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Hargreaves, Melissa, Ph.D., Spring 2013          Integrative Microbiology/Biochemistry 
 
Novel ribosome biogenesis in the Lyme disease spirochete Borrelia burgdorferi 
 
Chairperson: D. Scott Samuels 
 
Here we demonstrate the first characterization of an RNase III enzyme from a spirochete 
and its role in processing rRNA transcripts from the unusual rRNA gene operons of 
Borrelia burgdorferi. In most bacteria, the three rRNA transcripts (16S, 23S, and 5S 
rRNAs) that form the ribosome are produced as a single transcript from an operon with 
minimal spacing between genes. In the B. burgdorferi genome, however, a single 16S 
rRNA gene is encoded more than 3 kb from the bicistronic 23S-5S rRNA operons. The 
23S-5S operons are tandemly duplicated, yielding an uneven number of rRNA genes, a 
feature unique to Lyme disease Borrelia. Additionally, the 16S and tandem 23S-5S 
operons appear to be synthesized as two separate transcripts. Our data show that B. 
burgdorferi RNase III processes the 3′ end of the 16S, 23S, but not the 5S, rRNA 
transcripts, as in other bacteria. However, 16S rRNA 5′ end processing proceeds by an as 
yet unidentified mechanism, which is an unprecedented finding. We hypothesize that this 
deviation from the canonical 16S rRNA processing pathway is likely an adaptation of B. 
burgdorferi to rRNA gene rearrangement during genome reduction and transition to a 
host-restricted lifestyle. In agreement with this finding, the 16S rRNA gene is transcribed 
as part of a larger operon containing unrelated genes, suggesting alternative regulation of 
the rRNA transcripts. Additionally, we show that the 23S rRNA is transcribed from 
identical promoters present in front of both tandem 23S rRNA genes and that this creates 
our observed 2.5 to 3-fold excess of 23S rRNA compared to 16S rRNA. Finally, single 
deletion mutants in each of the 23S rRNA genes were constructed. Surprisingly, deletion 
of the first 23S rRNA gene produces a severe growth phenotype and increased 
erythromycin susceptibility in vitro and a strain that is non-infectious in vivo. A mutant 
with a deletion in the second 23S rRNA gene shows no phenotype. The 23S rRNA genes 
have begun to acquire single nucleotide polymorphisms. However, their pattern currently 
indicates that they are the products of genetic drift. We conclude that the mechanism of 
rRNA transcription is unique in B. burgdorferi. 
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Chapter 1 

Introduction 

 

Borrelia burgdorferi and the enzootic cycle 

 

Borrelia burgdorferi is the causative agent of Lyme disease (9, 10, 11). Lyme 

disease accounts for more than 90% of reported vector-borne disease in the United States 

(12, 13). B. burgdorferi belongs to the genetically distinct Spirochaetae phylum, which 

includes other notable genera associated with disease such as Leptospira (leptospirosis), 

Treponema (syphilis, Yaws), and Brachyspira (intestinal spirochetosis) (14, 15, 16, 17, 

18, 19, 20, 21). The Spirochaetae are widely distributed throughout the world and exhibit 

diverse lifestyles, from free-living saprophytes residing in stagnant water to a parasitic 

enzootic life cycle dependent on an arthropod vector and mammalian host. Members of 

this phylum are characteristically defined by the unusual periplasmic location of their 

flagella, which contributes to their unique bacterial shape and motility (22, 23, 24).  

The Borrelia genus itself is divided into two major phyletic groups generally 

based on their capability of causing human disease; B. burgdorferi, B. afzelii, B. garinii, 

B. bissettii, B. valaisiana, B. lusitaniae, and B. spielmanii have been isolated as agents of 

Lyme disease (or LD-like disease), whereas B. duttoni, B. recurrentis, and B. hermsii are 

the primary species associated with borrelial relapsing fever. B. andersonii and B. 

japonica are closely related to the LD Borrelia but have not yet been associated with 

disease (13, 25). As all of these organisms (except B. recurrentis) depend on a tick vector 

during their natural life cycle, incidence of disease is linked to the distribution of each 
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vector, which is related to the availability of suitable habitat (25, 26). The tick vectors for 

Lyme disease Borrelia species are the hard-bodied ticks of the Ixodes genus, which are 

distributed throughout the Northern Hemisphere in regions containing temperate forests 

with high humidity (13, 25, 26, 27).  

  B. burgdorferi is maintained in nature through an enzootic cycle involving its tick 

vector and small vertebrate hosts (13, 25). The two-year tick life cycle is central to the 

seasonal pattern of B. burgdorferi transmission into a warm-blooded host (26, 27). Lyme 

disease in humans initially manifests with the development of a bull’s-eye rash known as 

erythema migrans at the site of the tick bite and can be accompanied by flu-like 

symptoms (12). If detected early, Lyme disease can be readily treated with antibiotics 

such as doxycycline (28). However, if left untreated, further complications such as 

arthritis, carditis, and neurological sequelae can develop (12).  

The genome of B. burgdorferi lacks discernible genes for production and 

secretion of toxins, so the symptoms of Lyme disease are considered to be the 

consequence of immunological responses to spirochete infection (12, 13, 29, 30). For 

acute Lyme disease, the erythema migrans results from activation of local dermal 

macrophages and dendritic cells along with the recruitment of other circulating immune 

cells (12, 31). The accompanying flu-like illness is thought to be the result of cytokine 

production in response to hematogenous dissemination of B. burgdorferi (12). In 

untreated patients, the arthritis, carditis, and neuropathies are likely the outcome of 

localized immune activation, and, in the case of long-term arthritis, the development of 

autoimmunity to uncleared spirochete remnants in the joints (12, 30). 
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During transmission from the salivary glands of the tick vector to a mammalian 

host, B. burgdorferi utilizes the multitude of anti-immune factors in tick saliva to initially 

evade the immune response (13, 32, 33, 34, 35). In addition, B. burgdorferi outer surface 

lipoprotein C (OspC) can bind the tick protein SALP15, which allows the bacterium to 

evade antibody attachment (13, 34, 35, 36). Other surface lipoproteins (BbCRASPs; 

complement regulator-acquiring surface proteins) bind factor H, inhibiting the 

complement cascade (12, 13, 36, 37). 

After initial dermal penetration, B. burgdorferi rapidly replicates and eventually 

moves toward the interface between the posterior dermis and the circulatory system, 

entering the bloodstream (12, 13, 37, 38). Rather than produce tissue-digesting enzymes, 

B. burgdorferi binds plasminogen and its activation molecule (to create plasmin), as well 

as induces matrix metalloproteinases, which are produced by a variety of cells and are 

involved in normal tissue remodeling (13, 30, 37, 39, 40). Activated plasmin is a protease 

that allows B. burgdorferi to penetrate the cells lining the dermal capillaries and promotes 

hematogenous spread of the organism (37). OspC has recently been shown to bind 

plasminogen (41).  

B. burgdorferi eventually exits the circulatory system and takes up residence in 

tissue (37, 38). The spirochete possesses the ability to bind collagen and seems to find 

potential ‘protective niches’ within the mammalian host where it can persist (37, 42, 43). 

At this point, OspC is downregulated and other B. burgdorferi surface molecules are 

switched as needed in an effort to avoid the host immune response (37, 44). Similar to 

relapsing fever Borrelia species, B. burgdorferi has the capacity to recombine the gene 
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for a plasmid-expressed outer membrane lipoprotein (vlsE) in order to confer antigenic 

surface variation in response to undefined mammalian signals (37, 45, 46). 

The enzootic cycle begins when a female Ixodes tick lays eggs on the ground 

amongst leaf litter. Uninfected larval ticks hatch during late summer or early autumn and 

immediately seek out a blood meal, usually from small rodents or birds. If this reservoir 

animal has been previously infected with B. burgdorferi, the larval tick can acquire the 

spirochete during the blood meal (13, 25, 26). B. burgdorferi in its reservoir host likely 

sense chemoattractants from the feeding tick and migrate towards the bite location (13). 

In order to colonize the tick, however, B. burgdorferi must alter its gene expression to 

switch from survival in the mammal to persisting in the tick (47, 48), including 

upregulating metabolic pathways to utilize alternative carbon sources (13, 49, 50). One of 

the predominant proteins responsible for enabling this transition is outer surface 

lipoprotein A (OspA), which allows B. burgdorferi to bind to tick midgut epithelium and 

probably provides shielding from anti-Borrelia antibodies that may be present in the host 

blood meal, thus permitting successful colonization of the tick vector (51, 52, 53, 54).  

As the larval tick molts into a nymph, B. burgdorferi is maintained in the tick’s 

midgut. Persistence requires B. burgdorferi to survive in a nutrient-limiting environment 

within the flat, unfed nymph over the winter months (13, 35). However, the spirochete is 

not dormant during this phase as certain genes are specifically upregulated to cope with 

this environment. B. burgdorferi utilizes glycerol, which is present in the tick midgut and 

serves as a natural antifreeze, as a carbon source (13, 49, 50). There is a poorly 

understood stringent response in B. burgdorferi that might also contribute to spirochete 

survival under these harsher conditions (13, 55, 56, 57, 58). 
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 Once the molt is complete and winter has transitioned to spring, the nymphal tick 

must feed again, usually on another rodent or bird, but occasionally on humans or other 

animals (13, 25). Nymphs climb low-level vegetative matter and quest for their next meal 

by protruding their legs until they catch on the fur or skin of a suitable host (25). After 

attachment the tick begins to feed and the B. burgdorferi residing in its midgut alter their 

gene expression to prepare for transmission (47, 48). Most conspicuously, OspA is 

downregulated and OspC is upregulated (59, 60, 61, 62, 63, 64, 65, 66). A complex 

cascade involving the alternative sigma factors RpoN and RpoS regulates this switch 

(67). After approximately 48 hours of feeding, the spirochete moves from the tick midgut 

to the salivary glands and is successfully transmitted into its host to begin the process of 

infection (13, 68). Following its second blood meal, the nymphal tick molts once again 

into the adult form. At this stage, only the female tick will feed again, generally on large 

mammals such as deer, mate, lay their eggs, and die (13, 25). B. burgdorferi is not 

vertically transmitted in ticks and must be acquired anew by larvae from an infected 

warm-blooded host (69). 

Both reservoir host species along with the tick vectors contribute to the continued 

maintenance of B. burgdorferi and other Lyme disease Borrelia species in nature (13, 25, 

26, 27). The white-footed mouse, Peromyscus leucopus, is the primary North American 

B. burgdorferi reservoir species and seems to asymptomatically maintain the spirochete 

over its lifetime after the initial infection (70, 71, 72). Additionally, in Europe, migratory 

birds that become infected with the spirochete B. garinii contribute to the spread of 

Borrelia isolates to new regions (13, 25, 26). However, not all hosts are capable of 

promoting maintenance of B. burgdorferi within the enzootic cycle. Humans and dogs are 
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thought to be dead-end hosts, as they are not part of the normal ecological niche of the 

enzootic cycle and clinical treatment will eliminate the spirochete before another tick can 

feed (13). Some lizard species in the Southwestern United States are capable of initial 

infection with B. burgdorferi but possess anti-Borrelia immune factors that rapidly lead 

to spirochete death, removing these spirochetes from the transmission pool (73).  

  

The complex genome of Borrelia burgdorferi 

  

In order to survive in and transition between the two disparate environments of 

the tick vector and mammalian host, the genome of B. burgdorferi must encode a diverse 

array of genes (13, 36, 48). In fact, B. burgdorferi possesses what is considered the most 

complex prokaryotic genome (29, 74, 75, 76). However, as B. burgdorferi has adapted to 

a parasitic lifestyle within its vector and host, natural genetic reduction has taken place, 

resulting in a core chromosome with very few intergenic spaces and only a few rRNA 

genes (29, 77, 78). Consequently, B. burgdorferi has become metabolically restricted and 

is fastidious to grow in laboratory cultures (79, 80). Unlike most bacteria, which harbor a 

single, circular chromosome molecule, the genome of B. burgdorferi consists of a 

relatively small (~900 kb), linear chromosome harboring the majority of housekeeping 

and metabolic genes as well as ~12 linear and ~9 circular plasmids (ranging from 5 to 20 

kb) (29, 74, 75, 77). At least one of the circular plasmids is a prophage (75, 77, 81, 82). 

This genomic arrangement is unique and many of the linear plasmid genes have no 

homologs outside of Borrelia species (29, 74, 77). However, the gene content of the 

chromosome is relatively consistent among Borrelia species (77).  
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The linear chromosome of B. burgdorferi strain B31 carries 846 protein-coding 

genes, 31 tRNA genes, and 5 rRNA genes (discussed in detail below) (1, 29, 77, 83). It 

has a low GC-content (28.6%) and protein-coding genes account for 93% of the coding 

sequence, which is a common trend for a genome that has been severely reduced (77, 84, 

85). The metabolic capacity of B. burgdorferi is limited; it must scavenge all amino 

acids, nucleotides, vitamin cofactors and fatty acids (80). It also lacks the enzymes of the 

citric acid cycle. Consequently, the genome contains many types of transporters for 

nutrient uptake, including metabolic intermediates (29, 77, 80). Glycolysis is carried out 

through fermentation of sugars via the Embden-Meyerhof pathway (80). There is a lack 

of genes involved in iron scavenging and metabolism, and B. burgdorferi does not 

require iron for growth (80, 86). Intriguingly, the linear chromosome and linear plasmids 

possess covalently closed telomeres, which are generated by a plasmid-encoded resolvase 

(ResT) (76, 77, 87). In addition to the chromosome, lp54, cp26, and cp32 (plasmid 

nomenclature includes lp for linear plasmids or cp for circular plasmids along with the 

size in kb in strain B31) are present in all strains, and are thought to potentially serve as a 

‘mini chromosome‘ (74, 75, 77). 

The genetic content of the plasmids is more variable than the chromosome and 

these contain paralogous sequences, pseudogenes, and a few essential genes (29, 75, 77). 

Most of the genes encoding the plethora of outer surface lipoproteins (36) are also carried 

on the plasmids. Some of the plasmids are required for mammalian infectivity (lp25 and 

lp28-1) (45, 88, 89), whereas others are vital to survival within the tick environment 

(lp25 and lp28-4) (77, 90). The circular plasmids have fewer pseudogenes than the linear 

plasmids, and genes are closely packed on these plasmids (29, 74, 77). B. burgdorferi 
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encodes multiple copies of cp32 and single copies of both cp9 and the essential cp26 (74, 

77). The cp32 plasmids appear to be prophages that are similar to the λ-phages, including 

a contractile tail and a late operon (81, 82, 91, 92). Isolated phages contain cp32 DNA 

and are capable of transducing this DNA between Borrelia strains (82). The cp32 

plasmids carry genes for surface-exposed proteins, including the one responsible for 

binding to complement factor H (36, 74, 77). 

 

The novel rRNA gene organization of Borrelia burgdorferi 

 

The unusual Borrelia ribosomal RNA gene organization is, considering the 

parasitic lifestyle, perhaps not surprising. As bacteria adapt to a host-restricted life, their 

genomes undergo a natural reduction that can lead to the development of unusual rRNA 

arrangements through a variety of mechanisms ((93) and below). The rRNA genes are 

located in the central portion of the chromosome, which is more GC-rich than the 

remainder of the chromosome, and are present in the canonical order (16S-23S-5S), but 

are arranged in a considerably different organization than in other bacterial species, 

which could affect metabolism (1, 83, 94, 95). Figure 1, below, depicts the ribosomal 

RNA region of B. burgdorferi. The 16S rRNA gene is separated from the 23S-5S rRNA 

operon by more than 3 kb (5 kb in the other Lyme disease species B. garinii and B. 

afzelii) (1, 83, 94, 95). Two tRNA genes (tRNAAla and tRNAIle) are located downstream 

of the 16S rRNA gene and Bugrysheva et al. (5) determined that the 16S rRNA and 

tRNAAla are produced as a single transcript, while tRNAIle is generated as its own 

transcript. Notably, in addition to the tRNAs, four predicted protein-coding genes are 
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Figure 1: Chromosomal arrangement of B. burgdorferi ribosomal RNAs 

 

The rRNAs of B. burgdorferi are located near the center of the linear chromosome. The 16S gene is followed by two 
tRNA genes and there appears to be a truncated ORF between them. The remaining genes in the spacer region include 
bb0422 (a DNA-3-methyladenine glycosylase) and bb0421 (a haloacid dehalogenase-like hydrolase). The tandem 23S-5S 
operon, a phenomenon restricted to Lyme disease Borrelia species, are 3 kb downstream from the 16S gene. 

''()**,

The rRNAs of B. burgdorferi are located near the center of the linear chromosome. 
The 16S gene is followed by two tRNA genes and there appears to be 2 truncated 
ORFs between them. The remaining genes in the spacer region include bb0422 (a 
DNA-3-methyladenine glycosylase) and bb0421 (a haloacid dehalogenase-like 
hydrolase). The tandem 23S-5S operon, a phenomenon restricted to Lyme disease 
Borrelia species, is 3 kb downstream from the 16S gene. 

present in this spacer region: two that appear to be truncated ORFs (located between the 

tRNA genes), a DNA-3-methyladenine glycosylase (bb0422), and a haloacid 

dehalogenase-like hydrolase (bb0421). The latter enzyme may hydrolyze phosphorylated 

metabolic intermediates, including acetyl phosphate (96), which plays a role in regulating 

gene expression during transmission (97). The first 5S rRNA gene (rrfB) follows the 23S 

rRNA gene (rrlB) with a short spacer between the two. However, there is an additional 

23S-5S operon (rrlA-rrfA) downstream with a short 179-bp spacer, a feature that has not 

been observed for any other bacterial species sequenced to date (1, 95). The tandem 23S-

5S rRNA operon region is transcribed as a single precursor RNA (5), but the mechanism 

separating the two rRNAs has not yet been characterized.  

 

Figure 1: Chromosomal arrangement of B. burgdorferi ribosomal RNAs 

  

 

 

 

 

 

 

 

In general, this unusual rRNA arrangement appears to be conserved across Lyme 

disease species (1, 94, 95, 98, 99). Recent sequences of other Lyme disease Borrelia 

species (B. valaisiana, B. bissettii, and B. spielmanii) show that they also exhibit this 
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unique operon structure (100). However, one isolate of B. afzelii (ACA-1) appears to 

encode two 16S genes that are 398 nucleotides (nt) apart followed by a 2.8 kb spacer. A 

single 23S-5S pair is located after this spacer (101). Only one complete B. burgdorferi 

genome (strain 156a) encodes a single 23S-5S rRNA operon following the 16S and 

spacer region, although this has not been experimentally confirmed by restriction 

mapping (99). The related relapsing fever Borrelia species (B. hermsii, B. turicatae, and 

B. anserina) encode only a single 23S-5S rRNA operon and the spacer between the 16S 

rRNA gene and 23S-5S rRNA operon is 1 kb (1, 94). In addition, Lyme disease species 

B. japonica and B. andersonii have undergone recent mutational events to their rRNA 

genes (102). Marconi et al. (102) discovered several interesting rRNA gene variations in 

isolates of these species: absence of one of the tandem 23S-5S rRNA operons, 

intervening sequences in the 23S rRNA genes that are subsequently spliced out to 

produce the mature 23S rRNA, and missing 5S rRNA genes. 

A null mutation in one of the 23S rRNA genes of B. burgdorferi does not affect 

growth rate, suggesting that the spirochete is able to compensate for loss of one gene, 

perhaps by regulating transcription of the remaining 23S rRNA gene (103). Growth phase 

rather than growth rate controls rRNA levels in B. burgdorferi (5). A major remaining 

question is how B. burgdorferi compensates for possessing an uneven number of 16S, 

23S, and 5S rRNA genes to enable a 1:1:1 stoichiometric ratio in the final ribosomes 

without wasting resources by overproducing the 23S-5S rRNA transcripts.  
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Unusual rRNA gene arrangements in other bacteria 

 

Non-canonical rRNA arrangements in bacteria are not without precedence and 

seem to be a property of bacteria with specific characteristics: host- or environment-

restricted organisms, low GC-content, slow growth, and small genome size (93). B. 

burgdorferi exhibits all of these characteristics along with very few pseudogenes, and the 

few it does contain are restricted to its numerous plasmids (29, 74, 77). The slow growth 

exhibited by these organisms is thought to be the result of the limited number of rRNA 

genes (78). Indeed, a slow-growth phenotype was observed for the model organisms 

Escherichia coli and Bacillus subtilis, when rRNA operons were deleted so that each 

mutant possessed only a single rRNA operon (from seven in E. coli and ten in B. subtilis) 

(104, 105, 106). Additionally, rRNA operon placement within the bacterial chromosome 

can also affect growth rate. Nanamiya et al. demonstrated that a lower cellular ribosome 

concentration is observed in B. subtilis when the coding distance between the origin of 

replication and a single rRNA operon is increased (106). 

In many host-restricted genera such as Mycoplasma, Rickettsia, and Buchnera, 

evolution has driven a reduction in genome size, preventing them from surviving outside 

of their specific host environments but allowing them to thrive in an environment of 

limited nutrients. As a consequence of genome reduction, rRNA operons are often 

rearranged, driven by homologous recombination (93). The rRNA operon region is a hot 

spot for recombination as tRNA genes can serve as recognition sites for mobile genetic 

elements leading to rRNA gene rearrangement (93, 107, 108). Gene duplications in this 

region also support recombination (93, 109). A recent survey of 16S rRNA genes from 
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over 1100 sequenced bacterial genomes of diverse phyla showed that a variety of 

evolutionary processes have rearranged and altered this conserved gene. Specific 

examples include tandem duplication of the 16S rRNA gene followed by homologous 

recombination, inversion of an rRNA operon, transposon insertion, gene deletions and 

substitutions, degeneration of the anti-SD sequence, and transfer of a 16S rRNA gene to 

the chromosome from a plasmid (110). The evolutionary forces that shaped the unusual 

rRNA gene arrangement in B. burgdorferi are currently undefined, but it is likely that the 

rearrangement occurred during genome reduction and host adaptation.  

 A smaller genome means the organism can survive with a paucity of rRNA 

genes, although at least one of each must, of course, remain. These evolutionary 

pressures favor the development of bizarre rRNA arrangements in organisms undergoing 

active genome reduction (93). There are multiple examples of unique genome 

rearrangements that have resulted from genome reduction and rRNA recombination. 

Some of the more notable cases include Thermoplasma acidophilum, where all three 

rRNA genes are separated on the chromosome, Rickettsia prowazekii, Anaplasma 

marginale and Mycoplasma gallisepticum, where the 16S rRNA gene is separated from 

the 23S-5S rRNA operon, similar to Borrelia, Mycoplasma fermentans, which possesses 

two copies of the rRNA genes and where the 16S-23S rRNA operons are separated from 

the 5S genes and the 16S-23S rRNA operons are in an usual tail-to-tail arrangement on 

the chromosome, and Mycoplasma hyopneumoniae, where the 5S rRNA gene is 

separated from the 16S-23S rRNA operon (111, 112, 113, 114, 115, 116). Among the 

other genera of the Spirochaetae phylum, all three rRNA genes are separated from one 

another and gene copy number varies between Leptospira serovars (117, 118, 119). 
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However, none possess the conserved tandem duplication of the 23S-5S rRNA operon as 

observed in Lyme disease Borrelia species (1). Intriguingly, separation of the 16S rRNA 

gene and 23S-5S rRNA operon is conserved among Rickettsia species, suggesting that 

this genomic architecture, which is also observed among most Borrelia species, might be 

advantageous for host-restricted bacteria (120).  

 

Heterogeneity of bacterial rRNA operons 

 

Expansion of bacterial rRNA genes into multiple operons over time has led to 

sequence heterogeneity among rRNA operons in E. coli and B. subtilis (106, 121, 122). 

Single rRNA operon deletion mutants in both genera do not exhibit a discernible growth 

phenotype (123, 124). In fact, neither increasing nor decreasing the ribosomal RNA 

operon copy number by three in E. coli caused a change in the amount of rRNA required 

for maximum growth rate (125, 126). In the case of the gene depletion study, the 

remaining rRNA operons were transcribed with increased frequency to keep up with the 

demands of the cell (126). This finding has led to the hypothesis that multiple copies of 

rRNA operons might be beneficial to the bacterial cell by providing the ability to cope 

with a variety of environmental stresses, including changing nutritional conditions (127, 

128). In accordance with this hypothesis, the structure of the rrn operon 5′ regulatory 

regions and transcription factor binding efficiencies differ between the rrn operons in E. 

coli (129). In addition, rrn promoters are used differently between nutrient abundant and 

limiting conditions (130). Furthermore, B. subtilis rrn operon promoters respond 

differentially to a variety of physiological conditions; specifically, only some of the 
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operons are downregulated in response to starvation conditions (131). Finally, B. subtilis 

single rRNA operon mutants show differences in sporulation, which also suggests a 

functional significance to the heterogeneous character of the rRNA genes (106). We 

hypothesize that regulation of the tandem 23S rRNA genes in B. burgdorferi contributes 

to some form of environmental response system, particularly considering the dual-host 

lifestyle of the spirochete; this would provide a compelling rationale for the strong 

conservation of the 23S-5S rRNA tandem operon duplication observed in Lyme disease 

Borrelia species. 

 

Bacterial rRNA transcription regulation 

 

 Functional ribosomes are, not surprisingly, essential to cell viability and growth. 

However, the bacterial cell also faces a variety of favorable or unfavorable environmental 

conditions during growth, and must be able to properly modulate the amount of 

ribosomes that are produced. rRNAs (as well as tRNAs) account for more than 95% of 

total cellular RNA and their syntheses consume a majority of the cell’s resources (132). 

As a bacterial cell reaches stationary phase, and nutrients become limited, fewer 

ribosomes can be advantageous, as the amount of translation needs to be reduced to 

account for the decrease in free metabolites for biosynthesis. Additionally, the 

nucleotides of rRNA and amino acids of ribosomal proteins (r-proteins) from unneeded 

ribosomes can be recycled in order to continue essential, yet low-level, transcription and 

translation (133).  
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A recent study with E. coli by Piir et al. examined the normal course of ribosome 

degradation during bacterial exponential growth and stationary phase (134). Using a 

turbidostat to enable a constant rate of growth for E. coli, the ribosomes were found to be 

most stable during exponential growth in an abundance of nutrients. However, as E. coli 

enters stationary phase, more than 50% of the ribosomes produced during exponential 

growth are degraded, but those that remain are stable for several hours (134). The growth 

rate of cells was shown using mathematical models to be limited by translational capacity 

(135). More specifically, the synthesis and amount of free rRNA available for r-protein 

binding limits r-protein synthesis and growth rate (136, 137, 138, 139). Therefore, for an 

efficient translation system, during both favorable and unfavorable growth conditions, 

rRNA transcription must be carefully regulated. 

There have been multiple studies on rRNA transcriptional regulation in both E. 

coli and B. subtilis that have shown differences in the mechanisms used between the two 

genera, suggesting that the regulation of the rRNA genes in bacteria differs depending on 

the needs of the respective organism. However, two small molecule regulators have been 

described in bacteria that regulate transcription of the rRNA genes: induction is regulated 

by the concentration of an initiating nucleotide triphosphate (iNTP) and repression by 

guanosine pentaphosphate or guanosine tetraphosphate (known as (p)ppGpp) (133, 140). 

Transcription initiation, in general, depends on the presence of an initiating 

nucleotide triphosphate (iNTP). The cellular concentration required to stimulate 

transcription between promoters varies, but appears to be quite high for the rRNA genes 

(133, 140, 141). This nucleotide varies between bacterial genera, with ATP or GTP 

serving as the iNTP in E. coli rrn promoters (130, 142) and GTP serving as the sole iNTP 
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in B. subtilis (143). Presence of high concentrations of the iNTP in both E. coli and B. 

subtilis signify to the promoter that the required phosphate-rich NTPs are available in the 

cell to power the energy requirements of translation (140, 143). Therefore, transcription 

will be upregulated. 

In addition to iNTP concentration in cells, rRNA promoters are sensitive to 

another small regulatory molecule, guanosine pentaphosphate or guanosine 

tetraphosphate (known as (p)ppGpp). This GTP/GDP derivative serves as an alarmone in 

the cell and downregulates rRNA gene transcription during times of nutrient limitation in 

a system known as the “stringent response” (144, 145, 146, 147). The enzymes 

responsible for generating and hydrolyzing (p)ppGpp are known as RelA and SpoT, 

though these can exist as a chimeric single enzyme known as the RelA-SpoT Homolog 

(RSH), the latter of which is observed in Firmicutes and B. burgdorferi (57, 145, 147, 

148, 149, 150).  

E. coli rRNA gene transcription from two promoters (P1 and P2) at each rrn 

operon is tightly regulated. P1 is utilized during exponential growth and is downregulated 

during stationary phase; P2, on the other hand, is a weaker promoter that displays clear 

responses to amino acid availability (stringent control), rRNA gene dose (feedback 

control), and changes in growth rate (growth rate-dependent control) (140, 151). This 

bimodal system allows E. coli to fine-tune rRNA transcription during each phase of 

growth. In addition to the typical σ70 core promoter region (with -35/-10 hexamer 

sequences) in the E. coli rRNA promoters, a “discriminator” sequence is present in a GC-

rich region downstream from the -10 element (140, 152). Several upstream elements are 

also present and include the UP element, an AT-rich sequence that binds the C-terminal 



 17 

domain (CTD) of the RNA polymerase (RNA pol) α subunit and is located near the -35 

hexamer. Further upstream are 3 to 5 copies of the Fis (factor for inversion stimulation) 

transcription factor binding sites. Dimers of the Fis protein also interact with the CTD of 

the RNA pol α-subunit. Finally, the spacing between the -35/-10 elements is 16 

nucleotides instead of the typical 17 nucleotides.  

All of these promoter elements provide an approximate 300-fold increase in 

transcription of the rRNA genes in E. coli and help regulate the levels of rRNA through 

differential expression during growth phase or nutrient availability (i.e., Fis protein 

expression is increased during high nutrient availability) (reviewed in 133, 140). In E. 

coli, rRNA transcription during the stringent response is directly inhibited by (p)ppGpp. 

Formation of the RNA pol transcription open complex is blocked when (p)ppGpp binds 

to the transcription cofactor, DksA, which interacts with RNA pol and the 

“discriminator” sequence to destabilize transcription at rRNA promoters (145, 146, 152, 

153). 

While the E. coli rRNA promoter region contains many elements for 

transcriptional regulation, the B. subtilis rRNA promoter regions appear to lack some of 

these key features, including an UP element and Fis-binding sites (143). The mechanism 

for B. subtilis rRNA transcription regulation seems to instead revolve solely around the 

concentration of GTP/GDP in the cell. As previously discussed, GTP is the iNTP for B. 

subtilis rRNA transcription initiation and synthesis of (p)ppGpp will decrease the 

available pool of GTP/GDP for both translation and rRNA gene transcription, 

downregulating rRNA levels. Additionally, direct downregulation of rRNA transcription 

seems to occur via a binding of (p)ppGpp to RNA pol without the aid of a cofactor (143). 
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(p)ppGpp also binds to several GTP-binding ribosome associated proteins such as 

initiation factor 2 (IF2) or Obg, which would also stall translation (148, 154, 155).  

In B. burgdorferi, the relationship between rRNA transcription and the stringent 

response is not entirely clear. The 16S rRNA and tandem 23S-5S rRNA operons are 

transcribed as two separate transcripts (5). B. burgdorferi lacks a “discriminator” 

sequence at the proposed 16S rRNA promoter indicating that rRNA transcription may be 

more similar to B. subtilis than E. coli (5, 29, 148). While (p)ppGpp and a RelA-SpoT 

homolog (RSH, also referred to as RelBbu) are present in B. burgdorferi, the stringent 

response is different in the spirochete (5, 55, 56, 57, 156); low levels of glucose and 

amino acids do not seem to stimulate (p)ppGpp synthesis (56, 156). RSH is sufficient to 

regulate (p)ppGpp levels in B. burgdorferi and enables the organism to successfully 

transition from exponential growth to stationary phase (57). Levels of 16S and 23S rRNA 

are also reduced upon entry into stationary phase, as expected (5).  

 

Co-transcriptional rRNA processing and ribosome assembly in bacteria 

 

 In most bacterial species, the three rRNA genes are encoded in a single operon in 

the following order: 16S-23S-5S with minimal intergenic sequences. There are usually 

several tRNA genes encoded between rRNA genes, but their number and location varies 

among operons. Once rRNA transcription has been initiated, a single long transcript 

containing the 16S-23S-5S precursor rRNA is produced and subsequently processed by 

ribonucleases to separate each rRNA subunit. The endoribonuclease, ribonuclease III 

(RNase III) is responsible for initial processing of the 16S and 23S rRNA transcripts prior 
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to ribosome assembly (7, 157, 158). Endonucleolytic processing occurs co-

transcriptionally, first separating the pre-16S transcript from the pre-23S-5S transcript 

and then separating the pre-23S transcript from the pre-5S as the entire polycistronic 

RNA is transcribed (159). As the ribosomal RNAs are generated, a stem joining the 

complementary 5′ and 3′ ends of each rRNA forms, creating double-stranded substrates 

for RNase III (160). RNase III processes both strands simultaneously, releasing each 

rRNA. Exonucleases (and a few endonucleases) then further process the remaining stem 

to create the mature rRNAs (reviewed in 161). Unlike pre-16S and pre-23S rRNAs, pre-

5S rRNA is initially processed by other endonucleases (RNase E in E. coli and RNase 

M5 in B. subtilis; B. burgdorferi possesses a homolog of the latter enzyme) (162, 163). 

This enzymatic processing has been well characterized in both E. coli and B. subtilis, 

which have similar mechanisms but require different enzymes for post-RNase III 

processing (reviewed in 161). After the initial endonucleolytic processing, each rRNA 

continues to fold into its native conformation, aided by the ribosomal proteins that 

assemble on the nascent RNA. Exonucleases have better access to their substrates in this 

partially folded environment, allowing rRNA processing to transpire in an ordered 

manner (164, 165).  

 There are a variety of covalent chemical modifications made to both the rRNA 

and r-proteins as the ribosome assembles (reviewed in 166). Ribosome assembly is 

sequential, with distinct sets of proteins binding to each subunit in a specific temporal 

manner. The 16S rRNA sequentially binds 21 ribosomal proteins (the “S” proteins) 

during maturation and assembles into the 30S ribosomal subunit. The 23S rRNA and 5S 

rRNA assemble into the 50S subunit. Thirty-three ribosomal proteins (the “L” proteins) 
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associate with the 50S subunit in a progressive manner similar to the 30S rRNA subunit. 

Following maturation of each ribosome component, the 50S and 30S ribosomal subunits 

assemble into the 70S ribosome, which is part of translational initiation and requires a 

variety of initiation factors, the initiator tRNAmet and the mRNA (reviewed in 166).  

 

Ribonucleolytic processing of the rRNAs 

 

16S rRNA 

 RNase III processing in E. coli initially leaves extra nucleotides on both the 5′ 

(115 nt) and 3′ (33 nt) ends of the pre-16S rRNA transcript; single-stranded 

endoribonucleases E and G are responsible for the subsequent trimming of the 16S rRNA 

5′ end (167, 168). RNase G rapidly processes the 16S rRNA 5′ end after RNase E 

removes the first 66 nucleotides (167). In B. subtilis, the processing pathway is slightly 

different, as no homologs of RNases E or G exist in this organism (169, 170). Instead, 

RNase J1, an essential enzyme with broad activities within B. subtilis (mRNA processing 

and turnover), fulfills the role of the absent RNases E and G (171, 172, 173, 174). RNase 

J1 is an endoribonuclease that also exhibits 5′-to-3′ exonuclease activity, though it is 

currently the subject of debate whether the primary activity in processing the 16S rRNA 

is exonucleolytic or endonucleolytic (172). RNase J1 processes the 16S rRNA transcript 

following its assembly with proteins into the 30S subunit (171). Both RNase E and 

RNase J process the 5′ end of all three rRNA transcripts in Mycobacterium smegmatis 

(175). 
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Maturation of the 16S rRNA 3′ end in bacteria has only recently been 

characterized and appears to be the same in both E. coli and B. subtilis. A novel but 

highly conserved single-stranded endoribonuclease, YbeY, is required for 16S rRNA 3′ 

end maturation (176, 177). Translation is impaired in the absence of YbeY due to the 

production of defective 30S ribosomal subunits (178). Following RNase III processing of 

the 16S rRNA transcript, YbeY cleaves near the mature 3′ end of the rRNA while it is in 

the context of the assembled 30S subunit (176). This specificity has been predicted to be 

guided by a small subunit ribosomal protein or the GTPase Era, which may expose the 3′ 

end (176, 179). Additionally, the exonucleases RNase R and PNPase, along with YbeY, 

are likely candidates for the final 16S rRNA 3′ end processing (176, 177). YbeY has a 

role in 70S subunit quality control by initiating degradation of the ribosomal RNA after 

inducing multiple nicks in the single-stranded rRNA that are then unwound by the RNase 

R helicase domain (176). YbeY also aids in transcription antitermination of the rRNA 

precursor substrate (180). In Pseudomonas syringae, a single ribonuclease, RNase R, is 

capable of the complete 3′ end processing of 16S rRNA (181).  

 

23S rRNA 

After separation of the individual pre-23S and pre-5S rRNAs from the larger 

transcript, each rRNA is further processed by nucleases before associating with one 

another and thirty-three large subunit ribosome proteins to form the 50S ribosomal 

subunit. RNase III cleavage of the 23S rRNA leaves 3 to 7 nt on the 5′ end and 7 nt on 

the 3′ end in E. coli and 64 nt on the 5′ end and 32 nt on the 3′ end in B. subtilis that must 

be further trimmed by exo- and endonucleases (182, 183). In E. coli, RNase G finishes 
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the 5′ end and RNase T and RNase PH generate the mature 3′ terminus (165, 184, 185). 

Exonuclease processing proceeds in an ordered manner, with maturation of the 3′ end of 

the 23S rRNA preceding maturation of the 5′ end in E. coli (186). B. subtilis utilizes a 

single enzyme, Mini-III, which is an endonuclease composed of an RNase III-like 

catalytic domain, to process both the 5′ and 3′ ends. In spite of the similarity of this 

enzyme to RNase III, no overlap in cleavage sites is observed as Mini-III binds different 

RNA sequences (183). As with the secondary processing enzymes of the 16S rRNA 

transcript, Mini-III initiates 23S rRNA cleavage more efficiently in the context of the 

assembled 50S subunit (187). Post-RNase III processing of the pre-23S rRNA still 

transpires in the absence of Mini-III. The combined activities of RNases J1 (5′-to-3′ 

exoribonuclease activity), RNase PH (3′-to-5′ exoribonuclease activity), and YhaM (3′-

to-5′ exoribonuclease activity) are capable of generating a mature 23S rRNA in the 

absence of Mini-III in B. subtilis (188).  

 

5S rRNA 

Pre-5S rRNA is initially separated from the primary transcript by RNase III 

cleavage of the 23S rRNA 3′ end (189). Following this cleavage event and initial 

assembly of the 5S rRNA into the 50S subunit, RNase E in E. coli and RNase M5 in B. 

subtilis cleave both the 5′ and 3′ ends near the base of the conserved 5S rRNA double-

stranded stem structure (189, 190, 191). E. coli also requires RNase T cleavage of the 5S 

rRNA 3′ end to remove three remaining nucleotides from the mature transcript (164). The 

activity of RNase M5 is similar to that of Mini-III (183). B. burgdorferi possesses an 

unannotated RNase M5 homolog and no detectable RNase E/G homologs, so this 
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Fig. 13. Model for initial 16S and 23S rRNA processing in B. burgdorferi 

 

 

 

  

 

 

 

 

 

 

 

 

A. Structural model showing the 16S rRNA 5′ and 3′ UTR predicted stem 
structure. B. Structure of the 23S and 5S double-stranded stem regions (based on 
Schwartz et. al (1) model). Experimentally determined 5′ and 3′ transcript ends for 
the three rRNAs (16S, 23S, and 5S) based on 5′ and 3′ RACE data (Fig. 4) are 
represented by black arrows (wild type) and gray arrows (rnc null mutant) on the 
structure. Clear double-stranded stem structures capable of being processed by 
RNase III are present for the 16S rRNA 3′ end (Fig. 13A) and the 23S rRNA 5′ 
and 3′ ends (Fig. 13B). In the rnc null mutant, the 5′ end of the 23S rRNA likely 
maps to the transcription start site and the 3′ end is positioned between the 23S 
and 5S rRNA double-stranded stems and might be processed by exonucleases 
following RNase M5 cleavage of the adjacent 5S rRNA double-stranded stem. 
The 5′ end of the 16S rRNA is in a region of stem-loop secondary structure, and 
does not represent an ideal RNase III substrate (Fig. 13A). The current mechanism 
required for generation of the 16S rRNA 5′ end is currently unknown, but RNase 
III does not appear to be involved. The 5′ and 3′ ends of the B. burgdorferi 5S 
rRNA are the same in both the wild type and rnc null mutant, as expected (data 
not shown). 
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The 16S rRNA gene is spatially separated from the 23S-5S rRNA operons on the 

chromosome in B. burgdorferi. A truncated ORF (bb0425) is present upstream and 

tRNAAla is downstream of the “marooned” 16S rRNA gene. Junctional RT-PCR data 

indicate that the 16S rRNA is co-transcribed with the two upstream genes (Fig. 8) and 

Bugrysheva et al. (5) showed that the tRNAAla was co-transcribed with the 16S rRNA 

gene, yielding a large polycistronic transcript. An mfold structure (288) of the 16S rRNA 

5′ and 3′ flanking regions suggests that the 5′ end of the 16S rRNA transcript lies within a 

region containing several loops that might interfere with RNase III binding (Fig. 13A). 

Data from 5′ RACE analysis (Fig. 4) indicate that the 16S rRNA 5′ end is the same in 

both the rnc null mutant and the wild type, implying that RNase III is not required for 

generating the 5′ end. This phenomenon has not previously been observed in bacteria. 

The 3′ end, on the other hand, does appear to be processed by RNase III in B. 

burgdorferi.  

The predicted structure of the 16S rRNA precursor (Fig. 13A) includes a long 

double-stranded stem region around the mature 3′ end of the 16S rRNA, which could be a 

reasonable RNase III substrate. Notably, the mature 16S rRNA 3′ end in both the wild-

type and rnc null mutant backgrounds maps to over 40 nucleotides downstream from the 

annotated end (Fig. 4). We propose the following model for generation of the observed 

16S rRNA 3′ end in the rnc null mutant. RNase P processing of the tRNAAla 5′ end 

downstream of the 16S rRNA would release a region of single-stranded RNA that could 

undergo subsequent processing by a single-stranded exonuclease (PNPase) and single-

stranded endonuclease (YbeY) up to the region of the 16S rRNA double-stranded stem, 

as observed in E. coli (176, 177, 215).  
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The mechanism of 16S rRNA 5′ end maturation is currently unknown in B. 

burgdorferi. An mfold structure containing the mature 16S rRNA 5′ end as determined by 

RACE (Fig. 13A) shows that the mature end of this rRNA likely maps to a large single-

stranded loop region. A self-processing mechanism involving a ribozyme activity of the 

nascent 16S rRNA may generate the 5′ end of the transcript in B. burgdorferi (289, 290). 

However, a more likely scenario is that an endoribonuclease such as RNase Y processes 

the AU-rich region of the loop (its preferred nucleotide substrate) (240), with or without 

prior RNase III cleavage of the stem structure formed near the 3′ end of the rRNA 

transcript, to generate the mature 16S rRNA 5′ end (Fig. 13A). This enzyme, of which B. 

burgdorferi has a clear homolog identified in this work, was originally characterized for 

its role in riboswitch degradation in B. subtilis (240), and later for its role in global 

mRNA degradation (239, 240, 241, 242, 243, 244, 245, 246). This phenomenon probably 

occurs in other Borrelia species given the conserved separation of the 16S rRNA gene 

from the 23S-5S rRNA operons throughout the genus (94). 

 

The 16S rRNA operon structure  
 
 

In addition to the novel processing mechanism that generates the 5′ end of the 16S 

rRNA (Fig. 4, 13A), the operon structure of the 16S rRNA gene of B. burgdorferi 

appears have been modified during genome reduction. No clear promoter is discernible 

near the 5′ end of the 16S rRNA gene (data not shown). This observation prompted us to 

examine this genome region through junctional RT-PCR analysis (Fig. 8A). Surprisingly, 

the 16S rRNA gene appears to be transcribed as part of a larger operon, and contains the 
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overlapping truncated gene bb0425 and the upstream genes bb0426, a member of the 

nucleoside 2-deoxyribosyltransferase protein superfamily, and bb0427, a predicted 

methyltransferase (Fig. 8B, 14). Co-transcription of the 16S rRNA gene with genes other 

than the 23S and 5S rRNA genes or intervening tRNA genes is novel to B. burgdorferi 

and suggests a unique adaptation to the conserved mechanism of rRNA gene regulation. 

An intriguing hypothesis is that the co-transcribed genes of the 16S rRNA operon are 

constitutively transcribed with the 16S rRNA gene but only translated under certain 

conditions. This would allow for B. burgdorferi to exert temporal control over the 

translation of the DNA modification enzymes produced by bb0426 and bb0427. Overall, 

this gene rearrangement likely contributed to the divergence of RNase III processing of 

the 16S rRNA 5′ end in Borrelia.  

tRNA can serve as sites of recombination for mobile genetic elements (93, 107, 

108). There are two tRNA genes (tRNAAla and tRNAIle) directly downstream from the 

16S rRNA gene (Fig. 14), which could have served as sites for recombination during the 

genome reduction of B. burgdorferi as it adapted to a parasitic lifestyle between vector 

and host. Additionally, the 16S rRNA gene overlaps a truncated ORF (bb0425) that could 

produce a very short protein of 30 amino acids (Fig. 14). A second truncated ORF that 

could produce a 97-amino acid protein (bb0423) is located directly upstream of the 

tRNAIle gene (Fig. 14). We hypothesize that tRNA recombination during genome 

reduction led to the insertion of the 16S rRNA gene into the center of a larger gene 

composed of bb0425 and bb0423, which directly led to this unusual operon structure 

where transcription of the 16S rRNA gene requires transcription of several upstream 
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genes. The tRNAIle gene and bb0424 truncated ORF may have been part of additional 

recombination events in this region (Fig. 14). 

 
Fig. 14. The tRNA genes of the 16S rRNA operon suggest a mechanism for 
recombination  
 

 

 

 

 

 

 

Insights into conservation of the tandem 23S-5S rRNA genes 

 

 The conserved tandem duplication of the 23S-5S rRNA genes is a feature that is 

unique to Lyme disease Borrelia species. While there are mechanisms that promote 

duplication of the rRNA genes in bacteria (110), the fact that this arrangement is 

conserved across a diverse array of Lyme disease Borrelia species (1, 94, 95, 98, 99) 

suggests a possible function in Borrelia biology. Intriguingly, this duplication leads to an 

imbalance in the number of complete rRNA gene sets (16S, 23S, and 5S) in B. 

burgdorferi. We originally hypothesized that the 23S-5S rRNA operons were 

The tRNA genes of the 16S rRNA operon suggest a mechanism for 
recombination. Two tRNA genes are located downstream of the 16S rRNA gene 
(tRNAAla and tRNAIle). We hypothesize that the 16S rRNA gene and tRNAAla 
were originally recombined by insertion into a larger gene composed of bb0425 
and bb0423. Additional recombination events involving insertion of the second 
tRNA, tRNAIle, and bb0424 further divided the bb0425 and bb0423 genes. bb0424 
is also likely a truncated ORF. 
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differentially regulated from the 16S rRNA gene to produce a 1:1:1 stoichiometric ratio 

of rRNA. However, qRT-PCR analysis (Table 5) suggests a different outcome of this 

tandem duplication. In wild-type B. burgdorferi, there is 2.5 to 3 times more 23S rRNA 

present during mid-logarithmic growth than 16S rRNA. In spite of this finding, the 

number of ribosomes present in B. burgdorferi is limited by the amount of 16S rRNA 

present in the cell. This led us to analyze the accumulation of single nucleotide 

polymorphisms (SNPs) in all sequenced B. burgdorferi strains, including sequencing of 

the 297 strain in this work to determine if there was a sequence-related rationale for 

producing an excess of 23S rRNA.  

 The tandem 23S rRNA genes of B. burgdorferi have several SNPs in all 

sequenced strains (Table 5). However, there exists no consensus for a SNP locus 

common to all strains, suggesting that these are the product of genetic drift. Indeed, the 

SNPs appear to be distributed throughout the 23S rRNA gene and are present in different 

densities and locations between strains. The only common feature that is clearly present 

is that these SNPs are the product of either purine-purine or pyrimidine-pyrimidine 

transitions. This form of base mutation is much more common than nucleotide 

transversion due to the similarities of ring structure within each class of nucleotide (291) 

which mutate to resemble their purine or pyrimidine counterpart after deamination (e.g.  

5-methylcytosine deaminates to thymine) and other nucleotide base modifications that 

commonly arise over time. After mutation, mispairing occurs between pyrimidine and 

purine nucleotides to create a new set of base paired nucleotides after DNA replication 

(e.g. a C-G basepair becomes a T-A basepair following deamination of the 5-

methylcytosine).  
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 There are a few structural features of the 23S rRNA that are required for its role in 

translation, particularly domain V, which catalyzes the peptidyl transferase reaction 

between incoming amino acids and the nascent peptide chain, and may be influenced by 

these SNPs. An examination of the primary sequence structure of the B. burgdorferi 23S 

rRNA shows that there is only a single SNP in strain N40 at position 2201 that is within 

this domain. As it is a C-T transition in the N40 rrlA gene (or C-U transition in the rRNA 

molecule), the structure of these two alleles is very similar, and the transition is present in 

the end of a stem structure, this change does not likely have any influence on the 

translational capacity of the ribosome. Notably, the most abundant SNPs lie in domains II 

(five SNPs), III (three SNPs), and VI (four SNPs) (data not shown). These do not appear 

to interfere with ribosomal subunit association, which relies on 23S rRNA nucleotides 

A715, A1912, or A1918 (292). Although there is a functional interaction between domain 

II and domain V in mature ribosomes (293), the SNPs are outside the range of these 

interactions as well. Overall, the 23S rRNA SNPs appear to be tolerated in locations that 

do not affect ribosome function, which suggests that rRNA transcripts from both genes 

could be used in mature ribosomes.  

There is a single transversion in the 297 rrfA sequence (data not shown). This 

nucleotide substitution might cause a mismatch in the double-stranded stem formed by 

the 5′ and 3′ ends of the mature 5S rRNA, but it is located near the internal terminus of 

the stem and is unlikely to have a major effect on the structure of the 5S rRNA. The 

accumulation of SNPs in B. burgdorferi could be the result of selective pressures in the 

vertebrate host. An example of this possibility is that the highly infectious 297 strain, 

which is a human isolate, possesses seven SNPs, while the lower infectivity B31 strain, 
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which is a tick isolate, shows only three SNPs. However, further analysis is required to 

determine if there is a selective mechanism for the diversity of SNPs observed in B. 

burgdorferi strains.  

 Our data definitively demonstrate that both tandem 23S rRNA genes in B. 

burgdorferi are transcribed and incorporated into ribosomes (Table 5, Fig. 10). qRT-PCR 

of B. burgdorferi at a variety of growth phases (Table 5) suggests that, during logarithmic 

growth, wild-type B. burgdorferi transcribes 2.5 to 3 times more 23S rRNA than 16S 

rRNA, and that this amount increases during late-logarithmic growth. However, upon 

entry into stationary phase, the amount of rRNA decreases so that there is only 1.4 times 

more 23S rRNA than 16S rRNA. This latter phenomenon is not unexpected, as total 

rRNA is reduced during stationary phase in other bacteria (134) and the nearly 1:1 ratio 

likely reflects the amount of rRNA required for cells to maintain themselves during 

stationary phase. This ratio (1:1.4 16S rRNA: 23S rRNA) is also observed for qRT-PCR 

of an isolated ribosome fraction and supports this hypothesis. 

We also analyzed the 16S to 23S rRNA ratio in several mutants (rnc null, rrlA 

null, rrlB null). Surprisingly, the rnc null mutant showed similar levels of 23S rRNA 

during both mid-logarithmic and stationary phase growth (Table 5). We postulate that 

this could be the result of failure to separate a population of the long tandemly 

transcribed (from the rrlB promoter; Fig. 9) pre-23S-5S rRNA transcript. Indeed, we 

observe an overabundance of this transcript in the rnc null mutant versus wild type (Fig. 

5). In this scenario, degradation of these aberrant transcripts upon entry into stationary 

phase may not be as efficient, so there is a greater amount of 23S rRNA in these mutants. 

The lower amount of 23S rRNA observed in the rnc mutant during logarithmic growth 
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could also reflect decreased transcription due to some undefined sensing mechanism that 

detects an abundance of unprocessed tandem 23S-5S rRNA transcript, thus reducing 

transcription until the cell can correctly process the transcripts. 

As expected, less 23S rRNA transcript is produced during logarithmic growth in 

the single 23S deletion mutants rrlA and rrlB (Table 5). This likely reflects the loss of 

one of the 23S rRNA promoters and genes in these mutants (Fig. 9). The rrlA null mutant 

produces about a third less 23S rRNA than wild type, whereas the rrlB null mutant 

generates half as many transcripts as wild type during this growth phase (Table 5). An 

rrlB null mutant also grows slower than the rrlA null mutant (Fig. 11), which suggests 

that there is a difference in the promoter regions or promoter regulation.  

 We propose the following model for 23S-5S rRNA transcription in B. 

burgdorferi: the rrlB promoter is the dominant promoter for rRNA synthesis and, in the 

rrlA null mutant, produces the amount of rRNA required for normal growth, so our rrlA 

null mutant exhibits the same growth pattern as wild type (Fig. 11). Creating a null 

mutation in some, but not all, of the rrn operons of E. coli results in similar levels of 

rRNA as produced in wild-type cells, demonstrating that it possesses more genes than it 

needs for maximal rRNA production, at least during in vitro growth (125, 126). The rrlB 

null mutant, on the other hand, eliminates the putative major 23S rRNA promoter and 

relies solely on the rrlA promoter (Fig. 9). In agreement with this hypothesis, band 

densities for each rrl transcript visualized after primer extension analysis (Fig. 10) 

suggest that there are more rrlB transcripts present in total RNA and isolated ribosomes. 

We inserted a gentamicin resistance cassette into the location of the rrlB gene in this 

strain. The slow growth of our rrlB null mutant (Fig. 11) may instead, or in addition, be 



 99 

due to some other, as yet undefined, regulatory mechanism or polar effect of the 

gentamicin resistance cassette. 

As previously discussed, we originally hypothesized that transcription was 

regulated to ensure a stoichiometric production or assembly of the 16S, 23S, and 5S 

rRNAs. As the qRT-PCR results showed that transcription initiated from both 23S rRNA 

genes to produce an overabundance of 23S (and presumably 5S) rRNA (Table 5, Fig. 9), 

we decided to use primer extension of independent SNPs from two strains of B. 

burgdorferi in order to determine if only one of the 23S rRNA alleles was incorporated 

into ribosomes. Fig. 10 shows that both 23S rRNAs are produced in B. burgdorferi, and, 

furthermore, that transcripts from both genes appear to be incorporated into mature 

ribosomes at a ratio similar to that seen in total RNA. While these results do not suggest a 

role of the 23S rRNA SNPs in regulation of transcription, they do imply that both gene 

copies are functional and used in mature ribosomes. However, the SNPs in the rrlA gene 

(as it is dispensable for growth) could be evolving to enable B. burgdorferi ribosomes to 

differentially function under selective environmental pressures. 

 

An rrlB null mutant exhibits in vitro and in vivo phenotypes 

 

 To examine other factors that might contribute to the maintenance of two tandem 

23S rRNA gene copies in B. burgdorferi, we generated null mutants for each gene and 

examined the resulting phenotypes under several different conditions: in vitro growth at 

34°C (Fig. 11), in vitro competition with an equivalent number of wild-type cells (Table 

6), ability to infect mice (Table 7), and susceptibility to antibiotics that target the large 
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subunit (Fig. 12). In all conditions tested, the rrlA null mutant had no phenotype and was 

able to compete with the wild type. A previously described rrlA null mutant generated by 

transposon mutagenesis also did not have a growth phenotype (103). These results are 

consistent with our data, and indicate that while the rrlA gene is transcribed and the 

resulting 23S rRNA is used in ribosomes, this gene is dispensable for normal growth, 

even during infection of the vertebrate host (Table 7).  

 The rrlB null mutant, however, displayed a definitive phenotype. While the rrlB 

mutant could reach stationary phase at the same density as the rrlA null mutant and wild 

type, growth was slower and log phase was extended by 2 d (Fig. 11). Some reasons for 

this phenotype are discussed above. The rrlB mutant also failed to compete with the wild 

type during an in vitro growth competition and was completely lost from the population 

by 60 generations (Table 6). The rrlB null mutant was also unable to infect mice after 

needle inoculation (Table 7) and had a twofold increase in susceptibility to erythromycin 

as compared to wild type (Fig. 12). While there is still twice as much 23S rRNA as 16S 

rRNA in an rrlB null mutant at late-logarithmic growth, suggesting that the maximum 

number of ribosomes required for growth should be produced (Table 5), some aspect of 

23S rRNA regulation in B. burgdorferi is affected by removal of the rrlB promoter and 

rrlB-rrfB operon. Further research is required to elucidate whether this phenotype is the 

result of differential regulation of the rrl promoters in B. burgdorferi or if we are merely 

observing polar effects from the insertion of a gentamicin cassette at this genomic 

location. 
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Concluding remarks 

 

This work begins to dissect the complicated rRNA gene regulation of B. 

burgdorferi and many questions remain unanswered. What is clear is that the evolution of 

the unusual rRNA gene arrangement in B. burgdorferi has led to adaptation of this 

organism to novel mechanisms of rRNA transcriptional regulation, including 

incorporation of its single 16S rRNA gene into a larger operon containing unrelated 

genes, and dysregulated transcription that produces an overabundance of 23S and 5S 

rRNA as compared to 16S rRNA. Generating null mutants in each 23S rRNA gene shows 

that while the second copy is dispensable for growth (rrlA), a profound phenotype is 

observed when the first copy (rrlB) and its promoter are deleted. While the rrlB null 

mutant can grow at a slower rate, it is incapable of infecting mice (Table 7). This 

suggests that the tandem duplication of the 23S rRNA genes has functional significance 

in B. burgdorferi and that there is an important regulatory mechanism to maintain the 

genomic arrangement. Further study will undoubtedly reveal additional novel features of 

this gene region and transcription products that will further our understanding of 

alternative mechanisms of rRNA regulation. Additionally, the overproduction of 23S 

rRNA in B. burgdorferi may be adaptive for spirochete persistence during the dual host 

lifestyle. There may also be an alternative use of excess 50S ribosomal subunits under 

different environmental conditions (such as in the tick vector or vertebrate host). 

However, it is also possible that the genome of B. burgdorferi is still in the process of 

limited genome reduction and that the tandem duplication of the 23S rRNA genes and 
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production of excess 23S rRNA will be eliminated during further evolutionary adaptation 

of B. burgdorferi. 

Future work should seek to further explore the phenotype of the rrl null mutants, 

including understanding the role of transcription from each 23S rRNA gene in the context 

of the complete enzootic cycle. Additionally, site-directed mutagenesis or promoter 

swapping should be undertaken to examine the regulation of the unusual 16S rRNA 

operon and each of the tandem 23S-5S rRNA promoters so that a more lucid picture of B. 

burgdorferi rRNA transcription can be developed. Finally, a variety of experimental 

approaches should be undertaken to elucidate the role of the extra 23S rRNA present in 

B. burgdorferi cells, as the spirochete scavenges nutrients from its environment and 

wasting so many nutrients producing an overabundance of rRNA that will not be 

incorporated into mature ribosomes seems illogical. This suggests a functional role that 

may define a novel survival strategy unique to these bacteria. We hope that this work will 

provide the foundation that will allow the development of a deeper understanding of 

alternative mechanisms of rRNA regulation and how these contribute to the unique 

lifestyle exhibited by host-restricted parasitic organisms such as B. burgdorferi. 
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