Apr 28th, 1:40 PM - 2:00 PM

Glucocorticoids and parental effort in tree swallows

Mackenzie Prichard

University of Montana, kenzie.prichard17@gmail.com

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/umcur

https://scholarworks.umt.edu/umcur/2017/327/6

This Presentation is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in University of Montana Conference on Undergraduate Research (UMCUR) by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
Glucocorticoids and parental effort in tree swallows (Tachycineta bicolor)

Mackenzie Prichard
Advised by: Dr. Creagh Breuner
Corticosterone (CORT)

- Function: stress response and metabolism
- CORT acts on tissues to help with coping with the stressful situation
 - mobilize glucose to cells
- Daily rhythms (the sleep/wake cycle)

HPA Axis

- Hypothalamus: In the brain
- Pituitary Gland: Next to brain
- Adrenal Gland: Above the kidney

Graph showing CORT levels:
- Baseline
- Normal Daily Spike
- Spike due to Stressor

Image credit: Reuters/John Javellana
HPA Axis

Hypothalamus
In the brain

Pituitary Gland
Next to brain

Adrenal Gland
Above the kidney

CORT
CORT and parental effort

Generally…
- CORT-Trade Off Hypothesis: increased CORT favors individual survival over reproduction thus decreasing parental effort

However…
- CORT-Adaptation Hypothesis: increased CORT associated with increased parental effort
CORT Trade-Off CORT-Adaptation

Ouyang et al. 2012
CORT Trade-Off CORT-Adaptation

Ouyang et al. 2012

Crino et al. 2011
CORT Trade-Off

Ouyang et al. 2012

CORT-Adaptation

Crino et al. 2011
CORT Trade-Off CORT-Adaptation

Ouyang et al. 2012

Bonier et al. 2009
CORT Trade-Off

CORT-Adaptation

Ouyang et al. 2012

Bonier et al. 2009

Crino et al. 2011

Ouyang et al. 2013
CORT Trade-Off

- Ouyang et al. 2012
- Crino et al. 2011

CORT-Adaptation

- Bonier et al. 2009
- Ouyang et al. 2013
My hypothesis

Moderate increases in CORT associated with increased metabolic demands of parenthood.

Extreme increases in CORT lead to trade-offs of reproductive effort for individual survival.

- Low CORT (Baseline)
- High CORT (Stressed Induced)

CORT Threshold
Methods and Field Site

• MPG North near Condon, MT in the Seeley-Swan valley
Methods and Field Site

• MPG North near Condon, MT in the Seeley-Swan valley
• Tree swallows
• Box nesting, easy to catch, well researched
• Measured in females
• Parental Effort: nest observations, nest videos, nestling growth, defense trials
• CORT (no data yet)

https://www.lib.utexas.edu/maps/montana.html
Methods and Field Site

• MPG North near Condon, MT in the Seeley-Swan valley

• Tree swallows
 • Box nesting, easy to catch, well researched

• Measured in females
 • Parental Effort
 • nest observations, nest videos, nestling growth
 • CORT
 • blood samples

https://www.lib.utexas.edu/maps/montana.html
Measuring Parental Effort

• **Nest Attendance: time on nest**
 • Visual observation

• **Feeding rates**
 • Videos

• **Nestling growth (K):**
 • Nestling measurements
Measuring CORT

In the field:

• 3 Blood samples taken from the alar vein
 • under three minutes
 • 10 minutes
 • 30 minutes

In the lab:

• Measure CORT concentration from blood samples with enzyme-immunoassay
Expectations

- moderate CORT levels there will be increased prevalence of these behaviors
- high CORT levels there will be a decrease in each of these behaviors
Expectations

Parental Effort

Graphs showing the relationship between Parental Effort and CORT levels:
- Left graph: Baseline CORT (ng/ml) vs. Parental Effort.
- Right graph: Maximum CORT (ng/ml) vs. Parental Effort.
Results

CORT vs Time Incubating

CORT vs Time Incubating
Results

CORT vs Time Incubating

- % Time in Nest Incubation vs Baseline CORT (ng/ml)
- % Time in Nest Incubation vs Maximum CORT (ng/ml)

Graph showing the relationship between CORT levels and time spent in nest incubation.
Results

CORT vs Time Incubating

% Time in Nest Incubation

Baseline CORT (ng/ml)

CORT vs Time Incubating

% Time in Nest Incubation

Maximum CORT (ng/ml)
Results

CORT vs Feed Rate

Nestling Feeding Rate per Hour

Baseline CORT (ng/ml)

CORT vs Feed Rate

Nestling Feeding Rate per Hour

Maximum CORT (ng/ml)
Results

CORT vs Feed Rate

Nestling Feeding Rate per Hour

Baseline CORT (ng/ml)

CORT vs Feed Rate

Nestling Feeding Rate per Hour

Maximum CORT (ng/ml)
Results

\[P\text{-value} = 0.06 \]

\[R^2 = 0.40 \]

\[F = 4.74 \]
Results

CORT vs Growth Rate

- Mass Growth Rate (K)
 - Baseline CORT (ng/ml)

CORT vs Growth Rate

- Mass Growth Rate (K)
 - Maximum CORT (ng/ml)
Results

CORT vs Growth Rate

CORT vs Growth Rate

Baseline CORT (ng/ml)

Maximum CORT (ng/ml)
Results

CORT vs Growth Rate

\[\text{P-value} = 0.19 \]
\[R^2 = 0.20 \]
\[F = 2.01 \]
Conclusions

• Moderate to weak support for the CORT-Trade-off hypothesis

• Relationships matched some predictions of CORT dose hypothesis

• Biggest probable source of error: small sample size, n=9
Why should we care?

• Organisms may experience elevated CORT for lots of reasons
 • Weather, food availability, exams…

• Understanding CORT helps us understand fitness

• Humans are influencing the environment more and more
 • Conservation
Thank you!!

Committee
Creagh Breuner
Tom Martin
Bret Tobalske

Breuner Lab
Sara Berk
Beau Larkin
Megan Fylling