number has a decimal representation. This seems the simplest way to 

establish the completeness property, either in the form of increasing (decreasing) bounded 

sequences, or by means of nested intervals. What we have told is intended to give a bit more of 

clarity to a fact that, even for Agustín, was so intuitive: the number line has no holes! That is 

the idea we try to capture the significance of the fact that the number line, the real number line, 

is complete.  

At the beginning of this story, we mentioned that the Intermediate Value Theorem was 

one of the basic results about continuous functions. We promised that we would come back to 

it. Well, now we are ready. The subject of continuous functions is delicate but fundamental for 

the study of arithmetically rigorous versions of Calculus. Informally, we say that a function is 

continuous at a point b with f(b)=B, if f takes on values close to B, for all values in its domain 

close to b. That is, informally, if a is close to b, then f(a) is close to f(b). 

For a long time, Agustín´s colleagues thought that continuity was equivalent to the 

condition that the function took on all intermediate values between two values, say a and b. 

This is equivalent to continuity whenever the continuous function is increasing or decreasing 

on [a,b], because omitting a value between f(a) and f(b) would mean the function has “jumped.” 

Graphically, this would look like: 
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Figure 4 

Monotonicity and Intermediate Values 

 
 

Now, let's see how a function that is not strictly increasing or decreasing can take all values 

between two given values, without being continuous: 

Figure 5 

The Intermediate Value Property Does Not Imply Continuity 

 
 

The domain of this function is the interval [0, 4]; f(0)=0 and f(4)=2; and the function 

takes all values between 0 and 2. However, the function is discontinuous at x=2. The reader can 

think of other examples. One might ask: How is it possible that these Agustín and his colleagues 

did not think of an example as simple as the one we have just presented? The reason is that in 

the background of their work lurked the conception that a function should have only one 

analytical representation and not two like the example we have just presented. That example, 

for those thinkers, represented two functions, not one. Though Agustín was working to extend 

the calculus theorems of his contemporaries (and himself, of course) to more general functions, 

the conceptual transition was not complete.  

The Intermediate Value Theorem expresses that continuity guarantees the “intermediate 

value” property, while the above shows that the converse is not true. 

Without further ado, let us consider how to prove the Intermediate Value Theorem. The following 

statement is equivalent to the Theorem, substituting convenient values: 
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Let f be a continuous function defined on the interval [0, 1]. If f(0) and f(1) have opposite 
signs, one positive, the other negative, then there must exist c between 0 and 1 such that f(c) 
= 0. 

 

Proof. We can assume that f(0)<0 and f(1)>0. We are aiming to locate c such that f(c)=0. We 

bisect the interval [0, 1] to obtain [0, 1/2] and [1/2, 1]. If f(1/2)=0 we are done. Otherwise, we 

know that f(1/2)<0 or f(1/2)>0. Suppose that f(1/2)>0. Then we hunt for c “to the left” of ½. We 

bisect the interval [0, 1/2] and consider the value f(1/4). If it is 0, we are done. If f(1/4)≠0 we 

observe the sign of f(1/4). If it is positive, we again “look to the left” and select the interval [0, 

1/4]; otherwise, f(1/4) is negative, and we select [1/4, 1/2]. We continue this process, generating a 

nested sequence of intervals [ai, bi] for which f(ai) < 0 and f(bi) > 0.  

Again, our process is as follows: at each step, we bisect the interval of focus, starting with 

[0, 1], and we thus generate a nested sequence of intervals whose lengths tend to zero. Therefore, 

they determine a single point c between 0 and 1. Now, we argue, f(c) must equal 0.  

What would happen if not? Suppose f(c)=C>0. Since the function f is continuous, then for 

domain values close to c f takes on values close to C.  So, since C is strictly positive there must be 

a small open interval (m, n) around c where the function remains positive. But the lengths of the 

intervals of the sequence of nested intervals above tended to zero, so after some point, they must 

all have been contained in the interval (m, n). This is a contradiction, because we constructed the 

intervals so that the function took on different signs at the endpoints, and yet we have asserted that 

it is positive throughout the interval (m, n), which contains them. 

The same contradiction would arise if f(c)<0.  Thus f(c)=0, ending the proof.  NOTE. We 

can easily transform any closed interval [a, b] into [0, 1]. That is why this statement is equivalent 

to the full Intermediate Value Theorem. 

We can see through these results of Ricardo and Jorge, which were in turn based on the 

pioneering work of Agustín, how the discipline was transforming its intuitive arguments into 

arguments with increasing arithmetic weight.  

In the teaching from that point on, this trend translated into an eagerness to introduce 

(prematurely, in our opinion) an arithmetized version of the ideas we have discussed in this text. 

Without affirming that the organization of the knowledge presented here should follow a 
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chronological order according to its historical development (which we will not do), it is convenient 

to return to Felix's suggestion that intuition has its special province. 

How intuitive-informal or how arithmetical-rigorous should we make the presentation of a 

subject of study? It is a very delicate didactical question. Perhaps nobody has the answer. We can 

only aspire to find partial and contextual responses. One thing is clear however: we need both. 

When we lean too much to the side of rigor, it is good for us to consider the reflection of a disciple 

of Felix, Jaime, who wrote: 
The analysis of to-day is indeed a transparent science. Built up on the simple notion of 
number, its truths are the most solidly established in the whole range of human knowledge. It 
is, however, not to be overlooked that the price paid for this clearness is appalling, it is total 
separation from the world of our senses.  

Lest we consider the arithmetical approach to functions to yield only cold rigor or dry 

results, our friend Felix has asked us to discuss a few other rich and generative mathematical ideas 

that follow from this way of thinking. Let us not forget the importance of Tedoro and his profound 

impact on these ideas. Being, as he is, a master in the art of mathematics and possessing profound 

pedagogical ideas, we have found it convenient to follow his suggestions. Our purpose in this essay 

is not to develop a complete history of the transition from calculus to analysis. We propose 

something more modest: to leave along the way some guidelines for those who venture later to 

explore a territory that is not yet known to them.  

Following Felix’s suggestion, then, let us introduce his friend Teodoro. In his time, he was 

well known for his profound mathematical and pedagogical work. In his younger years he had 

been a primary school teacher, and this strengthened his teaching inclination. He introduced a 

genuinely arithmetical rigor into mathematical analysis by formulating fundamental concepts with 

a precision hitherto unknown.  

Teodoro was particularly pleased to have shown that continuous functions did not 

necessarily possess derivatives. In fact, he constructed an example of a continuous function which 

at no point in its domain possessed a derivative. This overturned a long-held conviction about 

continuous functions, namely that in the worst case, they would fail to have a derivative at isolated 

points. For example, this might happen wherever the graph of the function had a “peak”. 
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Figure 6 

Loss of Differentiability 

 
 

Yet Teodoro constructed a function that was continuous and yet failed to have a derivative 

at any point. The consequences of this discovery were profound. Just as the advent of hyperbolic 

geometry overturned the belief in Euclidean geometry as an exact model of physical space, 

mathematical “monsters” (cf. Lakatos, 1976) such as continuous functions without derivatives 

called into question mathematical intuition as the sole compass for the discovery and justification 

of both past and new results.  

However, that did not dethrone intuition completely. Felix, who felt the impact of the new 

ways of advancing mathematical work, repeatedly insisted that intuition had its province. It seems 

to us that he was thinking above all about ways of teaching, about how school curricula were going 

to be transformed and how this might affect the relationship between school and university. The 

tension between intuitive approaches on the one hand and rigorous-arithmetical approaches on the 

other hand seemed to be unavoidable. We hold the conviction that this tension is inherent to our 

cognitive nature. We will return to this subject later. 

When Teodoro's example of the continuous function without derivative became known, 

many scholars expressed their dissatisfaction with what they considered to have gone too far in 

the direction of arithmetic rigor. They saw that example as palpable evidence of that excess. One 

of them, whom we will call Koch, proposed a construction, which he called geometric, of a 

continuous curve without tangent lines. This construction was inspired by Teodoro's example but 

aimed to make the phenomenon more accessible. First, let us describe Koch's construction. It starts 

with a segment, say, of length 1. Then the central third is extracted and replaced by two segments 

that would form an equilateral triangle with the extracted segment. It thus increases the length of 

the total path by a ratio of 4:3. The figure below is created: 
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Figure 7 

Spreading Non-Differentiability 

 
 

Next, the procedure from the previous step can be repeated on each of the four segments 

of the figure. We obtain the following figure: 

Figure 8 

Even More Non-Differentiability 

 
 

Now we know how to continue: on each of the segments we repeat the initial 

construction; after five steps we obtain the following result: 

Figure 9 

Non-Differentiability Everywhere 

 
 

The reader may make an effort to imagine the result, if we continue this process 

indefinitely. Let's anticipate the answer: we will have a continuous “curve” that has no tangent at 

any point. But...wait a minute! There is a lurking paradox. On one hand, we know that it does not 

have a tangent at a point because it has a peak there. But, the very idea of a “peak” includes the 

idea of two sides, two very small, straight sides. On each of those straight sides, there is a tangent 
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that coincides with the respective side. Which is it—peaks everywhere or sides everywhere?  We 

have seen students raising and struggling with this paradox, as they attempt to understand the 

curve. 

Before leaving this topic, let’s consider a similarly accessible construction by a Japanese 

colleague named Takagi that actually yields a function. Tagaki actually discovered an infinite 

family of functions, but we’ll focus on two of them. 

Both of Takagi’s functions that we will consider follow the same construction approach: 

they are built by adding together “sawtooth” functions. Like the Koch curve, each of these 

functions has peaks and sides.  We will build them so that when they have more peaks, each peak 

is less tall.  And our function will be the sum of an infinite series of these sawtooth functions. 

Here is the first of Takagi’s functions, which British mathematicians called the 

“blancmange,” after a desert pudding with a similar shape.  In building this function, at each step 

we will add a sawtooth that has double the ‘frequency’ of the prior one, and half the ‘amplitude’ 

of that function. 

The first figure below shows the first four sawtooth functions, along with their sum (in 

red), that is, the fourth partial blancmange sum. We also have shown (in blue) the ninth partial 

blancmange sum, which helps to show the function that is emerging. 

Figure 10 

Fourth Iteration of the Blancmange Function, the ‘Sawtooth’ Functions that Compose It; and the 

Ninth Iteration for Reference.  
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Next, here is a representation of the 20th partial blancmange sum function: 

Figure 11 

Twentieth Iteration of the Blancmange Function. 

 
 

The blancmange function, created by the infinite sum of the sawtooth functions, has the 

property that it is nowhere differentiable. This connects it to the Koch curve, which fails to have a 

tangent line at every point.   

Because the sawtooth functions are very simple in nature, we can start to reason about 

points on the Blancmange function. Looking at the partial-sum functions, we notice jagged points 

that are local minimum points.  These appear at zeroes of the sawtooth functions.  Because of how 

the sawtooths work, when an x-value is a zero of one sawtooth, it is a zero of all of the subsequent 

ones! So, these valley-points are actually points on the final blancmange function—for these x-

values, the y-value will never grow any higher. However, for x-values nearby these valley-points, 

subsequent sawtooths will add to their y-value, which will make the valleys more and more steep. 

A peak of any kind is a point of non-differentiability, but these peaks are in a sense infinitely steep. 

So, this blancmange function really is a monster! But it may become even more shocking 

when we consider its “sibling.” For this one, we will use the exact same construction procedure, 
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but at each step, we will multiply the amplitude of the next sawtooth we add by ¼ rather than ½.  

As if by magic, the monstrosity of the blancmange becomes a parabola: 

Figure 12 

With One small Change, the Blancmange Procedure Generates a Parabola 

 
 

With a 4:1 zoom, here are the first four component functions and partial sums: 

Figure 13 

Sawtooth Functions that Sum to Produce the Parabola. 
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Sereno in fact knew of this construction. The picture helps a modern audience to draw 

connections between his work with circles and with parabolas (Recall, Sereno filled the circle by 

adding isosceles triangles to the sides of inscribed polygons. This construction is not so different!) 

And now, in the context of Takagi’s work, it becomes clear that the parabola is also very close to 

the blancmange: monsters are lurking close by the sunny meadow where we have built our 

mathematics. 

As in the case of irrational numbers, the Koch curve, and the blancmange function, the 

“last iteration of the process” is an ideal object. It is an abstraction. The figures we can draw are 

steps of an iterative process, but they show the result of a finite number of steps, in an infinite 

process. The Koch curve is the limit of this process. It is an ideal object. We mention the irrational 

numbers because they offer a similar situation. If we think of the decimal representation of an 

irrational...we cannot write it completely! In fact, it has an infinity of digits that in a certain sense 

emerge randomly. While we may be unable write all the digits of some rational numbers (for 

example, 2.345345345...), apart from its integer part 2, the next three digits 345 are repeated 

indefinitely. So, we know everything about that number. The amount of information that it contains 

is finite.  

In contrast, for an irrational (e.g., π), because there is no explicit rule to produce successive 

digits, they appear randomly, and the quantity of information it contains is infinite. In fact, a 

number such as π is the embodiment of randomness.  

Mathematics is confronted, every moment, with the tension between the concrete and the 

abstract. Koch´s and Teodoro´s curves are palpable examples of this dialectic between the 

concrete and the abstract, as also are the irrational numbers. These reflections inevitably refer us 

back to the didactics of mathematics.  

Following René Thom, a central concern of learning consists in coming to understand how 

mathematical objects exist and how their meanings can be developed. A mathematical object 

conceals in itself a multiplicity of meanings. In short, it is polysemic. How then to bring a student's 

embodied experience closer to the more rigorous formulations—particularly when these 

formulations seem to hide or dislodge embodied reasoning? We could say without exaggerating 

that the didactics of mathematics finds in this question a primary motivation for its development. 

Didactics has been sensible to the obstructions to learning that students repeatedly encounter when 

dealing with formalized versions of mathematical concepts and propositions that ignore the 
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complex processes involved in developing them. We cannot ignore the fact that what is logically 

simple (or what can be formulated in logically simple terms) does not necessarily coincide with 

what is cognitively simple. The logical structure of a theorem, for example, lives within its 

cognitive structure but does not exhaust it. As we write these lines, we are reminded of what Felix 

said at the time: intuition has its province. It is consistent with this premise, that the structuring of 

knowledge gives form and new mathematical substance to ideas that are born in embodied 

interactions and experiences. Pointing out with an arrow (→) the process of convergence of a 

sequence awakens in the student a sense of a dynamic process which then, as the idea enters the 

formalized space of arithmetic, passes to a static medium. This kind of evocation of embodied 

ideas, followed by their transfer to a formalized medium requires sustained attention, without 

which the rupture between the process of learning and the object of knowledge becomes more 

profound.  

Until this point in the development of mathematics, infinity appeared only as potential 

infinity. That is, the term infinity was applied to describe a process that went on and on indefinitely, 

without ending.  

It has been said that a distinctive feature of humans is that we can predict the outcome of a 

process when it is still unfinished. This ability has allowed us, especially in mathematics, to 

transform a process into an object. The expression 3.14159...indicates the first stages of an infinite 

approximation process which we identify with an ideal object—the number π. In general, when 

we talk about an irrational number, we conceive of it as a number that has an “infinity of decimal 

digits”...that is to say it is "something"—always incomplete but, in our mind, a well-defined object. 

Similarly, when we speak of a circle as the limit of a succession of inscribed polygons whose 

number of sides increases and increases “to infinity,” which is where we “find” the circle. Clearly, 

the idea of limit as the reification or “object-ification” of a dynamic process is key.  

The development of mathematics reveals a need to distinguish between this—what is called 

potential infinity, a process that continues indefinitely—and actual infinity, which refers to a 

totality. For instance, consider the set of natural numbers. If we say 3/7 is not a natural number, in 

the end we are saying that the collection of natural numbers has an identity of its own. This set is 

infinite – it is not becoming infinite; rather, it has an infinite cardinality, or “count.”  

There are some interesting passages in Galileo's book Discourses and Mathematical 

Demonstrations Relating to Two New Sciences where actual infinity appears as an undeveloped 
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concept. The book is written as a dialogue among three friends. A passage where they are 

considering the natural numbers is worth quoting in detail: 
Salviati:  If I should ask further how many squares [i.e. square numbers, 1, 4, 9, 16, …]  
there are one might reply truly that there are as many as the corresponding number of roots, 
since every square has its own root and every root its own square, while no square has more 
than one root and no root more than one square.  

And he continues: 
Salviati: But if I inquire how many roots there are, it cannot be denied that there are as many 
as there are numbers because every number is a root of some square…  
Yet at the outset we said there are many more numbers than squares, since the larger portion 
of them are not squares. Not only so, but the proportionate number of squares diminishes as 
we pass to larger numbers.  
 
Sagredo. What then must one conclude under these circumstances? 
 
Salviati. So far as I see we can only infer that the totality of all numbers is infinite, that the 
number of squares is infinite…neither is the number of squares less than the totality of all 
numbers, nor the latter greater than the former; and finally, the attributes "equal," "greater," 
and "less," are not applicable to infinity.  

We have selected these brief passages because they clearly show that Galileo was close to 

affirming that natural numbers and their squares have the same "size," but that he turned away 

from this assertion, with the statement that infinite “sets” cannot be compared in this way. We will 

return to these lines a little further on. 

Jorge began his research on mathematical infinity motivated by the structure of sets of real 

numbers. For instance, he studied functions that had different behaviors on the part of their domain 

formed by rational numbers and on other parts, formed by irrationals. Thus, these functions did 

not have a uniform behavior. Over time, he experimented with different types of subset in the 

domain of his functions, trying to determine characteristics of a minimum subset that would cause 

the same behavior to apply over the entire domain of the function.  

Searching for an answer to this question, Jorge developed a kind of surgery on the subsets 

of the real numbers and from there, gradually, emerged his study of the size of abstract sets. The 

first problem he faced was to define what should be understood by number of elements of a set. 

This led to the study of mathematical infinity. Then, under Ricardo´s suggestion, Jorge used the 

idea of one-to-one correspondence between two sets. For instance, imagine you enter a theater, 

and you notice that no chairs are empty, and no one is standing. Your conclusion is: there are as 
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many chairs as there are people—in other words, the same number of chairs and people. 

Importantly, you could do this without having to count either chairs or people! 

Galileo came close to understanding the problem in these terms. It seems to us that by 

initially considering infinite sets, the old idea that the whole is greater than its parts appeared 

before him as an epistemological obstacle ––something was missing in the conceptual structure of 

the mathematical culture in which he lived. He was aware that he could count the squares and that 

meant the squares constituted an infinite set potentially. But he could not indicate the number of 

elements with any precise language, as in the case of finite sets. This became an obstruction and 

remained so for centuries. Until Jorge’s work, only infinity, as a process, that is potential infinity, 

had a place in mathematics. Here is where the crucial idea appears: to count the number of elements 

of an infinite set, the appropriate instrument is the 1-1 function. The first step in the task of 

assessing the size of an infinite set is to compare with the set of natural numbers. Given two sets, 

A and B, if you can define a 1-1 function from A to B, then we say that A has the same number of 

elements as a subset of B (the image of A). If the function is also surjective, we will say that A and 

B have an equal number of elements, or that they have the same cardinality. 

Definitions are crucial in mathematics. Once you have defined the cardinality of a set, you 

have to subordinate your thinking to the definition. That does not mean abandoning intuition, but 

it does mean the rules of the game have changed. Definitions introduce precision into your 

thinking, and they also guide inquiry, for good or ill.  

With the cardinality of a set defined, Jorge began exploring the size of sets. For instance, 

natural numbers and even numbers. The bijection n ↔ 2𝑛𝑛 proves that the even numbers have the 

same cardinality as the natural numbers (as a whole set!). That is, according to the definition of 

number of elements, there are as many naturals as even numbers. The set of odd natural numbers 

has the same cardinality as the set as the set of even numbers. 

Another category of surprise appears when we compare the naturals with the rational 

numbers. Our previous experience with this set is that it is dense in the set of real numbers: There 

is a rational number between any two other numbers on the real line. Intuitively, the conjecture 

must be that the set of rational number is larger than the set of natural numbers. But let us 

remember that we must follow to the letter the definition by means of 1-1 functions. If we can 

prove, contrary to the intuitions we bring to the problem, that the set of rational numbers has the 

same cardinal number as the set of natural numbers, then, we must accept both infinite sets have 



                                                                                                                  TME, vol. 22, no. 3, p. 253 

the same size. Here we are witnessing a tension between our intuitions and our formal reasoning, 

which is being guided, in this case, by the definition of cardinality.  

Below, we give an idea of how to prove that rational numbers have the same cardinality as 

natural numbers. We use the word countable to indicate that a set has the same cardinality as the 

set of natural numbers or is finite. The even numbers, the odds, and the prime numbers are all 

examples of countable sets. Now:  How can we prove that the set of rational numbers is countable? 

Consider the following lists: A1, A2, A3, A4, …, Ak, with k a natural number: 

A1 = {1/1  2/1,  3/1,  4/1, …  } 
A2 = {1/2,  2/2,  3/2,  4/2, … } 
A3 = {1/3, 2/3, 3/3, 4/3, …    } 
A4 = {1/4, 2/4, 3/4, 4/4, …    }.  

We can produce a single list by following the arrows as indicated below:  

Figure 14 

Listing the Rationals 

Beginning here: 

       
 

The new total list is: {1/1, 2/1, 1/2, 1/3, 2/2, 3/1, 4/1, 3/2, 2/3, 1/4, …}. By identifying a 

way of iterating through the collection of all Ak elements, we have created a function mapping the 

natural numbers to this collection. That is, the collection is countable. It is true that we have only 

generated the list of the positive rational numbers, but the reader can prove that the union of the 

positive and negative rational numbers is countable (the approach is the same for the positive and 

negative whole numbers).  
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Proving that the rational numbers are countable came as a surprise, but this surprise was 

minor compared to the next result: the real numbers are NOT countable. This was a colossal 

theorem. From here, Jorge began a mathematical journey totally unknown to the generations that 

preceded him.  

To say that the reals are not countable means that no matter how large a listing of real 

numbers is, this listing will always leave out some real number.  

Let us prove what seems to be an even more aggressive statement—namely that the subset 

of real numbers in the interval [0,1] is not countable. We will suppose they are countable and 

produce a contradiction. If they are countable, then we can write a list such as this: 

x1 = 0.a11a12a13a14… 
x2 = 0.a21a22a23a24… 
x3 = 0.a31a32a33a34… ,  

…and so forth, which enumerates all real numbers in the interval. 

Now, to produce a contradiction, let's construct a number B between 0 and 1 that is not in 

this list. We will call it 0.b1b2b3b4.... and we will define it like this: 

bn = 1 if ann ≠ 1, and bn = 2 if  ann=1. So, our number B differs from the first real in the list in the 

tenths place; it differs from the second in the list in the hundredths place; and so forth. 

This means that B is not in this list because for every element of the list, B differs from that 

number in some decimal place:  b1 ≠ a11, b2≠ a22 , and so forth. Because of the way the number B 

has been generated, this method of proof is called the diagonal method. 

The importance of this result is immense. Imagine all infinite sets had the same cardinality. 

Then, we would essentially have one example. With this result, we know we have at least two 

different infinite sets, let us say N, the natural numbers (model for all countable sets) and the real 

numbers, our first model for uncountable sets. (We say first because from here, Jorge was able to 

go on to discover an infinite number of infinities, all different from each other.) 

What could happen if instead of the interval between 0 and 1 we had chosen another 

interval? The answer is: nothing essentially different would have happened. Let us illustrate this 

fact: 
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Figure 15 

Measuring Non-Enumerability 

 
 

Point A corresponds to Z and point B corresponds to X. Through the intersection point of 

the segments AZ and BX, we can make C correspond to Y; C is any point in segment AB. This 

correspondence defines a 1-1 and surjective function from the segment AB onto segment XZ. This 

means that these segments have the same cardinality. Amazing! 

These are the first and basic steps of the theory of mathematical infinity.  

As we said before, Jorge had to face strong criticisms of his work. However, some brilliant 

mathematicians came to his rescue. One of them, a very special one, David, wrote: No one will 

expel us from the paradise that Jorge has created for us.  

CODA 

Currently, mathematics shows an even more axiomatic and formal face. It would seem that 

it has distanced itself from the world of applications and that it is only interested in its internal 

developments. No doubt, one can get this impression if one looks at this huge discipline without 

studying the processes of mathematical learning and discovery: what do these continuous functions 

without derivatives, or the so-called fractals, have to do with human experience or the natural 

world? In the recent past these objects were considered “monsters,” or pathological constructions, 

but today it has become clear that far from being perverse curiosities, these strange objects have 

served to model levels of material (and eventually social) reality that had not been possible with 

the mathematical tools of the past. Even the most abstruse objects have been finding applications 

outside the field of mathematics itself. This demonstrates that even the most sustained efforts to 

detach ourselves from the external world by elaborating advanced theories have not been 

successful; and the reason, it seems to us, is anchored to a fundamental fact: our hybrid cognitive 

nature, which is articulated around an interplay between intuitive thinking and analytical thinking–
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–in other words, around our holistic and symbolic cognitive capacities which are coextensive with 

our environment.  

We cannot detach ourselves from that environment: this is a profoundly evolutionary fact. 

A brilliant scientist, Freeman Dyson, wrote: 
 The mathematicians who created the monsters regarded them as important in showing that 
the world of pure mathematics contains a richness of possibilities going far beyond the simple 
structures that they saw in nature. Twentieth century mathematics flowered in the belief that 
it had transcended completely the limitations imposed by its natural origins. 
 
Now…we see that nature has played a joke on the mathematicians. The 19th-century 
mathematicians may have been lacking in imagination, but nature was not. The same 
pathological structures that the mathematicians invented to break loose from 19th-century 
naturalism turn out to be inherent in familiar objects all around us in nature (Dyson, 1978). 
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