Study on Regional Responses of Pan-Arctic Terrestrial Ecosystems to Recent Climate Variability Using Satellite Remote Sensing

Ke Zhang

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/etd

Recommended Citation
https://scholarworks.umt.edu/etd/926

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
STUDY ON REGIONAL RESPONSES OF PAN-ARCTIC TERRESTRIAL
ECOSYSTEMS TO RECENT CLIMATE VARIABILITY USING SATELLITE
REMOTE SENSING

By

Ke Zhang

B. Eng, Hohai University, Nanjing, China, 2002
M. Eng, Hohai University, Nanjing, China, 2005

Dissertation

presented in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in Organismal Biology and Ecology

The University of Montana
Missoula, MT

Spring 2009

Approved by:

Dr. Perry Brown, Associate Provost for Graduate Education
Graduate School

Dr. John S. Kimball, Chair
Flathead Lake Biological Station
Division of Biological Sciences

Dr. Steven W. Running
Department of Ecosystem and Conservation Sciences

Dr. Ragan M. Callaway
Division of Biological Sciences

Dr. Anna Sala
Division of Biological Sciences

Dr. Jack A. Stanford
Flathead Lake Biological Station
Division of Biological Sciences
ABSTRACT

I applied a satellite remote sensing based production efficiency model (PEM) using an integrated AVHRR and MODIS FPAR/LAI time series with a regionally corrected NCEP/NCAR reanalysis surface meteorology and NASA/GEWEX shortwave solar radiation inputs to assess annual terrestrial net primary productivity (NPP) for the pan-Arctic basin and Alaska from 1983 to 2005. I developed a satellite remote sensing based evapotranspiration (ET) algorithm using GIMMS NDVI with the above meteorology inputs to assess spatial patterns and temporal trends in ET over the pan-Arctic region. I then analyzed associated changes in the regional water balance defined as the difference between precipitation (P) and ET. I finally analyzed the effects of regional climate oscillations on vegetation productivity and the regional water balance.

The results show that low temperature constraints on Boreal-Arctic NPP are decreasing by 0.43% per year ($P < 0.001$), whereas a positive trend in vegetation moisture constraints of 0.49% per year ($P = 0.04$) are offsetting the potential benefits of longer growing seasons and contributing to recent drought related disturbances in NPP. The PEM simulations of NPP seasonality, annual anomalies and trends are similar to stand inventory network measurements of boreal aspen stem growth ($r = 0.56; P = 0.007$) and atmospheric CO$_2$ measurement based estimates of the timing of growing season onset ($r = 0.78; P < 0.001$).

The simulated monthly ET results agree well (RMSE=8.3 mm month$^{-1}$; $R^2=0.89$) with tower measurements for regionally dominant land cover types. Generally positive trends in ET, precipitation and available river discharge measurements imply that the pan-Arctic terrestrial water cycle is intensifying. Increasing water deficits occurred in some boreal and temperate grassland regions, which agree with regional drought records and recent satellite observations of vegetation browning and productivity decreases.

Climate oscillations including Arctic Oscillation and Pacific Decadal Oscillation influence NPP by regulating seasonal patterns of low temperature and moisture constraints to photosynthesis.

The pan-Arctic water balance is changing in complex ways in response to climate change and variability, with direct linkages to terrestrial carbon and energy cycles. Consequently, drought induced NPP decreases may become more frequent and widespread, though the occurrence and severity of drought events will depend on future water cycle patterns.
ACKNOWLEDGEMENTS

This investigation was carried out at the University of Montana and at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under contract to the National Aeronautics and Space Administration (NASA). This work was supported by NASA Earth and Space Science Fellowship award NNX07AN78H, NASA Earth Science Enterprise grants NNG04GJ44G and NNX08AG13G, and NSF OPP grants 3702AP15297803211 and 0732954.

I would like to thank my advisor, Dr. John S. Kimball, for his great patience, wonderful guidance and large inspiration to me. Many thanks to other committee members, Drs. Steve Running, Ray Callaway, Anna Sala, and Jack Stanford, for their advice and encouragement and their interest in my work. I thank Dr. Maosheng Zhao of the Numerical Terradynamic Simulation Group (NTSG) for help in processing the meteorological data and MODIS data. The work of Lucas Jones, Dr. Qiaozhen Mu and Dr. Faith Ann Heinsch of NTSG for obtaining and processing flux tower data is appreciated. Dr. Kyle McDonald of JPL and Dr. Youngwook Kim of Flathead Lake Biological Station (FLBS) kindly provided the SSM/I freeze-thaw data. I thank the principal investigators and their research teams of the flux tower sites and the CIPHA study for providing data for this study, including Steve Wofsy, Allison Dunn, T. Andy Black, Alan Barr, Lawrence Flanagan, Yoshinobu Harazono, Walter C. Oechel and E.H. Hogg. I thank NASA, NCEP/NCAR, NOAA, ECMWF, NCDC, ArcticRIMS, Water Survey of Canada and GRDC for providing additional data. I would like to acknowledge the administrative and technical support provided by FLBS and NTSG. Thanks to my friends and fellow graduate students for their sincerely help and support. Finally, I thank my family for their constant love, support and patience, which made this whole journey possible.
TABLE OF CONTENTS

Abstract .. ii

Acknowledgements .. iii

Table of Contents ... iv

List of Tables .. ix

List of Figures ... xi

Chapter 1: Introduction ... 1

1.1. Importance of Pan-Arctic Terrestrial Ecosystems ... 1

1.1.1. Geography and Climate .. 1

1.1.2. Ecological, Climatic and Social Significance ... 3

1.2. Evidence of Changes in Pan-Arctic Terrestrial Ecosystems 6

1.2.1. Pan-Arctic Climate Change .. 6

1.2.2. Ecosystem Responses to Climate Changes ... 9

1.2.3. Recent and Ongoing Interdisciplinary Research within the Pan-Arctic Region ... 11

1.3. Importance of Satellite Remote Sensing Approaches and Ecological Modeling .. 17

1.4. Objectives and Hypotheses .. 20

1.5. Dissertation Structure .. 22

1.6. References Cited .. 23

Chapter 2: Sensitivity Analysis of Satellite-derived Vegetation Productivity to
Meteorology Reanalyses and Regional Correction of Meteorology Reanalyses 32

2.1. Meteorology Reanalyses .. 32
Chapter 2: Meteorology Reanalyses

2.1. ERA-40 .. 32
2.1.2. NCEP/NCAR Re-analysis ... 33

2.2. Validation and Inter-comparison of Meteorology Reanalyses 34
 2.2.1. Validation Procedure ... 35
 2.2.2. Accuracy of Meteorology Reanalyses ... 36

2.3. Satellite-based Production Efficiency Model .. 42

2.4. Uncertainty and Sensitivity Analysis of PEM Output 44
 2.4.1. Uncertainty and Sensitivity Analysis Scheme ... 44
 2.4.2. Implementation of the Uncertainty and Sensitivity Analysis Schemes 47
 2.4.3. Comparison between PEM NPP Results Driven by ERA-40 and NNR 52

2.5. Regional Correction of Meteorology Reanalyses .. 60
 2.5.1. Regional Correction Scheme .. 60
 2.5.2. Validation of Corrected Meteorological Inputs 61

2.6. Summary .. 66

2.7. References Cited ... 67

Chapter 3: Climate-driven Changes in Pan-Arctic Vegetation Productivity 72

3.1. Quantification of Climatic Constraints to PEM-based Vegetation Productivity... 72

3.2. Satellite FPAR/LAI Inputs ... 75
 3.2.1. Integration of AVHRR-MODIS FPAR/LAI Time Series 75
 3.2.2. Validation of the Integrated FPAR/LAI Time Series 77

3.3. Timings of Growing Season Onset and End .. 78

3.4. Remote Sensing of Vegetation Greenness ... 80

3.5. Remote Sensing of Landscape Freeze-Thaw .. 81
3.6. Trend Analysis .. 83
3.7. Results ... 84
 3.7.1. Changes of Vegetation Greenness ... 84
 3.7.2. Assessment of Integrated FPAR/LAI Inputs ... 86
 3.7.3. Changes in Climatic Factors of Vegetation Productivity .. 89
 3.7.4. Changes in Seasonal Freeze-Thaw and Growing Season, and Connection to
 Vegetation Productivity ... 90
 3.7.5. Vegetation Productivity Changes .. 93
 3.7.6. Comparison between PEM-based Vegetation Productivity and Stand
 Inventory Records .. 101
3.8. Discussion and Summary .. 102
3.9. References Cited .. 106

Chapter 4: Satellite-based Analysis of Evapotranspiration and Associated Changes
in the Regional Water Balance ... 113
4.1. Introduction .. 113
4.2. Evapotranspiration Algorithm Logic .. 117
 4.2.1. Vegetation Transpiration ... 119
 4.2.2 Evaporation for Water Bodies and Soil ... 123
 4.2.3. Fitting of Relationship between Potential Surface Conductance and NDVI 124
4.3. Data .. 126
 4.3.1. Meteorological and Satellite Inputs to the ET Algorithm ... 126
 4.3.2. Eddy Covariance Flux Towers ... 127
 4.3.3. Precipitation and River Discharge .. 129
4.4. Results... 130
 4.4.1. Fitted Relationship between g_0 and NDVI... 130
 4.4.2. Comparison between ET Algorithm Results and Tower Observations........ 132
 4.4.3. Implementing the ET Algorithm for the Pan-Arctic.. 136
 4.4.4. Changes in the Pan-Arctic Regional Water Balance .. 138

4.5. Discussion and Conclusions .. 148

4.6. References Cited... 152

Chapter 5: Impacts of Large-scale Oscillations on Pan-Arctic Vegetation
Productivity and the Regional Water Balance... 162

 5.1. Climate Oscillations... 162
 5.1.1. The Arctic Oscillation... 164
 5.1.2. The Pacific Decadal Oscillation... 166

 5.2. Data and Methodology.. 167
 5.2.1. PEM NPP Series and Moisture Stress Index .. 167
 5.2.2. Timing of growing season onset... 168
 5.2.3. AO and PDO Indices... 169

 5.3. Results... 169
 5.3.1. Connection of AO Spring Patterns to Growing Season Onset 169
 5.3.2. Connection of Growing Season PDO Patterns to Plant Moisture Stress and Water Balance... 172

 5.4. Conclusions.. 178

 5.5. References Cited.. 179

Chapter 6: Conclusions and Future Studies... 183
6.1. Key Findings .. 183
 6.1.1. Uncertainties in Meteorology Reanalyses ... 183
 6.1.2. Changes of Climatic Constraints to Vegetation Productivity 183
 6.1.3. Changes of Vegetation Phenology, Greenness and Productivity 184
 6.1.4. Changes of Hydrological Cycle and Water Balance 185
 6.1.5. Impacts of Climate Oscillations ... 186

6.2. Suggested Future Research ... 187

List of Acronyms and Abbreviations ... 190

List of Symbols ... 193

Appendix A ... 199
LIST OF TABLES

Table 1-1. Comparison of carbon storage in world major biomes based on the estimation from Kasischke (2000).. 5

Table 2-1. Comparison of the error distribution, accuracy and correspondence of ERA-40 and NNR meteorological variables relative to the surface weather station observations. 37

Table 2-2. Regional comparison of annual means of daily air temperatures (T_{min} and T_{avg}) and daily mean atmospheric vapor pressure (e_a) from the two reanalyses relative to observed values across the pan-Arctic domain; the results are summarized for major sub-regions within the domain.. 40

Table 2-3. Comparison of grid-based SI test and Entropy values between sensitivity experiment and ERA-40 and NNR uncertainty. .. 51

Table 2-4. Comparison of PEM based NPP results derived from ERA-40 and NNR inputs for the major biomes within the study domain... 54

Table 2-5. Comparison of accuracy in the original and corrected NNR climate data, NNR solar radiation, and NASA SRB solar radiation. .. 62

Table 2-6. Comparison of estimated average errors of three PEM NPP series derived from the following meteorological inputs: 1) corrected NNR $T_{\text{avg}}, T_{\text{min}}$ and e_a, and NASA SRB SW_{\downarrow}; 2) corrected NNR $T_{\text{avg}}, T_{\text{min}}$ and e_a, and NNR SW_{\downarrow}; 3) NNR $T_{\text{avg}}, T_{\text{min}}, e_a$, and SW_{\downarrow} using the uncertainty and sensitivity analysis procedure (Section 2.4.1). Different letters denote significant ($P < 0.05, n = 99$) differences between NPP errors derived from the different meteorology inputs according to the S-N-K ANOVA. .. 65

Table 3-1. Percentages of the six trend types for summer mean NDVI in the three major biome types in the pan-Arctic region... 85

Table 3-2. Comparison of accuracy in the integrated FPAR/LAI time series. 86

Table 3-3. Summary of annual NPP trend and growing season (Apr.–Oct.) atmospheric moisture stress (I_m) and low temperature stress (I_t) indices within the study domain for the
three major biome types... 95

Table 4-1. Site abbreviations, latitude (lat), longitude (lon), MODIS IGBP land cover (MODIS LC) (Friedl et al., 2002) and dominant vegetation community within each 1 km² tower footprint (Tower LC) for the six eddy covariance flux tower sites; OSH: open shrubland; GRS: grassland; ENF: evergreen needle forest; MF: mixed forest. 128

Table 4-2. Comparison of modeled and measured daily latent heat flux (W m⁻²) for the six flux tower sites. The statistics include mean residual (Estimate – Observation) (MR), root mean squared error (RMSE) and correlation coefficient (r) between modeled and measured values. The modeled results include estimates derived from the NDVI-based ET algorithm using (1) bias-corrected NNR meteorology, (2) tower-measured meteorology, and (3) estimates derived from Mu et al.’s (2007) method using tower-measured meteorology. All correlation coefficients are significant at the 0.01 significance level.. 133

Table 4-3. Comparison of accuracy in GPCP and GPCC monthly precipitation against gauge observations from pan-Arctic WMO weather stations and bias-corrected station observations from Yang et al. (2005) ... 138

Table 4-4. Trends of annual precipitation, ET and P-ET from 1983 to 2005 for the three primary regional biome types and North American and Eurasian portions of the pan-Arctic domain. Grey color denotes negative trends... 143

Table 4-5. Summaries of annual ET, runoff (Q) and P-ET trends from 1983 to 2005 for 22 drainage basins within the pan-Arctic domain having available long-term gauge measurements; grey color denotes negative trends.. 144
LIST OF FIGURES

Figure 1-1: Maps of (a) land cover derived from the NASA IGBP-MODIS global land cover classification (Friedl et al., 2002) and (b) corresponding aggregated major biome types for the Pan-Arctic basin and Alaska domain, including OSH: open shrubland; SV: savanna; GRS: grassland; CRP: cropland; WSV: woody savanna; ENF: evergreen needleleaf forest; DNF: deciduous needleleaf forest; MF: mixed forest; Barren: barren or sparsely vegetated cover types. Areas in white represent open water and other areas outside the study domain. ... 2

Figure 1-2: Annual anomalies of land-surface air temperature in (a) the northern high latitudes (65° to 90°N), (b) the region from 45° to 90°N and (c) the globe for the 1880-2008 period using station observations from the Global Historical Climatology Network (GHCN) data (updated from Peterson & Vose (1997)). Anomalies are calculated relative to the 1961-1990 average. The smoothed curves were created using a 10-year running mean. ... 7

Figure 1-3: Change in observed land and marine temperatures between 1950s (1950-1959) and 2000s (2000-2008) for the region from 40° to 90°N: (a) annual mean; (b) winter (data from Climatic Research Unit (CRU) HadCRUT3v at 5°×5° spatial resolution (Rayner et al., 2006)). ... 8

Figure 2-1: Distribution of WMO surface weather stations with daily temperature and dew point observations, and solar radiation observations above 45°N for the validation of meteorology reanalyses. .. 35

Figure 2-2: Box plots of the residuals in mean T_{avg}, T_{min}, e_a and SW_{\downarrow} of the ERA-40 and NNR meteorology by comparing with the surface weather station observations. 38

Figure 2-3: Temporal comparison of annual bias, namely mean error (reanalysis – observation), and annual anomalies of ERA-40 and NNR (a) T_{avg}, (b) T_{min}, (c) e_a, and (d) SW_{\downarrow}. Errors are calculated relative to observations from WMO and NSRDB station network. ... 39

Figure 2-4: The cumulative distribution functions of $\varepsilon_{T_{\text{avg}}}$, $\varepsilon_{T_{\text{min}}}$, ε_{e_a} and dSW_{\downarrow} from ERA-40 and NNR. ... 48

Figure 2-5: Scatter plots of Y vs. $\varepsilon_{T_{\text{avg}}}$, $\varepsilon_{T_{\text{min}}}$, e_a and dSW_{\downarrow} from ERA-40 (top) and NNR
(bottom) for the six general biome types. The 5×5 grid for the SI and entropy tests is also shown in the graphs. ... 49

Figure 2-6: Mean annual NPP (g C m$^{-2}$ yr$^{-1}$) derived from PEM calculations driven by ERA-40 (a) and NNR (b) over the pan-Arctic domain and 19-year (1982-2000) study period. The NPP (c) and SW_i (d) difference maps refer to NNR less ERA-40 results. ... 53

Figure 2-7: The calculated annual NPP anomalies for the pan-Arctic domain and 19-year study period using ERA-40 and NNR drivers for the PEM simulations; the AVHRR PAL derived mean and maximum annual LAI anomalies (relative to long-term mean) for the domain are also shown ... 57

Figure 2-8: Spatial pattern of the multi-year trend in PEM based annual NPP (g C m$^{-2}$ yr$^{-1}$) over the 19-year study period across the study domain excluding permanent ice and snow, open water and barren land as derived from ERA-40 (a) and NNR (b) inputs; a map of associated differences in NPP trends from these results is also shown (c). 58

Figure 2-9: Mean latitudinal (a) and longitudinal (b) distributions of the 19-year trends in PEM based annual NPP (g C m$^{-2}$ yr$^{-1}$) across the study domain as derived from the two reanalyses .. 59

Figure 2-10: Maps of spatial error distributions of NNR T_{avg} (a), T_{min} (b), and e_a (c), and corrected NNR T_{avg} (d), T_{min} (e), and e_a (f). The errors were calculated as the average values of the differences between the reanalysis daily values (NNR or corrected NNR) and the daily observations (reanalysis - observations) from 1,644 WMO weather stations within the pan-Arctic region from 1983 to 2005. .. 63

Figure 2-11: Temporal comparison of mean annual residuals (standard deviations indicated by the bars) in corrected NNR T_{avg} (a), T_{min} (b) and e_a (c), and NASA/GEWEX SRB SW_i (d) estimated by comparing the observations from 1644 WMO weather stations from 1983 to 2005 and 17 NSRDB solar radiation stations from 1983 to 1990 within the pan-Arctic region. One-way ANOVA shows that the errors of corrected NNR T_{avg} ($P = 0.99$), T_{min} ($P > 0.99$), e_a ($P = 0.98$) and SW_i ($P = 0.90$) are insignificantly temporally different, i.e. temporally independent .. 64

Figure 3-1: Geographic distribution of potential climatic constraints to vegetation productivity derived from long-term climate statistics. Data are from Nemani et al.
This graph is provided by Running et al. (2004).

Figure 3-2: Graphic representation of low-temperature stress index (I_t) and a moisture stress index (I_m).

Figure 3-3: Schematic representations for deriving (a) the onset and end of growing season using 7-day moving window along the daily NPP time series and (b) the spring 0-ppm crossing point from the monthly anomalies of atmospheric CO$_2$ concentrations.

Figure 3-4: Locations of NOAA GMD atmospheric CO$_2$ monitoring stations across the pan-Arctic region (>50°N).

Figure 3-5: Spatial distribution of trends in summer (June-August) mean NDVI across the pan-Arctic region from 1983 to 2005 (a). The spatial averages of mean values for all areas identified as the same trend categories are shown in (b).

Figure 3-6: Time series of annual average summer NDVI values for the three major biome types and entire pan-Arctic region.

Figure 3-7: Maps of spatial mean residual distributions of integrated satellite LAI (a) and FPAR (b) in 2000. The non-vegetated areas are masked as grey.

Figure 3-8: Comparison of annual NPP anomalies driven by integrated FPAR/LAI inputs and those driven by constant FPAR/LAI inputs. The 95% confidence intervals of estimated NPP before 2000 are also shown, and account for potential errors from the AVHRR-MODIS FPAR/LAI integration method.

Figure 3-9: Spatial patterns of changes in growing season (GS, April to October) (a) I_t, (b) I_m, and (c) SW_1 across the pan-Arctic region from 1983 to 2005.

Figure 3-10: Correspondence among annual anomalies of regional average NPP-derived growing season onset ($T_{NPP, Onset}$), timing of the spring drawdown of atmospheric CO$_2$ from NOAA GMD high latitude (>50°N) monitoring sites ($T_{CO2, Spr}$), and regional average timing of the spring thaw (T_{Thaw}) across the pan-Arctic region.

Figure 3-11: Correspondence between annual anomalies of regional average NPP-derived growing season end ($T_{NPP, End}$) and regional average timing of the fall freezing
(\(T_{\text{Freeze}}\)) across the pan-Arctic region. .. 91

Figure 3-12: Maps of (a) correlation between \(T_{\text{Thaw}}\) and annual NPP from 1983 to 2005 and (b) the statistical \(P\)-value. .. 92

Figure 3-13: Time series of annual average GPP, NPP and autotrophic respiration (RS\(\text{Au}\)) from 1983 to 2005 for the pan-Arctic region (a). The ratio of NPP to GPP (i.e. CUE) is also shown in (b). .. 93

Figure 3-14: Annual NPP anomalies, mean growing season (GS, Apr.–Oct.) \(I_m\) and mean GS \(I_t\) from 1983 to 2005 for the pan-Arctic domain; the Y-axis for \(I_m\) and \(I_t\) increases from upper to lower portions of the graphic and corresponds to increasing environmental constraints on productivity. Linear trends for the three variables are shown as dotted lines. ... 94

Figure 3-15: Map of annual NPP trends from 1983 to 2005 across the pan-Arctic region. ... 96

Figure 3-16: Proportional losses of potential NPP due to (a) low-temperature (\(\delta\text{loss}_T\)) and (b) moisture (\(\delta\text{loss}_M\)) constraints for the three major land cover types within the pan-Arctic domain. The dashed lines denote linear trends. .. 97

Figure 3-17: Mean annual climate moisture index (\(P-PET\)) for the pan-Arctic basin and Alaska domain and 1974–2005 period; error bars denote the standard deviation of annual observations for the domain. The total number of NCDC CSB stations used to compute the index ranged from 2053 to 2924 per year. .. 98

Figure 3-18: Maps of (a) annual NPP and (b) summer (Jun.–Aug.) \(I_m\) anomalies (relative to the 23-year mean) for 1998, 2001, 2002, and 2003. A positive anomaly for \(I_m\) corresponds to increasing moisture constraints on productivity relative to the long-term mean. .. 100

Figure 3-19: Comparison between PEM derived NPP anomalies and boreal aspen growth derived from tree-ring analyses for 72 CIPHA stands across western Canada. Vertical dotted lines and dashed lines denote major drought and insect defoliation years, respectively, as reported by (Hogg et al., 2005). .. 101
Figure 4-1: Flowchart of the satellite remote sensing based ET algorithm. 118

Figure 4-2: Locations of six flux towers and regional land cover derived from the NASA MODIS-IGBP global land cover classification (see Figure 1-1) within the pan-Arctic region. .. 127

Figure 4-3: Scatter plot of the calculated potential surface conductance of vegetation \(g_0^* \) derived from tower measurements vs. AVHRR GIMMS derived NDVI and the empirical fitted relationship between \(g_0 \) and NDVI for OSH, ENF, GRS and MF vegetation types. ... 131

Figure 4-4: Time series of daily measured and modeled latent heat flux (LE: W m\(^{-2}\)). The two sets of modeled LE results derived from the NDVI-based ET algorithm are driven by tower-measured meteorology and bias-corrected NNR meteorology, respectively. The daily measured and modeled LE values are compared for days with complete records for both LE and surface meteorology. ... 134

Figure 4-5: Scatterplots of monthly modeled ET (mm month\(^{-1}\)) derived from (a) tower-measured meteorology and (b) bias-corrected NNR meteorology against corresponding tower measurements for the six flux tower sites. .. 135

Figure 4-6: Maps of multi-year (1983-2005) mean annual calculated ET (a) and precipitation derived from (b) GPCP and (c) GPCC sources. ... 137

Figure 4-7: Annual time series of precipitation (P) derived from GPCP and GPCC data sources; ET derived from the NDVI-based ET algorithm, and corresponding annual P-ET anomalies from the long-term (23-year) mean. Dashed lines show linear trends for the time series. The two P series from GPCP and GPCC sources are highly correlated \(r = 0.91; P < 0.001 \). The resulting P-ET anomalies are also highly correlated \(r = 0.89; P < 0.001 \). ... 139

Figure 4-8: Seasonal trends of regional average precipitation derived from GPCP and GPCC sources and regional average ET from 1983 to 2005 for the pan-Arctic region. Asterisk denotes significant trends at the 0.1 significance level, while double asterisk denotes significant trends at the 0.05 significance level. ... 140

Figure 4-9: Spatial distributions of trends in annual P ((a) and (b)), P-ET ((c) and (d))
and ET (e), and annual runoff depths of 22 major sub-basins (f) within the pan-Arctic basin and Alaska from 1983 through 2005. There are two sets of P and P-ET that are derived from GPCP and GPCC precipitation sources, respectively. The trends are classified into six categories according statistical linear trend analysis.

Figure 4-10: Time plots of standardized summer (Jun. - Aug.) vegetation moisture stress index (I_m) and corresponding summer P-ET anomalies derived from GPCP and GPCC precipitation sources, respectively; the y axis for standardized summer I_m increases from upper to lower portions of the graphic and corresponds to the changes from less-than-normal to more-than-normal moisture constraints on vegetation productivity.

Figure 4-11: Maps of summer P-ET anomalies derived from (a) GPCP and (b) GPCC precipitation sources, (c) standardized summer I_m, and (d) annual NPP anomalies for years 1998, 2001, 2002 and 2003. Negative values of I_m denote less-than-normal moisture constraints on vegetation productivity and are indicated by the blue colors, while positive values indicate more-than-normal moisture constraints on vegetation productivity and are indicated by the red colors.

Figure 5-1: General pressure and temperature patterns in the Northern Hemisphere during positive (warm) phase (upper left) and negative (cold) phase (upper right) of the AO/NAO, and corresponding effects on mid-high latitude wind fields by positive (lower left) and negative (lower right) phases of the AO/NAO (graphs are from http://www.newx-forecasts.com/ao_2.html).

Figure 5-2: Typical winter time SST (colors), SLP (contours) and surface windstress (arrows) anomaly patterns during warm (left) and cool (right) PDO phases (graphs are from University of Washington, http://jisao.washington.edu/pdo/).

Figure 5-3: Maps of (a) pixel-wise correlation between AO$_{spr}$ and the timing of growing season onset derived from PEM calculations and (b) the corresponding statistical P-values for the pan-Arctic region.

Figure 5-4: Temporal trajectories of the AO$_{spr}$ and annual anomalies of regional average growing season onset derived from PEM calculations ($T_{NPP, Onset}$), and the seasonal pattern of atmospheric CO$_2$ concentrations ($T_{CO2, Spr}$); negative anomalies denote earlier onset of the growing season, while positive values denote the opposite response relative to the 23-year record.
Figure 5-5: Maps of (a) pixel-wise correlation between PDOGS and GS I_m values and (b) the corresponding statistical P-values for the pan-Arctic region. 172

Figure 5-6: Map of mean (23-year) GS I_m values for the pan-Arctic domain. 173

Figure 5-7: Maps of correlations between PDOGS and GS P-ET and corresponding P-values; the top graphs are derived using GPCP precipitation while the bottom graphs are derived using GPCC precipitation. ... 174

Figure 5-8: Time plots of $S_{NPP,Loss}$ and standardized GS I_m and PDOGS anomalies for the pan-Arctic domain. $S_{NPP,Loss}$ represents drought-induced NPP losses relative to potential conditions, where less-than-normal (green) and larger-than-normal (brown) NPP losses are standardized relative to 23-year mean conditions. Positive PDOGS phases (red) generally corresponded to wetter-than-normal conditions (green), whereas negative PDOGS phases (blue) were generally related to drier-than-normal conditions (brown). 175

Figure 5-9: Time series of the proportional area of the pan-Arctic domain showing significant correlation between AOspr and annual NPP and the proportional area of drought prone regions having significant correlations between PDOGS and annual NPP, where the 23-year mean GS I_m exceeds regional mean conditions. The time series represents a nine-year moving correlation analysis, while dashed lines show the linear trends for the time series. ... 177
CHAPTER 1: INTRODUCTION

1.1. Importance of Pan-Arctic Terrestrial Ecosystems

1.1.1. Geography and Climate

The Pan-Arctic terrestrial ecosystems cover the Pan-Arctic basin and Alaska including all land areas draining into the Arctic Ocean, Hudson Bay, James Bay, Hudson Strait and the Bering Sea (Figure 1-1). The Pan-Arctic region spans a latitudinal range from 45.35 °N to 83.62 °N and encompass approximately 25 million km² of the northern high (>50°N) latitudes and 30% of the combined North American and Eurasian landmass (Kimball et al., 2006b). It includes the entire arctic tundra biome, most of the boreal forest biome and a small portion of the northern temperate grassland biome.

The NASA International Geosphere-Biosphere Programme (IGBP) 17-class Moderate Resolution Imaging Spectroradiometer (MODIS) Type 1 global land cover classification (Friedl et al., 2002) distinguishes 9 general land cover categories within this region at 1-km spatial resolution, including open shrubland, savanna, grassland, cropland, woody savanna, evergreen needleleaf forest, deciduous needleleaf forest, mixed forest and barren (Figure 1-1(a)). Vegetated areas in this region can be aggregated into three major biome types, i.e. the arctic tundra, boreal forest and northern temperate grassland biomes (Figure 1-1(b)). The climate for Arctic tundra has a mean temperature below 0 °C and a growing season of less than 50 days. During the winter it is very cold and dark, with average temperature around -30 °C, sometimes dipping as low as -50 °C (Woodward, 2003). During the summer, temperatures rise somewhat and daytime
Figure 1-1: Maps of (a) land cover derived from the NASA IGBP-MODIS global land cover classification (Friedl et al., 2002) and (b) corresponding aggregated major biome types for the Pan-Arctic basin and Alaska domain, including OSH: open shrubland; SV: savanna; GRS: grassland; CRP: cropland; WSV: woody savanna; ENF: evergreen needleleaf forest; DNF: deciduous needleleaf forest; MF: mixed forest; Barren: barren or sparsely vegetated cover types. Areas in white represent open water and other areas outside the study domain.

temperatures generally can rise to about 12 °C but often drop to 3 °C or even below freezing. The year-round cold temperatures permanently freeze the tundra subsoil below 25-90 cm termed permafrost. Annual precipitation averages about 150-500 mm and usually occurs as snow (Whitney, 2002; Woodward, 2003).

Boreal forests, or taiga, have higher annual average temperature but larger variations in extreme temperatures than arctic tundra. Temperatures vary from -50 °C to 30 °C throughout the whole year, with eight or more months of temperatures averaging below 10 °C (Arno & Hammerly, 1984). The greatest range in mean monthly temperatures (56 °C) occurs in eastern Siberia; in North America, the maximum range of mean monthly temperature (44 °C) occurs in interior Alaska (Bonan, 2008; Bonan &
Winters are typically long and severely cold, with up to six months having an average temperature at or below freezing. Summers are short and cool to warm. Only 50 to 100 days may be frost free. Mean annual precipitation is 200-750 mm, primarily as rain during the summer months, but also as fog and snow; as evaporation is also low for most of the year, precipitation exceeds evaporation and is sufficient to support relatively dense vegetation growth (Sayre, 1994; Woodward, 2003).

1.1.2. Ecological, Climatic and Social Significance

Pan-Arctic terrestrial ecosystems have extraordinary biological and ecological value and represent interrelated habitats made up of forests, lakes, wetlands, rivers, grasslands and tundra. The vegetation in arctic tundra is composed of dwarf shrubs, sedges and grasses, mosses, and lichens, while the boreal forest region is dominated by spruces, pines, firs, larches, birches and aspens or poplar (Woodward, 2003). Although there are less species and lower biodiversity in arctic tundra and boreal forests than temperate forests and tropical rain forests, arctic tundra and boreal forests are wildlife habitats of international significance, especially for caribou, polar bears, musk ox, grizzly bears, migratory birds, etc. Boreal forests are home to the world’s largest population of wolves, lynx, black and grizzly bears, and even the threatened woodland caribou. The lakes of the boreal region are teeming with some of the world’s largest trout, bass, perch and whitefish. Many species from around the world depend on summer breeding and feeding grounds in this region.

Arctic tundra and Boreal forest play vital roles in the global climate system and impact climate through three major mechanisms, or so-called “feedbacks”, including
surface reflectivity, greenhouse gas storage and emission, and ocean circulation (ACIA, 2004; Hassol et al., 2004). The first feedback involves changes in the reflectivity of the surface as snow and ice melt and vegetation cover changes, the second involves changes in the amounts of greenhouse gases emitted to the atmosphere from the land as warming progresses, and the third involves changes to ocean circulation as arctic ice melts, adding freshwater to the oceans.

The high latitudes of the pan-Arctic region receive less solar radiation relative to tropical and subtropical regions on an annual basis. Many areas of the pan-Arctic are covered with snow and ice so a larger fraction of incoming solar energy is reflected back to space than at lower latitudes. As a result, this region represents an energy sink in the global climate system and acts as a global refrigerator by attracting heat from the lower latitudes. If not for the atmosphere and oceans moving energy from the tropics to the poles, the tropics would overheat and the polar regions would be much colder than they currently are.

The icy temperatures and permafrost of the pan-Arctic region slow plant litter decomposition, resulting in a build-up of soil organic matter and thus slowing the release of carbon dioxide, one of the most important green-house gases to the atmosphere. Arctic tundra ecosystems currently store approximately 14% of the Earth’s terrestrial carbon (Oberbauer et al., 1991) and over the past 10,000 years climatic conditions have favored carbon sequestration in the Arctic (Gorham, 1991). The boreal forest region covers just under 15% of the global land surface, but contains over 30% of all carbon contained in the terrestrial biome (Table 1-1) (Kasischke, 2000). Together, the whole Pan-Arctic
Table 1-1. Comparison of carbon storage in world major biomes based on the estimation from Kasischke (2000).

<table>
<thead>
<tr>
<th>Biome</th>
<th>Area (× 10^6 ha)</th>
<th>Soil Carbon (× 10^{15} g)</th>
<th>Plant Biomass Carbon (× 10^{15} g)</th>
<th>Total Carbon (× 10^{15} g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctic Tundra</td>
<td>890</td>
<td>180</td>
<td><<1</td>
<td>~181</td>
</tr>
<tr>
<td>Boreal Forests</td>
<td>1,509</td>
<td>625</td>
<td>78</td>
<td>703</td>
</tr>
<tr>
<td>Temperate Forests</td>
<td>1,040</td>
<td>100</td>
<td>21</td>
<td>121</td>
</tr>
<tr>
<td>Tropical Forests</td>
<td>1,756</td>
<td>216</td>
<td>159</td>
<td>375</td>
</tr>
</tbody>
</table>

region contains up to 40% of the global terrestrial carbon reservoir (Lal & Kimble, 2000; Saugier et al., 2001). The accelerated release of this carbon in the form of carbon dioxide and methane would greatly enhance global warming.

The pan-Arctic region also plays a key role in global oceanic circulations, especially thermohaline circulation (Broecker, 1997; Levermann et al., 2007; Rahmstorf, 2006). One of the ways the sun’s energy is transported from the equator toward the poles is through the globally interconnected movement of ocean waters primarily driven by differences in heat and salt content, known as the thermohaline circulation, or the great ocean conveyor (“thermo” for heat and “haline” for salt) (Broecker, 1991; Broecker & Denton, 1990). At present, the northward extension of the warm Gulf Stream current in the North Atlantic Ocean warms the surrounding atmosphere and provides much of the moisture that falls as precipitation over northwestern Europe. As the waters move northward, they become cooler and denser, until they are heavier than the waters below and sink deep into the ocean at high latitudes to form the North Atlantic Deep Water. The formation of sea ice at high latitudes also makes the near-surface water saltier and denser as salt is rejected from the ice. This sinking dense seawater flows over the continental
shelves into the deep ocean basin, contributing to deep-water formation and the further
drawing northward of heat from the tropics (Broecker, 1991; Rahmstorf, 2006). This
process is delicately balanced; if the waters are made less salty by an increase in
freshwater runoff, precipitation or glacial melt, or because temperatures are not
sufficiently cold to form sea ice, the formation rate of deep water will decrease and less
heat from the tropical regions will be pulled northward by the ocean.

The pan-Arctic region encompasses part of all the territories of eleven nations:
Norway, Sweden, Finland, Denmark, Iceland, Mongolia, Kazakhstan, Canada, China,
Russia, and the United States, as well as the homelands of dozens of indigenous groups
that encompass distinct sub-groups and communities. There are abundant natural
resources in this region including oil, natural gas, minerals, fish, timber, etc.

1.2. Evidence of Changes in Pan-Arctic Terrestrial Ecosystems

1.2.1. Pan-Arctic Climate Change

Northern latitudes (45° to 90°N), encompassing Arctic tundra and boreal forest
regions, experienced the greatest regional warming on earth in recent decades. Annual
average temperatures in some regions, especially the arctic, have increased at almost
twice the rate as that of the rest of the world over the past few decades (ACIA, 2004,
2005). Average annual temperatures in northern high latitudes (60° to 90°N) have risen
by about 2 to 3 °C since the 1950s and in winter by up to 4 °C (Trenberth et al., 2007)
(see also Figures 1-2 (a) and 1-3), while the larger region from 45° to 90°N and global
average temperatures have increased by about 1.5 °C and 1 °C, respectively (Figures 1-2(b) and (c)). Although cooling has occurred in some areas like southern Greenland, Davis Strait and eastern Canada, warming in most areas has resulted in extensive melting
of glaciers (Sapiano et al., 1998), thawing of permafrost (Osterkamp & Romanovsky, 1999), and reductions in sea ice in the Arctic Ocean (Rothrock et al., 1999; Vinnikov et al., 1999). The warming has generally been accompanied by increases in precipitation, but a decrease in the duration of snow cover (ACIA, 2005; Trenberth et al., 2007).

Rainfall (liquid precipitation) has increased during the past 50 years over western portions of North American and Eurasia north of 50°N by about 6% (Trenberth et al., 2007). The rainfall season has become longer by up to three weeks in some regions of the boreal high latitudes over the last 50 years (Groisman et al., 2005; Groisman et al., 2007) owing, in particular, to an earlier onset of spring. Therefore, in some regions (southern Canada and western Russia), snow has provided a declining fraction of total annual precipitation (Groisman et al., 2005; Groisman et al., 2007).

Figure 1-3: Change in observed land and marine temperatures between 1950s (1950-1959) and 2000s (2000-2008) for the region from 40° to 90°N: (a) annual mean; (b) winter (data from Climatic Research Unit (CRU) HadCRUT3v at 5°×5° spatial resolution (Rayner et al., 2006)).

Climate projections suggest an amplified warming trend at high latitudes resulting from positive feedbacks involving snow and sea ice, and other processes (IPCC, 2001;
Meehl et al., 2007). The warming is particularly large in autumn and early winter (Holland & Bitz, 2003; Masson-Delmotte et al., 2006). Five Arctic Climate Impact Assessment (ACIA) designated general circulation models project additional warming in the annual mean air temperature of approximately 1°C by 2020, 2 to 3°C by 2050, and 4 to 5°C by 2080 in northern high latitudes under the B2 emissions scenario used by the Intergovernmental Panel on Climate Change (IPCC) (ACIA, 2005).

1.2.2. Ecosystem Responses to Climate Changes

The pan-Arctic region is currently undergoing significant change coinciding with recent and persistent climatic warming (Comiso, 2003; Serreze et al., 2000). Recent climate change in this region is not only linked with global warming but also to changes in large-scale atmospheric (Wallace & Thompson, 2002) and ocean (Siedler et al., 2001) circulation patterns, i.e. oscillations, which is impacting ecological and hydrological processes directly or indirectly. Low temperature, cold-induced water stress and frozen ground (i.e. permafrost), and limited solar irradiance are the primary environmental constraints on vegetation activity and productivity in this domain (e.g. Chapin III et al., 1986; Jolly et al., 2005; Nemani et al., 2003; Shaver & Chapin III, 1980). Low temperatures in this region depress soil microbial activities and correspondingly limit soil nutrient availability for plants (Chapin III et al., 1986). A growing body of evidence indicates that a warming climate is adjusting the environmental constraints to plant phenology and productivity in pan-Arctic ecosystems. The low temperature constraint to photosynthesis and productivity is relaxing with recent climate change related warming of the region, resulting in thawing permafrost and increases in soil active layer depths.
(Oelke et al., 2004; Zhang et al., 2005), and earlier and longer growing seasons (ACIA, 2004, 2005; IPCC, 2001; Kimball et al., 2006a; McDonald et al., 2004; Trenberth et al., 2007). However, warmer temperatures have also coincided with increasing vegetation water stress in some regions (Angert et al., 2005; Schindler & Donahue, 2006). Solar radiation can be influenced by cloud cover through a reduction of incident solar radiation (Nardino & Georgiadis, 2003). Wang & Key (2003) reported that the slightly increasing cloud amount in spring and summer in the Arctic may be damping the increase in surface temperature to some degree. Soil microbial activities and N mineralization are adjusted by climate change related changes in the state of soil thawing-freezing and the amount and duration of snow cover (Brooks & Williams, 1999).

Ecological and hydrological processes are strongly coupled in the Pan-Arctic domain. The processes of precipitation and snowmelt change soil moisture and water availability for plants, which directly impact the hydrological cycle through canopy transpiration and precipitation interception and evaporation. Ecological responses to these changes include earlier onset and lengthening growing seasons (Kimball et al., 2006a; McDonald et al., 2004; Sturm et al., 2001), increased vegetation structure and growth (Lucht et al., 2002; Sturm et al., 2001), alteration of land-atmosphere CO₂ exchange (Oechel et al., 2000; Oechel et al., 1998; Serreze et al., 2000), increased soil decomposition and soil carbon release (Chapin et al., 1996; McKane et al., 1997; Tarnocai, 2006), and alterations in ecosystem structure (Callaghan et al., 2004b) as well as the biodiversity and distribution of species (Callaghan et al., 2004a). Observed hydrological responses in arctic tundra and boreal forests include changes in seasonality and magnitude of river discharge (McClelland et al., 2006), thawing and degradation of
permafrost (Oelke et al., 2004; Zhang et al., 2005) and associated rapid gains/losses in areal coverage of lakes and open water bodies (Smith et al., 2005), increasing soil active layer depths (Overduin et al., 2006; Zhang et al., 2005), and receding glaciers (Hinzman et al., 2005; White et al., 2007).

Climatic change and corresponding ecosystem responses in the pan-Arctic domain have and/or will have worldwide physical, ecological, social and economic impacts and consequences (ACIA, 2004, 2005) including: (1) magnifying global warming by reducing surface reflectivity through melting of snow and ice and shifting of vegetation, interrupting ocean circulation through increasing freshwater supply to the ocean, and releasing greenhouse gases from soils and coastal oceans, (2) shifting vegetation zones and altering the function and structure of ecosystems and biodiversity, altering the distributions and adaptations of species, (3) increasing ecological disturbances such as insect outbreaks and forest fires, (4) exposing coastal communities and facilities to increasing storms, coastal erosion and flooding (5) disrupting transportation, buildings and other infrastructure by thawing ground, (6) impacting the economy and culture of indigenous communities, and (7) influencing marine transport through sea level rise and decreasing sea ice cover.

1.2.3. Recent and Ongoing Interdisciplinary Research within the Pan-Arctic Region

Many interdisciplinary research projects have been conducted within the Pan-Arctic region in recent years to assess climate change and to investigate northern ecosystem vulnerability and response to global warming. Some of these projects are still ongoing and vary at spatial scales ranging from local site to basin and region and at
temporal scales from years and decades to millennia. These projects include the Long Term Ecological Research (LTER) at the headwaters of the Kuparuk River Basin (ARC LTER; http://ecosystems.mbl.edu/ARC/) and Bonanza Creek (Bonanza Creek LTER; http://www.lternet.edu/sites/BNZ/), the Land-Atmosphere-Ice Interactions (LAII; http://www.laii.uaf.edu/), the Boreal Ecosystem-Atmosphere Study (BOREAS; http://daac.ornl.gov/BOREAS/bhs/BOREAS_Home.html), the Arctic Transitions in the Land Atmosphere System (ATLAS; http://www.arts.monash.edu.au/ges/research/climate/atlas/), Paleoenvironmental ARCTic Sciences (PARCS; http://www.ncdc.noaa.gov/paleo/parcs/index.html), the Western Arctic Linkage Experiment (WALE; http://picea.sel.uaf.edu/projects/wale.html), Arctic Climate Impact Assessment (ACIA; http://www.acia.uaf.edu/), the International Polar Year (IPY) 2007-2008 (http://classic.ipy.org/index.php), Synthesis of Arctic System Science (SASS; http://www.arcus.org/arcss/sass/), and Study of the Northern Alaska Coastal System (SNACS; http://www.arcus.org/arcss/snacs/).

LTER: The Arctic LTER site (Hobbie *et al.*, 1995) is in the foothills region of the North Slope of Alaska and includes the entire Toolik Lake watershed and adjacent watershed of the upper Kuparuk River, down to the confluence of these two watersheds. The project started from 1980 and is ongoing. The goals are to understand the controls of arctic ecosystem structure and function and to predict the effect of environmental change through long-term monitoring and surveys of natural variation of ecosystem characteristics, through experimental manipulation of ecosystems for years and decades and through synthesis of results and predictive modeling at ecosystem and watershed scales. The Bonanza Creek LTER site (Chapin III *et al.*, 2006) is located in the boreal forest of interior Alaska, was established in 1987 and is in its third funding cycle. It
focuses on improving understanding of the long-term consequences of climate change and disturbance in the Alaskan boreal forest and documenting the major controls over forest dynamics, biogeochemistry, and disturbance and their interactions in the face of a changing climate.

LAII: The LAII flux study focused on studying processes controlling the fluxes of carbon dioxide, methane, water, energy, and nutrients between tundra ecosystems and the atmosphere and ocean in the Kuparuk River Basin (8,140 km²) in northern Alaska and was conducted over a 4 year period (1993-1996) by a group of soil scientists, hydrologists, atmospheric scientists, biogeochemists, modeler, and ecosystem scientists mainly through the measurement of trace gas (CO₂ and CH₄) fluxes or the process and manipulation studies (Kane & Reeburgh, 1998).

BOREAS: The BOREAS project was initiated as a large-scale international investigation focused on improving understanding of the exchanges of radiative energy, sensible heat, water, CO₂, and other radiatively active trace gases between the boreal forest and the lower atmosphere (Sellers *et al.*, 1997). A primary objective of BOREAS was to collect the data needed to improve computer simulation models of the important processes controlling these exchanges so that scientists can anticipate the effects of global change, principally altered temperature and precipitation patterns, on the biome (Sellers *et al.*, 1997). The field phase of the experiment extended from 1993 to 1997 and included two series of intensive field campaigns in 1994 and 1996.

ATLAS: The ATLAS project succeeded the LAII Flux Study. The ATLAS project also concentrated on the exchange of mass and energy between terrestrial ecosystems in the Arctic and the atmosphere and ocean but expanded its spatial scope of
interest from a hydrologic basin to the Western Arctic region (i.e., Alaska and the Russian Far East) and to the circumpolar Arctic (McGuire et al., 2003). Its key goal was to improve understanding of controls over spatial and temporal variability of terrestrial processes in the Arctic that have potential consequences for the climate system, i.e., processes that affect the exchange of water and energy with the atmosphere, the exchange of radiatively active gases with the atmosphere, and the delivery of freshwater to the Arctic Ocean (McGuire et al., 2003).

PARCS: The PARCS program was a coordinated effort of the NSF Arctic System Science (ARCSS) and Earth System History (ESH) programs from 2000 – 2005 (PARCS, 1999). PARCS had two specific research goals: (1) to recover and synthesize a network of high-resolution (annual to decadal) Holocene paleoenvironmental records that span at least 2,000 years and extend through the 20th century for addressing the periodicity and persistence of climatic states within the Arctic and their inter-relation with the global climate system and (2) to contribute to an understanding of a warmer Arctic by describing the state of marine, terrestrial, and biological systems during periods when the Arctic shifted toward and experienced warmer conditions in the past.

WALE: The WALE project lasted from 2002 to 2005 and was designed to assess the ability of models to simulate water/energy and CO2 exchange with the atmosphere, and freshwater delivery to the ocean for the Alaskan region in the 1980s and 1990s. Its primary goal was to better understand uncertainties of simulated hydrologic and ecosystem dynamics of the western Arctic in the context of: (1) uncertainties in the data available to drive the models and (2) different approaches to simulating regional hydrology and ecosystem dynamics (McGuire et al., 2008). The western Arctic was the
spatial domain and 1981-2000 was the temporal extent of this analysis to evaluate uncertainties in regional hydrology and carbon estimates associated with alternative driving datasets and simulation models.

ACIA: The ACIA is an international project of the Arctic Council and the International Arctic Science Committee (IASC) to evaluate and synthesize knowledge on climate variability, climate change, and increased ultraviolet radiation and their consequences. The results of this assessment were released at the ACIA International Scientific Symposium held in Reykjavik, Iceland in November 2004 (ACIA, 2004).

IPY 2007-2008: The International Council for Science (ICSU) and the World Meteorological Organization (WMO) sponsored the Fourth IPY (International Polar Year), i.e. the IPY 2007-2008. The concept of the IPY 2007-2008 is of an international programme of coordinated, interdisciplinary scientific research and observations in the Earth's Polar Regions to explore new scientific frontiers, deepen our understanding of polar processes and their global linkages, increase our ability to detect changes, attract and develop the next generation of polar scientists, engineers and logistics experts, and capture the interest of schoolchildren, the public and decision-makers (http://classic.ipy.org/).

SASS: The SASS is an ongoing effort of the NSF ARCSS Program and currently consists of 17 funded projects focused on advancing understanding of the arctic system by building on and integrating existing data and knowledge to advance understanding of linkages, interactions, and feedbacks among components of the arctic system.

SNACS: The SNACS is another ongoing effort of the NSF ARCSS Program and is composed of two science plans: Land-Shelf Interactions (LSI) and Pan-Arctic Cycles.
Transitions, and Sustainability (PACTS). The LSI research effort is centered on the land-sea margin in the Arctic, focusing on the scientific challenges of environmental change on human and biological communities and related physical and chemical systems (Cooper, 2003). Its goal is to lay the groundwork for a coordinated, interdisciplinary research opportunity in the Arctic that would focus on the coastal zone, and would support land, river, and sea-based researchers. The PACTS research effort is focused on transition and changes in arctic biophysical, biogeochemical ad social systems (Sturm et al., 2003). The focus of the research is the interaction of physical and living systems (e.g. the hydrological cycle and tundra ecosystems) rather than the individual systems themselves. It builds on ideas and research accomplishments from the LAII program, but represents a departure from previous plans by having a more explicit emphasis on biotic and abiotic interactions. Its scale and scope are larger as well, with a regional viewpoint that seeks to understand the Pan-Arctic as a large complex system (Sturm et al., 2003).

The earlier projects were generally focused on monitoring changes at high latitudes, measuring the fluxes of carbon dioxide, methane, water, energy, and nutrients, inspecting the underlying mechanisms controlling arctic and boreal ecosystem structure and function, and evaluating the role of high latitudes, especially the Arctic, in the global system through in situ measurements and experimental manipulations at the site or basin level. These precedent scientific efforts provided a large amount of data and knowledge to understand the effects of global environmental and climatic changes in the high latitudes and a solid scientific basis for further research and the prediction of future global climate change. However, these efforts largely consisted of detailed site level studies or involved relatively small areas within the larger Arctic and Boreal region. Most
of these projects were also limited to a few years. Although these projects had a multi-
disciplinary focus, detailed analyses of linkages and interactions between ecological and
hydrological processes at regional scales were lacking. In view of the tremendous spatial
and temporal variability of boreal and Arctic biomes, there is a need to examine the
integrative effects of these processes across the entire pan-Arctic in order to determine
the net response of the region to recent climate change and potential trajectories of
change under future warming. Therefore, the following scientific projects have expanded
to encompass regional and even continent scale process. The study technology has also
moved from site-level experiments to modeling and satellite remote sensing.

1.3. Importance of Satellite Remote Sensing Approaches and Ecological Modeling

Due to the remoteness and climatic challenges of Arctic and boreal regions,
small-scale vegetation studies may be ideal, but are not always feasible (Jacobsen &
Hansen, 1999; Stow et al., 1993), nor necessarily useful in extrapolating to broader
expanses of land (Davidson & Csillag, 2001; Dungan, 1995; Hope et al., 1995; Lobo et
al., 1998). Remote sensing from airborne and satellite platforms can provide spatially-
contiguous data on vegetation and geomorphic patterns and characterize surface variables
that control carbon and water fluxes over landscapes and regions, which can be utilized to
estimate patterns of carbon and water fluxes from plot to regional scales (Hope et al.,
1995; Stow et al., 1998). This capability is especially important in arctic and boreal
environments where it is difficult to move across the landscape on foot or by vehicle, and
the remoteness of study sites often limits the opportunity and period for field campaigns
as a function of accessibility, financial cost, and extreme weather conditions (Jacobsen &
Hansen, 1999; Lévesque, 1996; Shippert et al., 1995; Stow et al., 1993). Previous integrative regional scientific studies such as LTER, LAII, BOREAS, and ATLAS acquired the data needed to improve ecological and hydrological models and to improve our understanding of the dependence of biophysical processes on physical climate variations within the Pan-Arctic region. These studies show that remote sensing based approaches are effective and necessary for studying biophysical processes and environmental changes in remote, extensive arctic and boreal ecosystems.

In addition, the application of process-based ecosystem models provides an effective supplement to remote sensing since these models account for underlying processes and detailed coupling between ecological and hydrologic processes, which can be used to compare against remote sensing based observations of vegetation patterns and comparatively simple models of productivity, carbon and water exchange. Ecosystem process models also represent an efficient approach to test hypotheses and extend limited observations in space and time. Conversely, remote sensing can be used with relatively sparse surface biophysical network measurements to validate ecosystem models.

The early development of remote sensing as a scientific field is closely tied to developments in photography (Elachi & van Zyl, 2006). The first recorded aerial photographs were taken from an airplane piloted by Wilbur Wright in 1909 over Centocelli, Italy. During World War II, research was conducted on the spectral reflectance properties of natural terrain and the availability of photographic emulsions for aerial color infrared photography. In 1956, Colwell performed some of the early experiments on the use of special-purpose aerial photography for the classification and recognition of vegetation types and the detection of diseased and damaged vegetation.
Beginning in the mid-1960s, a large number of studies on the application of color infrared and multispectral photography were undertaken under the sponsorship of NASA, leading to the launch of multispectral imagers on the Landsat satellites in the 1970s. The Landsat program provides the longest continuous remote sensing data series for monitoring and managing Earth’s resources. The later NOAA series of satellites carrying the Advanced Very High Resolution Radiometer (AVHRR) instruments were launched since 1978. The AVHRR instruments were originally used to monitor clouds and to measure thermal emissions, but the Normalized Difference Vegetation Index (NDVI) calculated from the spectral reflectance measurements acquired in the red and near-infrared regions by the NOAA AVHRR instruments were found to be highly related to vegetation photosynthetic capacity and sensitive to vegetation structure (Tucker, 1979).

At the same time, the Scanning Multichannel Microwave Radiometer (SMMR) instruments onboard the Seasat and Nimbus 7 satellites measured dual-polarized microwave brightness temperatures, at 6.63, 10.69, 18.0, 21.0 and 37.0 GHz frequencies, from the Earth’s atmosphere and surface since 1978, resulting in the creation of an areal sea-ice climatology for the Arctic and Antarctic. Its successor, the Special Sensor Microwave/Imager (SSM/I) provides similar microwave radiometric observations at 19.35, 22.235, 37.0 and 85.5 GHz since 1987. Passive microwave observations at certain frequencies from SMMR and SSM/I are sensitive to a variety of land surface features including fractional open water, vegetation biomass, freeze-thaw state, sea ice and snow cover.

The latest generation of NASA’s Earth Observing System (EOS) satellites provide continuous satellite remote sensing based global observations and an
unprecedented array of global daily monitoring capabilities at moderate spatial resolution, including multi-band optical-infrared and passive microwave based measurements from the MODerate-resolution Imaging Spectroradiometer (MODIS), Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) and Advanced Microwave Scanning Radiometer for EOS (AMSR-E).

1.4. Objectives and Hypotheses

This investigation is supported by the NSF’s Office of Polar Programs as part of the PACTS plan of the SNACS project (grant numbers 3702AP15297803211 and 0732954), the NASA Earth Science Enterprise Program (NNG04GJ44G) and the NASA Earth and Space Science Fellowship Program (NNX07AN78H). It is focused on spatial patterns and temporal dynamics of carbon flux, water flux, energy balance, vegetation changes and disturbances induced by climate change in Pan-Arctic ecosystems. To this end, satellite remote sensing observations and process-based ecosystem modeling are used. Therefore, the objectives of this dissertation are to:

1. Determine uncertainties in model reanalyses based surface meteorology for the pan-Arctic domain and associated impacts of these uncertainties on regional satellite remote sensing based vegetation productivity simulation; correct the reanalysis based meteorology inputs using available weather station network observations to reduce uncertainties regarding vegetation productivity simulation;

2. Quantify the spatial patterns, temporal anomalies and recent trends in annual growing seasons and vegetation productivity in the pan-Arctic domain and associated environmental constraints to these processes by combining NOAA AVHRR and NASA
MODIS satellite sensor time series (1982 onward) derived measures of vegetation structure (LAI) and productivity (GPP, NPP) and land cover, with SSM/I time-series (1988 onward) brightness temperature derived measurements of the timing and length of annual frozen and non-frozen seasons;

3. Develop satellite remote sensing based methods to quantify spatial patterns and recent changes in evapotranspiration (ET) and the terrestrial water balance under recent climate warming, and associated changes to vegetation structure, productivity, and water use efficiency over the domain;

4. Assess the impacts of large-scale atmospheric and ocean circulation patterns (i.e. teleconnections) on satellite remote sensing based measures of vegetation productivity and freeze-thaw dynamics, and determine linkages between these patterns and temporal anomalies in northern atmospheric CO\textsubscript{2} concentrations;

5. Validate the results of satellite remote sensing based approaches using biophysical measurements from regional eddy covariance flux tower and stand inventory networks.

I base this effort on four primary hypotheses:

1. Persistent warming of boreal forest and tundra ecosystems over the last two decades has promoted a general increase in vegetation productivity through the gradual release of low temperature constraints to photosynthesis and lengthening vegetation growing seasons.

2. Warming-induced advances in the timing of spring thaw and increased length of the non-frozen season are promoting drier conditions through increasing water losses
such as increasing evapotranspiration (ET), permafrost thaw and associated increases in soil active layer depths, and earlier snowmelt;

3. Increasing drought stress is counteracting the positive productivity effects of longer growing seasons and reduced low temperature stress.

4. Large-scale atmospheric and ocean oscillations (i.e. teleconnections) contribute to variation in northern atmospheric CO₂ anomalies by regulating spatial patterns and temporal anomalies in vegetation productivity.

1.5. Dissertation Structure

This dissertation consists of six chapters. In Chapter 1, I introduce the background for this investigation involving climatic change and associated ecosystems responses in the pan-Arctic region, the science rationale, objectives and hypotheses for this investigation.

In Chapter 2, I focus on the uncertainty analysis of general circulation model (GCM) based meteorology reanalyses, and the corresponding sensitivity of satellite remote sensing based vegetation productivity estimates to these uncertainties. Moreover, I introduce a regional meteorology correction scheme using observations from the regional weather station network to reduce uncertainty in the GCM based meteorology reanalyses and corresponding satellite remote sensing based vegetation productivity estimates. A condensed version of this chapter was published in the Journal of Geophysical Research-Biosciences in 2007 (Zhang et al., 2007a).

In Chapter 3, I analyze changes in vegetation productivity and phenology (e.g. growing season onset and end), and landscape seasonal freeze-thaw derived from satellite
remote sensing observations during the recent decades. I also validate the satellite derived results using available ground observations, quantify the climatic drivers of recent vegetation changes, and evaluate linkages between vegetation productivity and seasonal freeze-thaw timing. A condensed version of this chapter was published in the Journal of Geophysical Research-Biosciences in 2008 (Zhang et al., 2008).

Chapter 4 is focused on the development of a satellite remote sensing based evapotranspiration algorithm and recent changes in ET and the associated water balance across the pan-Arctic study region. The results of the satellite-based ET algorithm are validated using the multi-year observations from regional eddy covariance flux tower sites within the study region. The work of this chapter was submitted to the Journal of Hydrology and is currently in review (Zhang et al., in review).

Chapter 5 is aimed at quantifying teleconnections between large-scale atmospheric and oceanic oscillations and vegetation productivity within the pan-Arctic domain. I examine how these oscillations influence vegetation productivity by impacting the growing season and terrestrial water balance, resulting in better understanding of the connections between northern terrestrial ecosystems and the atmosphere and oceans under a warming climate. A condensed version of this chapter was published in the Geophysical Research Letters in 2007 (Zhang et al., 2007b).

Chapter 6 summarizes the major conclusions of this dissertation, the broader implications of this research, and suggestions for future research in this field.

1.6. References Cited

26

CHAPTER 2: SENSITIVITY ANALYSIS OF SATELLITE-DERIVED VEGETATION PRODUCTIVITY TO METEOROLOGY REANALYSES AND REGIONAL CORRECTION OF METEOROLOGY REANALYSES

2.1. Meteorology Reanalyses

2.1.1. ERA-40

ERA-40 stands for the 45-year European Centre for Medium-range Weather Forecasts (ECMWF) Re-Analysis, and is a re-analysis of meteorological observations from September 1957 to August 2002 produced by the ECMWF in collaboration with many institutions (Uppala et al., 2005). The ERA-40 product is a second-generation reanalysis carried out by ECMWF that benefits from many recent changes made to the operational ECMWF data assimilation system, and lessons learned from the earlier ERA-15 (15-year ECMWF Re-Analysis) reanalysis (Uppala et al., 2005). The observing system changed considerably over this re-analysis period, with assimilable data provided by a succession of satellite-borne instruments from the 1970s onwards, supplemented by increasing numbers of ascents since the late 1980s. The observations used for ERA-40 include data from the operational archives of ECMWF supplemented by operational data archived by NCEP and the Japan Meteorological Agency. Data were also supplied to ECMWF by other institutions especially for use in the re-analysis. The ERA-40 uses a three-dimensional variational data assimilation system, including the spectral T159 model, with 60 hybrid sigma-pressure levels to produce the surface meteorology (Uppala et al., 2005).
I used the ERA-40 Basic Atmospheric Data Sets product (http://www.ecmwf.int/products/data/archive/descriptions/e4/basic.html), which is produced with four times per day temporal repeat at 2.5° × 2.5° spatial resolution globally. Surface downward solar shortwave radiation and 2-m air and dew point temperatures from the ERA-40 re-analysis were used to derive the daily downward solar shortwave radiation (\(SW_{↓} : \text{MJ m}^{-2} \text{d}^{-1}\)), and daily minimum (\(T_{\text{min}} : ^{\circ} \text{C}\)) and average (\(T_{\text{avg}} : ^{\circ} \text{C}\)) surface air temperatures for this investigation. Air vapor pressure (\(e_{a} : \text{Pa}\)) was calculated from the daily dew point (\(T_{\text{dew}} : ^{\circ} \text{C}\)), while daytime air vapor pressure deficit (\(VPD : \text{Pa}\)) was derived as the daily difference between \(e_{a}\) and the saturation vapor pressure (\(e_{\text{sat}} : \text{Pa}\)) of the mean daytime air temperature. These meteorology variables are used to drive the satellite remote sensing based vegetation productivity and surface evapotranspiration models.

2.1.2. NCEP/NCAR Re-analysis

The NCEP/NCAR Re-analysis or NNR is the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis (Kalnay et al., 1996; Kistler et al., 2001). The NNR is a first-generation reanalysis from 1948, which uses a frozen state-of-the-art analysis/forecast system and performs data assimilation using a variety of surface measurements to guide model simulations, including land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data (Kalnay et al., 1996). The NNR is based on the NCEP global spectral model with 28 vertical “sigma” levels and a triangular truncation of 62 waves (T62), equivalent to about 210-km horizontal resolution (Kalnay et al., 1996). The analysis scheme is a three-dimensional
variational scheme cast in spectral space denoted spectral statistical interpolation (Parrish & Derber, 1992). The reanalysis data assimilation system continues to be used with current data in real time (Climate Data Assimilation System or CDAS), so that its products are available from 1948 to the present.

In this study, I chose the NCEP/NCAR Reanalysis 1: Surface Flux product (http://www.cdc.noaa.gov/data/gridded/data.ncep.reanalysis.surfaceflux.html), which is provided four times per day in a global Gaussian grid (T62, 192 x 94 points) format with approximately 1.9° x 1.875° spatial resolution. The surface downward solar shortwave radiation and surface air temperature data of the NNR were extracted to derive SW_d, T_{min} and T_{avg}. The e_a term used to derive daily VPD was calculated from NNR specific humidity and surface pressure information.

2.2. Validation and Inter-comparison of Meteorology Reanalyses

The reanalysis meteorological inputs for the satellite remote sensing based vegetation productivity model include SW_d, T_{min}, T_{avg} and e_a (see section 2.3). I used daily minimum and average air temperatures and dew point from 1994-2000 for 1,122 World Meteorology Organization (WMO) stations (Figure 2-1) above 45°N to assess the relative accuracy of the reanalysis meteorological inputs across the pan-Arctic domain. These data were obtained from the National Climatic Data Center Climate Services Branch (NCDC CSB; http://www.ncdc.noaa.gov) Global Surface Summary of the Day. I also evaluated daily downward solar shortwave radiation inputs of the meteorology reanalyses using daily solar radiation data from 17 sites distributed across Alaska from
1982-1990, and available from the National Solar Radiation Data Base (NSRDB; http://rredc.nrel.gov/solar/old_data/nsrdb/). To compare the reanalysis data with the station observations, I applied Zhao et al.’s spatial interpolation method (2005, equations 3-5) to calculate the reanalysis values at the locations of the weather stations.

![Figure 2-1: Distribution of WMO surface weather stations with daily temperature and dew point observations, and solar radiation observations above 45°N for the validation of meteorology reanalyses.](image)

2.2.1. Validation Procedure

To validate the reanalysis meteorology data, I applied the following procedure. First, I calculated the residuals (ε) that are defined as the true values (x), namely the interpolated observations or measurements from the weather stations, minus the estimated values (\(\hat{x}\)), i.e. the data from the reanalyses. Analyses of error distribution, and the relative error (\(\delta_x\)), simple linear correlation coefficient (r) between the estimated
values and the true values, mean absolute error (MAE) and root mean square error (RMSE) parameters were then used to evaluate accuracy and uncertainty of the two reanalyses. The analysis of statistical error distribution includes the mean (\(\bar{\varepsilon} \)), median (\(M_{\varepsilon} \)), standard deviation (i.e. standard error, \(s_{\varepsilon} \)), first quartile (\(Q_{1st} \)), and third quartile (\(Q_{3rd} \)) of the residual distribution. The MAE and RMSE were calculated to describe the accuracy of the estimation. The \(\delta_{\varepsilon} \), defined as the ratio of the absolute value of the mean residual (\(|\bar{\varepsilon}| \)) to the mean of the absolute values of observations (\(E(|x|) \)), was used to show the relative magnitude of the errors, while the \(r \) parameter was used to evaluate the strength of the relationships between the estimations and the observations. I also analyzed the temporal and spatial patterns of the reanalysis meteorology error distribution.

2.2.2. Accuracy of Meteorology Reanalyses

Both reanalyses tend to underestimate \(T_{avg} \), while ERA-40 has a smaller bias (i.e. the absolute value of \(\bar{\varepsilon} \)), a narrower error spread (i.e. higher precision) indicated by the box plot (Figure 2-2 (a)), a higher accuracy denoted by MAE and RMSE, and a higher correlation with surface observations than NNR (Table 2-1 and Figure 2-2 (a)). For \(T_{min} \), ERA-40 has a positive bias whereas NNR has a negative bias with an absolute value. However, ERA-40 \(T_{min} \) has a narrower error spread, a higher correlation with the observations but a comparable accuracy relative to NNR \(T_{min} \) (Figure 2-2 (b) and Table 2-1). For \(e_a \), ERA-40 has a much smaller bias, a much narrower error spread, a higher accuracy and a higher correlation with the observations than NNR, though both reanalyses have positive biases (Table 2-1 and Figure 2-2(c)). Though the magnitudes of
Table 2-1. Comparison of the error distribution, accuracy and correspondence of ERA-40 and NNR meteorological variables relative to the surface weather station observations.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Error Distribution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\bar{\varepsilon}$</td>
<td>s_{ε}</td>
</tr>
<tr>
<td>aT_{av} (°C)</td>
<td>E</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>dN</td>
<td>1.2</td>
</tr>
<tr>
<td>aT_{mi} (°C)</td>
<td>E</td>
<td>-1.6</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>0.9</td>
</tr>
<tr>
<td>ae_a (Pa)</td>
<td>E</td>
<td>-4.3</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>-65.5</td>
</tr>
<tr>
<td>bSW_{\downarrow} (MJ m$^{-2}$ d$^{-1}$)</td>
<td>E</td>
<td>-1.4</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>-4.9</td>
</tr>
</tbody>
</table>

- The surface meteorological data are 7-year daily means over the 1994 to 2000 period; the observations come from 1122 weather stations across the domain.
- The solar radiation data are 9-year daily means over the 1982 to 1990 period; the observations come from 17 weather stations in Alaska.
- E and N denote ERA-40 and NNR, respectively.
- The significance levels of 0.1, 0.01 and 0.001 are indicated by *, **, and ***, respectively.

The biases for the temperature variables of the two reanalyses are small, the relative errors are still large due to the year-round low temperatures at high latitudes (Table 2-2). While instrumentation biases and inhomogeneities may exist in the weather station observational data, I chose a large station sample size (1,122 stations) to minimize the potential negative effects of individual station bias and compared these data with the interpolated reanalyses data.

Both reanalyses show relatively poor performance for the estimates of downward shortwave solar radiation and tend to overestimate it, though ERA-40 has a lower bias and higher accuracy than NNR. While both reanalyses consider cloud effects, generally poor reanalysis performance relative to surface observations likely reflects limitations in
Figure 2-2: Box plots of the residuals in mean T_{avg}, T_{min}, e_a and SW_{\downarrow} of the ERA-40 and NNR meteorology by comparing with the surface weather station observations.

the way the atmospheric models characterize cloud cover heterogeneity and atmospheric solar radiation transmittance. In ERA-40, cloud radiative properties relate more to model parameterization than to the quality of the basic reanalysis fields and are not well simulated, leading to relatively poor characterization of the all-sky radiation budget (Uppala et al., 2005). The study of Yang et al. (1999) suggested that the NNR global data assimilation system (GDAS) contains shortcomings in the cloud/moisture parameterizations or deficiencies in the shortwave parameterizations, which lead to the large bias in solar radiation. In addition, while these results indicate generally poor model performance for solar radiation, they are based on comparisons with surface
Figure 2-3: Temporal comparison of annual bias, namely mean error (reanalysis – observation), and annual anomalies of ERA-40 and NNR (a) T_{avg}, (b) T_{min}, (c) e_a, and (d) SW_d. Errors are calculated relative to observations from WMO and NSRDB station network.

observations from only 17 stations across Alaska. Model solar radiation performance is likely to vary across the larger pan-Arctic domain and may not be adequately defined from this limited observation network.

The four meteorological variables show no obvious temporal bias (relative to surface weather station observations), i.e. temporally independent for both reanalyses (Figure 2-3). The results of these comparisons indicate that ERA-40 is generally more accurate than NNR for surface air temperature and air vapor pressure, but both reanalyses show similar annual anomalies for the air temperatures, air vapor pressure and solar
radiation (Figure 2-3). These results are also consistent with previous studies (Simmons et al., 2004; Zhao et al., 2006).

Analysis of ERA-40 regional performance (Table 2-2) shows no obvious longitudinal pattern in temperature and e_a accuracies. However, ERA-40 temperatures and e_a show generally better performance in the Arctic relative to Boreal biomes. The NNR performance also showed no obvious longitudinal pattern, but showed higher e_a

Table 2-2. Regional comparison of annual means of daily air temperatures (T_{min} and T_{avg}) and daily mean atmospheric vapor pressure (e_a) from the two reanalyses relative to observed values across the pan-Arctic domain; the results are summarized for major sub-regions within the domain.

<table>
<thead>
<tr>
<th>Region</th>
<th>Area (%)</th>
<th>T_{min} ($°C$)</th>
<th>T_{avg} ($°C$)</th>
<th>e_a (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>r</td>
<td>\bar{c}</td>
<td>RMSE</td>
</tr>
<tr>
<td>Pan-Arctic</td>
<td>100.0</td>
<td>eE</td>
<td>0.95</td>
<td>-1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dN</td>
<td>0.90</td>
<td>0.9</td>
</tr>
<tr>
<td>North America</td>
<td>33.7</td>
<td>E</td>
<td>0.93</td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>0.88</td>
<td>1.4</td>
</tr>
<tr>
<td>Eurasia</td>
<td>66.3</td>
<td>E</td>
<td>0.94</td>
<td>-1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>0.88</td>
<td>1.0</td>
</tr>
<tr>
<td>Boreal</td>
<td>39.0</td>
<td>E</td>
<td>0.93</td>
<td>-1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>0.87</td>
<td>0.8</td>
</tr>
<tr>
<td>Arctic</td>
<td>33.2</td>
<td>E</td>
<td>0.96</td>
<td>-1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>0.92</td>
<td>1.4</td>
</tr>
</tbody>
</table>

a Proportional area represented within the entire 25 million km2 study domain.
b All simple correlation coefficients are significant at the 0.001 significant level.
c,d E and N denote ERA-40 and NNR, respectively.
accuracy in the Arctic than in boreal regions. The relatively high temporal, spatial and anomaly correlation coefficients between the reanalyses and surface observations also indicate that both NNR and ERA-40 products capture the major climatic patterns and trends for surface air temperature.

To conclude, the ERA-40 surface air temperature, air vapor pressure and downward shortwave solar radiation data generally have higher accuracies and lower biases than the NNR counterpart. The biases and errors in the four meteorological variables of the two reanalyses don’t show obvious temporal and spatial patterns in the modern satellite era (post 1978). Relative to air temperature and air vapor pressure, the solar radiation estimates in both reanalysis products have lower correlation with the observations. These results are also consistent with previous studies (Simmons et al., 2004; Zhao et al., 2006). Previous studies indicate a clear improvement of ERA-40 over the earlier NNR during the modern satellite era (post 1978) (Bromwich & Fogt, 2004; Uppala et al., 2005). Bromwich and Fogt (2004) found that ERA-40 produced a generally improved simulation of mean sea level pressure fields after 1978 based on comparisons with Antarctic and southern hemisphere mid- to high-latitude station observations. Simmons et al. (2004) found that ERA-40 produced generally closer agreement for simulated surface air temperatures from 1979 onward based on comparisons with the Climatic Research Unit (CRU) CRUTEM2v data set, which is derived directly from monthly surface weather station observations. Bromwich and Wang (2005) also found that ERA-40 showed better overall performance in representing wind fields of the Arctic based on comparisons with rawinsonde data for two independent arctic field experiments.
2.3. Satellite-based Production Efficiency Model

A biome-specific Production Efficiency Model (PEM), i.e. MODIS MOD17A2/A3 algorithms (Heinsch et al., 2003; Running et al., 2004; Running et al., 2000; Zhao et al., 2008), was used to estimate vegetation gross primary production (GPP) and net primary production (NPP) for vegetated grid cells within the study domain using satellite-derived vegetation properties and model reanalysis based daily surface meteorology inputs. The PEM model is based on the original logic of Monteith (1972) and combined with climatic controls on GPP and NPP (Churkina & Running, 1998) and lessons learned from a general process-based ecosystem model, BIOME-BGC (Biome BioGeochemical Cycles) (Running & Hunt, 1993; Thornton & Running, 1999; White et al., 2000). The model is driven by satellite-derived land cover, fractional photosynthetically active radiation (FPAR), leaf area index (LAI) and daily surface meteorology (Running et al., 2000). The model has been successfully applied at global or regional scales (Kimball et al., 2006; Nemani et al., 2003; Zhao et al., 2005; Zhao et al., 2006) and has undergone several revisions in response to extensive, ongoing calibration and verification studies using biophysical information from regional station networks, including boreal and Arctic landscapes (Heinsch et al., 2006; Turner et al., 2003; Turner et al., 2005; Zhao et al., 2005; Zhao et al., 2006).

GPP (g C m$^{-2}$ d$^{-1}$) is derived on a daily basis as (Running et al., 2000, 2004; Heinsch et al., 2003; Zhao et al., 2008):

\[
GPP = \xi \cdot FPAR \cdot PAR
\]

\[
\xi = \xi_{\text{max}} \cdot T_f \cdot VPD_f
\]
where ξ is a light use efficiency parameter (g C MJ$^{-1}$) for the conversion of photosynthetically active radiation (PAR, MJ m$^{-2}$ d$^{-1}$) to GPP, where PAR is assumed to represent 45% of downward solar shortwave radiation (SW_d); ξ_{max} is the potential maximum ξ under optimal conditions; T_f is a daily minimum temperature scalar that defines reductions in photosynthesis under low temperature conditions, while VPD_f is a vapor pressure deficit scalar that defines similar reductions under suboptimal surface air vapor pressure deficit and associated daytime water stress conditions. Both T_f and VPD_f are defined from T_{min} and VPD using simple photosynthetic response curves (Running et al., 2000, 2004; Heinsch et al., 2003; Zhao et al., 2008).

Net primary production (NPP, g C m$^{-2}$ yr$^{-1}$) is derived on an annual basis as the difference between the annual summation of daily net photosynthesis and autotrophic growth and maintenance respiration:

$$\text{NPP} = \sum_{1}^{365} (\text{GPP} - R_{\text{m,lr}}) - (R_{\text{m,w}} + R_g)$$ (2.3)

where $R_{\text{m,lr}}$ (g C m$^{-2}$ d$^{-1}$) is the daily maintenance respiration of leaves and fine roots; $R_{\text{m,w}}$ (g C m$^{-2}$ yr$^{-1}$) represents the annual maintenance respiration from live wood; and R_g (g C m$^{-2}$ yr$^{-1}$) represents annual growth respiration. The characteristic response curves for calculating these parameters vary according to major biomes as defined by a Biome Properties Look-Up Table (BPLUT), which was developed from stand level ecophysiological studies (White et al., 2000) and adjusted for the effects of regional meteorological and satellite-based FPAR/LAI data sets (Running et al., 2000; Zhao et al.,
2005). $GPP - R_{m_{br}}$ is used as the approximation of daily NPP. To drive the model, satellite-derived land cover, FPAR and LAI data are required with observed or reanalysis daily surface meteorological data including incident SW_d, T_{min}, T_{avg} and e_a to derive daily GPP and NPP.

2.4. Uncertainty and Sensitivity Analysis of PEM Output

2.4.1. Uncertainty and Sensitivity Analysis Scheme

I constructed the following experimental model and published it in Zhang et al. (2007) to determine the effects of ERA-40 and NNR reanalysis meteorological uncertainty on PEM based NPP calculations:

$$Y = f(d_{\text{SW}_d}, \tilde{e}_{\text{avg}}, \tilde{e}_{\text{min}}, \tilde{e}_{ea})$$

(2.4)

where d_{SW_d}, \tilde{e}_{avg}, \tilde{e}_{min} and \tilde{e}_{ea} are the samples from d_{SW_d}, e_{avg}, e_{min} and e_{ea} populations, respectively, which are defined as follows:

$$d_{\text{SW}_d} = \frac{SW_{\downarrow,\text{Obs}}}{SW_{\downarrow,\text{Res}}}$$

(2.5)

$$e_{\text{avg}} = T_{\text{avg,Obs}} - T_{\text{avg,Res}}$$

(2.6)

$$e_{\text{min}} = T_{\text{min,Obs}} - T_{\text{min,Res}}$$

(2.7)

$$e_{ea} = e_{a,\text{Obs}} - e_{a,\text{Res}}$$

(2.8)

where Obs denotes the observed value and Res denotes the reanalysis value. e_{avg}, e_{min} and e_{ea} are actually the residuals of T_{avg}, T_{min} and e_a, respectively. I multiplied
\(SW_{\text{Res}} \) by \(\tilde{d}_{SW} \), added \(\tilde{\epsilon}_{\text{avg}} \) to \(T_{\text{avg,Res}} \), added \(\tilde{\epsilon}_{\text{min}} \) to \(T_{\text{min,Res}} \) and added \(\tilde{\epsilon}_e \) to \(e_{a,\text{Res}} \) to produce the experimental input data. I used both reanalysis and experimental data with the PEM model to calculate NPP. Finally, I determined \(Y \) by subtracting the NPP driven by the original reanalysis data from the corresponding experimental input data based NPP results. This provided a relatively simple approach for quantifying PEM error due to input data uncertainty, since \(Y \) denotes NPP variability resulting from differences between surface observation and reanalysis meteorological inputs.

To quantify the uncertainty of reanalysis surface meteorology, I first constructed cumulative distribution functions (CDFs) of \(d_{SW}, \epsilon_{\text{avg}}, \epsilon_{\text{min}} \) and \(e_e \). Then, I used a Latin hypercube approach (Helton & Davis, 2003) to sample input variables of the experimental model by: (i) dividing the range of each variable into \(nS \) (\(nS = 99 \) in this experiment) disjoint intervals of equal probability and selecting one value randomly from each interval; (ii) pairing the \(nS \) values of \(\tilde{d}_{SW} \) randomly without replacement with the \(nS \) values for \(\tilde{\epsilon}_{\text{avg}} \) to produce \(nS \) pairs; (iii) combining the \(nS \) pairs randomly without replacement with the \(nS \) values for \(\tilde{\epsilon}_{\text{min}} \) to produce \(nS \) triples; (iv) combining the \(nS \) triples randomly without replacement with the \(nS \) values for \(\tilde{\epsilon}_e \) to produce \(nS \) quadruples.

To determine whether the distribution of points in the scatter plots is nonrandom, (i.e. the significance of \(d_{SW}, \epsilon_{\text{avg}}, \epsilon_{\text{min}} \) and \(e_e \) effects on \(Y \)), I used (i) statistical independence (SI) and (ii) entropy tests (Helton et al., 2006). Both of these tests are based on a gridding method. In this study, I used a 5 by 5 grid. I (i) divided the range of
\(x(d_{SW}, e_{reg}, e_{\tau_{max}} \text{ and } e_{\epsilon}) \) into \(n_x (n_x = 5) \) mutually exclusive and exhaustive subintervals containing equal numbers of sampled values, (ii) divided the range of \(y \) (i.e. \(Y \)) into \(n_y (n_y = 5) \) mutually exclusive and exhaustive subintervals containing equal numbers of sampled values, and (iii) counted the number of each cell \(nO_{rc} \). The statistic in the SI test is defined as:

\[
T = \sum_{c=1}^{n_x} \sum_{r=1}^{n_y} \left(nO_{rc} - nE_{rc} \right) / nE_{rc}
\]

(2.9)

where \(nE_{rc} = nS / (n_x \cdot n_y) \) is an estimate of the expected number of observations that should fall in cell \((r, c)\); and \(nS \) is the sample size. Asymptotically, \(T \) follows a \(\chi^2 \)-distribution with \((n_x - 1)(n_y - 1)\) degrees of freedom when \(x \) and \(y \) are independent. Thus, \(\text{prob}_{\chi^2} \left[T > T(n_x - 1)(n_y - 1) \right] \) is the probability (i.e. \(p \)-value) of obtaining a value of \(T \) that exceeds \(T \) when \(x \) and \(y \) are independent. Measures of entropy provide another grid-based procedure to assess the strength of nonlinear relationships between \(x \) and \(y \). The following quantities are defined as (Helton et al., 2006):

\[
H(y) = -\sum_{r=1}^{n_y} \left(n_{y_r} / nS \right) \ln \left(n_{y_r} / nS \right)
\]

(2.10)

\[
H(x) = -\sum_{c=1}^{n_x} \left(n_{x_c} / nS \right) \ln \left(n_{x_c} / nS \right)
\]

(2.11)

\[
H(y,x) = -\sum_{r=1}^{n_y} \sum_{c=1}^{n_x} \left(nO_{rc} / nS \right) \ln \left(nO_{rc} / nS \right)
\]

(2.12)

\[
U(y,x) = 2[H(y) + H(x) - H(y,x)]/[H(y) + H(x)]
\]

(2.13)
where n_c is the number of points in column c; n_r is the number of points in row r;

$H(y)$ and $H(x)$ are estimates of the entropy associated with y and x; and $U(y, x)$ is the entropy-based measure of the strength of the association between x and y.

2.4.2. Implementation of the Uncertainty and Sensitivity Analysis Schemes

In this part of the study, I used satellite-derived vegetation properties including monthly FPAR and LAI from the NOAA AVHRR Pathfinder (PAL) 16 km data set from 1982 to 2000 (Myneni et al., 1997b). The LAI and FPAR data are based on a monthly maximum value compositing of AVHRR spectral reflectance data to mitigate cloud cover, smoke, and other atmospheric aerosol contamination effects. These data were reprojected to the 25-km polar EASE-grid format using a nearest-neighbor resampling scheme. The monthly LAI and FPAR data were then resampled to a daily time step by temporal linear interpolation of adjacent monthly values. The daily linear interpolation approach used for this investigation is a relatively simple, but effective means for producing a daily FPAR and LAI time-series for PEM simulations and has been used extensively for global vegetation analyses of the AVHRR Pathfinder series (Kimball et al., 2006; Myneni et al., 1997a; Nemani et al., 2003).

In this study, V_{PD} is calculated from daily average air temperature (T_{avg}) and mean daily atmospheric vapor pressure (e_a). Therefore, the actual PEM daily climate drivers include SW_{rad}, T_{min}, T_{avg} and e_a. I applied the above uncertainty and sensitivity analysis scheme (section 2.4.1) for the six general biome types defined by the regional land cover map, including evergreen needleleaf forest (ENF), deciduous needleleaf forest
(DNF), mixed forest (MF), open shrubland (OSH, i.e. tundra), grassland (GRS) and cropland (CRP), to evaluate the effects of uncertainties in the meteorology reanalyses on the satellite-derived NPP. I generated 99 samples from the cumulative distribution functions (CDFs) (Figure 2-4) of $\varepsilon_{T_{avg}}$, $\varepsilon_{T_{min}}$, e_a and d_{SW_i} to drive the experimental models and derived corresponding scatter plots (Figure 2-5) of Y against d_{SW_i}, $\varepsilon_{T_{avg}}$, $\varepsilon_{T_{min}}$ and e_a for the six general biome types in the pan-Arctic region for both reanalyses.

Figure 2-4: The cumulative distribution functions of $\varepsilon_{T_{avg}}$, $\varepsilon_{T_{min}}$, e_a and d_{SW_i} from ERA-40 and NNR.
Figure 2-5: Scatter plots of Y vs. ε_{avg}, ε_{min}, ε_{ea} and d_{SW}, from ERA-40 (top) and NNR (bottom) for the six general biome types. The 5×5 grid for the SI and entropy tests is also shown in the graphs.
For the two meteorology reanalyses and the six vegetation types, the scatter plots of y vs. d_{SW} show the most obvious non-random patterns followed by the scatter plots of y vs. temperature residuals (ε_{avg} and ε_{min}) (Figure 2-5), while the patterns of y vs. e_a are closest to the random pattern. The results of the SI and entropy tests are presented in Table 2-3. The higher values for χ^2 and $U(y,x)$ indicate that y is more sensitive to x. I also calculated the P-value for the χ^2 test (Table 2-3). These results are similar for both SI and entropy tests and indicate that PEM based NPP derived from ERA-40 is primarily sensitive to uncertainty in SW, followed by air temperature (T_{min} and T_{avg}) as a significant source of model uncertainty for all major biomes within the domain. However, the relative importance of T_{min} and T_{avg} to PEM based NPP varies for individual biome types. Though ERA-40 shows generally more accurate representation of T_{avg} than T_{min} (Figure 2-3; Table 2-1), the uncertainty in T_{avg} yields similar impacts on PEM based NPP as the uncertainty in T_{min}. This response occurs because T_{avg} controls model calculations of VPD and vegetation autotrophic respiration. When T_{avg} is underestimated (Figure 2-3), both respiration and VPD are correspondingly underestimated. The latter result can also lead to overestimation of GPP. The coupled effects of these processes can therefore magnify model sensitivity to T_{avg} error. ERA-40 shows relatively accurate representation of e_a; relative to the above parameters, e_a uncertainty for this investigation does not have a significant impact on PEM based NPP results.
Table 2-3. Comparison of grid-based SI test and Entropy values between sensitivity experiment and ERA-40 and NNR uncertainty.

Variable	ERA-40		NNR												
	SI test	Entropy													
	χ^2	p-Value	$U(y, x)$												
ENF															
d_{SW}	109.33	<0.0001	0.3814												
$\varepsilon_{T_{sw}}$	33.07	0.0072	0.1352												
$\varepsilon_{e_{sw}}$	27.52	0.0361	0.0868												
ε_{e_s}	15.90	0.4600	0.0514												
DNF															
d_{SW}	108.83	<0.0001	0.3446												
$\varepsilon_{T_{sw}}$	41.66	0.0004	0.1608												
$\varepsilon_{e_{sw}}$	30.04	0.0178	0.1005												
ε_{e_s}	14.89	0.5327	0.0482												
MF															
d_{SW}	120.44	<0.0001	0.3900												
$\varepsilon_{T_{sw}}$	36.61	0.0024	0.1448												
$\varepsilon_{e_{sw}}$	32.57	0.0084	0.1198												
ε_{e_s}	13.37	0.6455	0.0450												
OSH															
d_{SW}	104.28	<0.0001	0.3599												
$\varepsilon_{T_{sw}}$	38.63	0.0012	0.1197												
$\varepsilon_{e_{sw}}$	21.96	0.1445	0.0825												
ε_{e_s}	15.90	0.4600	0.0505												
GRS															
d_{SW}	110.34	<0.0001	0.3785												
$\varepsilon_{T_{sw}}$	37.62	0.0017	0.1137												
$\varepsilon_{e_{sw}}$	26.00	0.0540	0.0953												
ε_{e_s}	20.44	0.2011	0.0641												
CRP															
d_{SW}	124.99	<0.0001	0.4087												
$\varepsilon_{T_{sw}}$	33.07	0.0072	0.1352												
$\varepsilon_{e_{sw}}$	31.05	0.0133	0.1019												
ε_{e_s}	13.37	0.6455	0.0641												

a Both SI test and entropy test were based on a 5×5 grid; b The degrees of freedom were 16.
Analyses of the PEM results derived from the NNR daily meteorology are similar to the ERA-40 based results and indicate that SW_\downarrow and temperatures (T_{min} and T_{avg}) are the most important sources of model NPP uncertainty. Uncertainty in NNR e_a also had the lowest impact on PEM based NPP. The generally low accuracy of SW_\downarrow and considerable biases in temperature inputs (Figure 2-1; Table 2-1; Table 2-2) relative to e_a uncertainty yield much larger negative impacts on PEM based NPP results.

Overall, these results show considerable uncertainties in both reanalyses, that significantly impact the spatial and temporal accuracy of PEM based NPP calculations. The ability of regional models to capture the magnitude and spatial and temporal variability in vegetation productivity for the region would be dramatically enhanced if future reanalyses can improve the representation of daily surface meteorology at northern latitudes.

2.4.3. Comparison between PEM NPP Results Driven by ERA-40 and NNR

The spatial distribution of PEM based mean annual NPP (g C m$^{-2}$ yr$^{-1}$) derived from the two reanalyses for the 19-year (1982-2000) study period are shown in Figure 2-6. The respective mean annual NPP calculations over the entire vegetated area were 257.5 ± 103.9 g C m2 yr$^{-1}$ and 398.3 ± 172.0 g C m2 yr$^{-1}$ using ERA-40 and NNR inputs. Calculated mean annual NPP values for the major regional biomes are shown in Table 2-4. The NNR derived mean annual NPP is approximately 54.7% larger than the ERA-40 derived results. The primary reason for this discrepancy is that SW_\downarrow from NNR is approximately 39.8% greater than ERA-40 radiation inputs for the region, while NNR
Figure 2-6: Mean annual NPP (g C m$^{-2}$ yr$^{-1}$) derived from PEM calculations driven by ERA-40 (a) and NNR (b) over the pan-Arctic domain and 19-year (1982-2000) study period. The NPP (c) and SW_\downarrow (d) difference maps refer to NNR less ERA-40 results.
Table 2-4. Comparison of PEM based NPP results derived from ERA-40 and NNR inputs for the major biomes within the study domain.

<table>
<thead>
<tr>
<th>Veg. Type</th>
<th>PEM NPP driven by ERA-40 (g C m(^{-2}) yr(^{-1}))</th>
<th>PEM NPP driven by NNR (g C m(^{-2}) yr(^{-1}))</th>
<th>Observational Estimates (g C m(^{-2}) yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(^{a})Uncorrected</td>
<td>(^{b})Corrected</td>
<td>Uncorrected</td>
</tr>
<tr>
<td>ENF</td>
<td>294.2 ± 99.4</td>
<td>167.0 ± 99.4</td>
<td>500.0 ± 149.9</td>
</tr>
<tr>
<td>DNF</td>
<td>248.8 ± 74.0</td>
<td>136.3 ± 74.0</td>
<td>438.1 ± 121.5</td>
</tr>
<tr>
<td>MF</td>
<td>344.2 ± 113.1</td>
<td>201.6 ± 113.1</td>
<td>552.6 ± 158.3</td>
</tr>
<tr>
<td>OSH</td>
<td>206.9 ± 75.1</td>
<td>123.0 ± 75.1</td>
<td>293.8 ± 114.8</td>
</tr>
<tr>
<td>GRS</td>
<td>248.6 ± 75.2</td>
<td>158.0 ± 75.2</td>
<td>312.9 ± 112.1</td>
</tr>
<tr>
<td>CRP</td>
<td>298.9 ± 99.0</td>
<td>181.3 ± 99.0</td>
<td>441.6 ± 152.8</td>
</tr>
</tbody>
</table>

\(^{a}\)Mean annual NPP ± standard deviations for 1982-2000 period.
\(^{b}\)The average NPP difference from the sensitivity experiment was used as the error-correcting term.
\(^{c}\)Values for Siberian and European forests (Schulze et al., 1999).
\(^{d}\)Values for mature spruce forests in central Alaska (Ruess et al., 1996).
\(^{e}\)Values for boreal forests in central Canada (Gower et al., 1997b).
\(^{f}\)From (Saugier et al., 2001) and (Shaver & Jonasson, 2001).
\(^{g}\)From (Olson et al., 2001).

\(T_{avg}\) inputs were approximately 1.1 °C lower, on average, than ERA-40 temperatures.

Higher \(SW_{down}\) resulted in increases in PEM based GPP, while lower \(T_{avg}\) reduced calculated respiration rates; both of these factors resulted in relatively large increases in annual NPP calculations. A map of the mean \(SW_{down}\) difference between the two reanalyses indicates that NNR solar radiation inputs exceeded the ERA-40 values over most of the domain (Figure 2-6). Based on comparisons of reanalysis and observed climate data, the ERA-40 surface meteorology appears to be relatively more reliable. Therefore, the generally lower NPP results derived from the ERA-40 reanalysis may be more realistic than the more productive results derived from NNR.
The Y parameter in Equation 2.4 (i.e., the difference between mean annual NPP values derived from experimental data and original reanalysis data) provides an error-correcting term for adjusting NPP calculations to better reflect surface meteorological observations. The adjusted NPP results are summarized in Table 2-4 for the major regional biomes. These results are quite similar to NPP values reported in the literature for major vegetation types within the domain. Annual NPP for Arctic tundra has been reported to range from approximately 70 g C m$^{-2}$ yr$^{-1}$ for low tundra shrub communities of the high Arctic up to 500 g C m$^{-2}$ yr$^{-1}$ for tall shrub communities for the low Arctic, with an average level of approximately 90 g C m$^{-2}$ yr$^{-1}$ for the global tundra biome (Saugier et al., 2001; Shaver & Jonasson, 2001). Boreal NPP has been reported to range from 123 to 460 g C m$^{-2}$ yr$^{-1}$ for Siberian and European forests, respectively, based on chronosequence studies and national forestry statistics (Schulze et al., 1999). NPP values for mature spruce forests in central Alaska were reported to be approximately 225 g C m$^{-2}$ yr$^{-1}$ (Ruess et al., 1996), while values reported for boreal forests in central Canada range from 226 to 478 g C m$^{-2}$ yr$^{-1}$ (Gower et al., 1997a). NPP observations for grasslands within the region range from 137 to 477 g C m$^{-2}$ yr$^{-1}$ and generally show intermediate levels of productivity between tundra and boreal forest biomes (Olson et al., 2001).

Despite large differences in SW_{\downarrow} between ERA-40 and NNR, both data sets generally capture the 19-year meteorological trend for the domain (see Section 2.2.2). Though the sensitivity analysis shows that uncertainty in temperature and SW_{\downarrow} inputs had the largest impact on PEM based NPP for both reanalyses, the comparison of annual variability in the model results indicates that this uncertainty does not result in large
differences in NPP anomalies. The reason for this pattern is that SW_\downarrow in both reanalyses shows only small and insignificant variability over the 19-year study period despite generally poor correspondence between reanalysis and observed SW_\downarrow anomalies. In addition, reanalysis temperature anomalies were highly correlated with observed temperature anomalies. However, in some regions, e.g. Southern Alaska and Southern Eurasia, reanalysis over predictions of SW_\downarrow exaggerated predicted NPP magnitudes and temporal anomalies.

Statistical analysis of these results indicated that annual NPP variability derived from both reanalyses was primarily driven by changes in terrestrial vegetation cover as detected by satellite LAI measurements ($r = 0.73$, $P < 0.001$ for PEM NPP driven by ERA-40; $r = 0.76$, $P < 0.001$ for PEM NPP driven by NNR) (Figure 2-7). The positive trend in LAI and NPP for the 19-year period has been attributed to earlier thawing and increasing growing season length with regional warming (Kimball et al., 2006; Lucht et al., 2002). Of the climatic variables, air temperature was the primary driver of annual NPP variability as derived from ERA-40 ($r = 0.22$, $P = 0.1840$) and NNR ($r = 0.45$, $P = 0.0264$) reanalysis climate drivers. The NPP response to air temperature was generally larger using NNR inputs relative to ERA-40, though calculated NPP anomalies and regional trends derived from both reanalyses were generally quite similar.

The calculated annual NPP anomalies derived from the two reanalyses for the pan-Arctic domain and 19-year study period are shown in Figure 2-7. Calculated mean
Figure 2-7: The calculated annual NPP anomalies for the pan-Arctic domain and 19-year study period using ERA-40 and NNR drivers for the PEM simulations; the AVHRR PAL derived mean and maximum annual LAI anomalies (relative to long-term mean) for the domain are also shown.

Annual NPP for the entire vegetated domain increased by 0.372 g C m$^{-2}$ yr$^{-1}$ and 1.024 g C m$^{-2}$ yr$^{-1}$ over the 19-year period as derived from ERA-40 and NNR drivers, respectively. These regional trends are not statistically significant, though the temporal NPP trends for some regions were significant. Maps of the spatial pattern of the multi-year NPP trends are presented in Figure 2-8. The PEM results from the two reanalyses showed similar NPP trends for 74.7% of the vegetated study region (Figure 2-8). The latitudinal and longitudinal distributions of the multi-year NPP trends for the domain also showed generally similar patterns between ERA-40 and NNR results, though NNR results showed larger variations (Figure 2-9). In regions above 65° N, the multi-year NPP trends
Figure 2-8: Spatial pattern of the multi-year trend in PEM based annual NPP (g C m\(^{-2}\) yr\(^{-1}\)) over the 19-year study period across the study domain excluding permanent ice and snow, open water and barren land as derived from ERA-40 (a) and NNR (b) inputs; a map of associated differences in NPP trends from these results is also shown (c).

showed similar patterns between ERA-40 and NNR results, while NNR results showed much larger NPP trends in regions between 46° N and 62° N. In regions between 160° W and 130° W and between 45° E and 90° E, NNR results also showed greatly exaggerated NPP trends relative to ERA-40 results. These latitudinal and longitudinal differences are largely due to over prediction of the NNR results across southern Alaska, and western and southern Eurasia relative to ERA-40 results (Figure 2-6). In this study, I only assessed the sensitivity and relative uncertainty of regional NPP simulations of the pan-Arctic basin and Alaska in response to uncertainties in surface meteorological inputs. However, model NPP results may also be negatively impacted by uncertainties in satellite remote sensing inputs including the PAL LAI/FPAR product, which incorporates uncertainties from dropped scan lines, navigation errors, data drop outs, edge-of-orbit composite discontinuities and other artifacts from the PAL NDVI (Tucker et al., 2005). A NASA Global Inventory Modeling and Mapping Studies (NASA GIMMS) NDVI
product has attempted to correct most of the above problems and is currently available at \(\frac{1}{4} \) degree resolution (Pinzon et al., 2005). However, at the time of this investigation there was no alternative GIMMS LAI/FPAR product with similar spatial resolution to the 16 km PAL LAI/FPAR product.

![Graph](image)

Figure 2-9: Mean latitudinal (a) and longitudinal (b) distributions of the 19-year trends in PEM based annual NPP (g C m\(^{-2}\) yr\(^{-1}\)) across the study domain as derived from the two reanalyses.
2.5. Regional Correction of Meteorology Reanalyses

2.5.1. Regional Correction Scheme

Section 2.4 shows that there are considerable uncertainties in both ERA-40 and NNR meteorology reanalyses, especially S_{\downarrow}, T_{min} and T_{avg}, resulting in larger uncertainties in the satellite remote sensing based NPP estimates. Although the ERA-40 meteorology parameters generally show higher accuracies and lower biases than the NNR counterparts, the ERA-40 temporal coverage is confined between September 1957 and August 2002 (Uppala et al., 2005). However, the NNR products are available from 1948 to the present. Therefore, I chose the NNR products as the meteorology inputs to extend the study period over the more recent record. Due to the large uncertainties in S_{\downarrow} from the NNR, I used S_{\downarrow} from the NASA World Climate Research Programme/Global Energy and Water-Cycle Experiment (WCRP/GEWEX) Surface Radiation Budget (SRB) Project (http://eosweb.larc.nasa.gov/PRODOCS/srb/table_srb.html) data set instead of the NNR counterpart. Due to the relative high quality of the SRB solar radiation product (Gupta et al., 2001) and lack of direct solar radiation measurements in the region, I adopted the product without further corrections.

To reduce uncertainties in NNR inputs to the PEM, I applied a systematic correction of regional bias in the reanalysis daily surface meteorology through a local sample area correction method using surface observations of daily minimum and mean surface air temperatures and dew points from 1983–2005 for 6,164 weather stations distributed across the pan-Arctic domain following (Zhang et al., 2007). The following
approach is used to correct NNR daily meteorological data (T_{min}, T_{avg}, and e_a): (1) interpolate NNR daily meteorological data for each WMO ground station using an inverse distance squared method; (2) subtract the interpolated NNR data from corresponding surface observations for each station and define the differences as correction terms; (3) select the nearest four stations for each NNR pixel within the domain, calculate the mean correction terms using the inverse distance squared method, and add the correction terms to the original NNR meteorological data.

2.5.2. Validation of Corrected Meteorological Inputs

To verify the accuracy of the corrections, I calculated the interpolated meteorological variables for each station location using the corrected NNR. I then applied the same validation procedures in Section 2.2.1 to analyze the resulting meteorological error distributions. In addition, I analyzed both temporal and spatial distributions of errors in the corrected NNR daily meteorological inputs.

To verify the quality of solar radiation inputs, I compared both NNR and SRB solar radiation data with daily solar radiation observations from 17 sites distributed across Alaska from 1983–1990. These data were obtained from the National Solar Radiation Data Base (NSRDB; http://rredc.nrel.gov/solar/old_data/nsrdb/), whereas the same validation procedures in Section 2.2.1 were applied to assess product accuracy. Because of the extremely sparse regional observation network for solar radiation, I didn’t inspect the spatial distribution of errors in the radiation products; instead, I analyzed the temporal variation of errors using a one-way ANOVA.
Table 2-5. Comparison of accuracy in the original and corrected NNR climate data, NNR solar radiation, and NASA SRB solar radiation.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Error Distribution</th>
<th>Accuracy</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bar{e}</td>
<td>s_e</td>
<td>Q_{1st}</td>
<td>M_d</td>
</tr>
<tr>
<td>T_{avg} ($^\circ$C)</td>
<td>O</td>
<td>1.2</td>
<td>2.0</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.0</td>
<td>0.9</td>
<td>-0.3</td>
</tr>
<tr>
<td>T_{min} ($^\circ$C)</td>
<td>O</td>
<td>0.6</td>
<td>2.4</td>
<td>-0.8</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td><0.1</td>
<td>1.1</td>
<td>-0.4</td>
</tr>
<tr>
<td>e_a (Pa)</td>
<td>O</td>
<td>-93.5</td>
<td>72.9</td>
<td>-139.3</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.1</td>
<td>31.8</td>
<td>-10.4</td>
</tr>
<tr>
<td>SW_{down} (MJ m(^{-2}) d(^{-1}))</td>
<td>S</td>
<td>-3.6</td>
<td>4.2</td>
<td>-6.5</td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>-0.4</td>
<td>4.6</td>
<td>-2.7</td>
</tr>
</tbody>
</table>

\(\text{O and C indicate the original and corrected NNR reanalysis meteorology, respectively;}
\)
\(\text{N and S indicate the NNR reanalysis and NASA SRB;}
\)
\(\text{All correlation coefficients are significant at the level of 0.001.}
\)

The summary of error distributions for the original and corrected NNR meteorological inputs (T_{avg}, T_{min}, and e_a) relative to daily surface weather station network observations are shown in Table 2-5. The error distributions of the NNR and SRB solar radiation products are also shown in Table 2-5. These results show considerable uncertainties in the original NNR meteorological data. The original NNR shows substantial bias in mean errors for all four variables. Both T_{min} and T_{avg} are generally underestimated for the original NNR, while e_a is greatly overestimated. The mean errors of the three variables in the corrected NNR are near zero indicating that the corrected NNR should impart minimal bias to the NPP calculations. The quartile and median error statistics indicate that errors for all the three variables are slightly skewed, whereas errors in the corrected NNR show a normal distribution. The standard and mean absolute errors of these results indicate that the error spreads are greatly reduced by the
Figure 2-10: Maps of spatial error distributions of NNR T_{avg} (a), T_{min} (b), and e_a (c), and corrected NNR T_{avg} (d), T_{min} (e), and e_a (f). The errors were calculated as the average values of the differences between the reanalysis daily values (NNR or corrected NNR) and the daily observations (reanalysis - observations) from 1,644 WMO weather stations within the pan-Arctic region from 1983 to 2005.

corrections. Reductions in relative errors also indicate that the correction procedure greatly improves the accuracy of the NNR inputs. The correlation analysis also shows that correspondence between reanalysis and observations is greatly improved. These results indicate that the correction procedure effectively removed most uncertainties in NNR daily surface meteorological inputs relative to available surface weather station network observations.
The maps of error spatial distributions of both NNR and corrected NNR T_{avg}, T_{min} and e_a inputs (Figure 2-10) indicate that errors in the original NNR have significant spatial patterns, while errors in the corrected NNR meteorology are negligible and without strong spatial patterns. Analyses of error temporal variation also indicate that the errors are negligible and temporally independent in the corrected NNR (Figure 2-11).

Figure 2-11: Temporal comparison of mean annual residuals (standard deviations indicated by the bars) in corrected NNR T_{avg} (a), T_{min} (b) and e_a (c), and NASA/GEWEX SRB SW_{\downarrow} (d) estimated by comparing the observations from 1644 WMO weather stations from 1983 to 2005 and 17 NSRDB solar radiation stations from 1983 to 1990 within the pan-Arctic region. One-way ANOVA shows that the errors of corrected NNR T_{avg} ($P = 0.99$), T_{min} ($P > 0.99$), e_a ($P = 0.98$) and SW_{\downarrow} ($P = 0.90$) are insignificantly temporally different, i.e. temporally independent.
Table 2-6. Comparison of estimated average errors of three PEM NPP series derived from the following meteorological inputs: 1) corrected NNR T_{avg}, T_{min}, and e_a, and NASA SRB SW_\downarrow; 2) corrected NNR T_{avg}, T_{min} and e_a, and NNR SW_\downarrow; 3) NNR T_{avg}, T_{min}, e_a, and SW_\downarrow using the uncertainty and sensitivity analysis procedure (Section 2.4.1). Different letters denote significant ($P < 0.05, n = 99$) differences between NPP errors derived from the different meteorology inputs according to the S-N-K ANOVA.

<table>
<thead>
<tr>
<th>Vegetation Type</th>
<th>Estimated Mean Residuals of PEM NPP (g C m$^{-2}$ yr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Driven by Meteorology Inputs #1</td>
</tr>
<tr>
<td>Boreal Forest</td>
<td>-27.26a</td>
</tr>
<tr>
<td>Tundra</td>
<td>-14.60a</td>
</tr>
</tbody>
</table>

Although both NNR and SRB solar radiation data are overestimated relative to the 17 station observation series, the mean error of SRB solar radiation is near zero and much smaller than the NNR product. The SRB error distribution spread is also much smaller than the NNR product. Although the NNR solar radiation has a somewhat higher correlation with the observations than the SRB, both the relative error and error spread statistics indicate that the SRB is more accurate than the NNR solar radiation product for the study region. Temporal error analysis of SRB SW_\downarrow (Figure 2-11) also indicates that the errors are small and temporally independent.

The sensitivity and error propagation analyses are consistent with previous findings that NNR solar radiation is the primary source of PEM-based NPP uncertainty for the pan-Arctic region (Table 2-6). The use of SRB SW_\downarrow instead of NNR SW_\downarrow significantly ($P < 0.05$) reduced associated NPP estimation uncertainty for the two main biomes (Table 2-6). The correction of NNR T_{avg}, T_{min} and e_a also significantly ($P < 0.05$) decreased uncertainty in PEM based NPP calculations for the two main biomes (Table 2-
Mean annual NPP for the region derived from corrected NNR and SRB inputs was overestimated by approximately 4.8%, which is much lower than relative error (61.6%) produced from NNR radiation inputs (Zhang et al., 2007).

2.6. Summary

In this chapter, I applied the above statistical methods to validate the qualities of the widely used meteorology reanalysis products which are necessary for the satellite remote sensing based vegetation productivity retrievals. I also developed an uncertainty and sensitivity analysis scheme to quantify the effects of uncertainties in the meteorology reanalyses on the satellite remote sensing based vegetation productivity estimates. The study clearly points out that there are considerable uncertainties in the meteorology reanalyses, resulting in large uncertainties and biases in the corresponding vegetation productivity estimates.

To minimize the uncertainties in the meteorology reanalysis and maximize the quality of vegetation productivity estimates, I developed a regional meteorology correction scheme to correct the temperature and atmospheric water vapor pressure parameters in the NNR using the ground observation network and replaced the NNR solar radiation parameter with the satellite-derived NASA/GEWEX SRB solar radiation product.

Regional correction of the NNR surface meteorology and use of the NASA/GEWEX SRB solar radiation product substantially reduced uncertainties and biases in the meteorology inputs for the vegetation productivity estimates and
significantly improved the accuracy and reliability of the vegetation productivity estimates.

2.7. References Cited

CHAPTER 3: CLIMATE-DRIVEN CHANGES IN PAN-ARCTIC VEGETATION PRODUCTIVITY

3.1. Quantification of Climatic Constraints to PEM-based Vegetation Productivity

Low temperature, water stress and limited solar irradiance are the primary environmental constraints on vegetation activity and productivity in the pan-Arctic domain (Chapin III et al., 1986; Jolly et al., 2005; Nemani et al., 2003; Running et al., 2004). Figure 3-1 shows the geographic distribution of potential climatic constraints to vegetation productivity. Low temperature and water stress have experienced substantial changes in this region during the recent decades (see Section 1.2.2), while incoming solar radiation on the ground can be impacted by the changes in cloud cover and atmospheric aerosols.

Figure 3-1: Geographic distribution of potential climatic constraints to vegetation productivity derived from long-term climate statistics. Data are from Nemani et al. (2003). This graph is provided by Running et al. (2004).
To quantify the effects of low-temperature and moisture constraints to NPP, I defined a low-temperature stress index (I_t), and a moisture stress index (I_m) based on the original MOD17A2/A3 algorithms (Heinsch et al., 2003; Running et al., 2004; Running et al., 2000; Zhao et al., 2008):

$$I_t = 1 - T_f$$ \hspace{2cm} (3.1)

$$I_m = 1 - VPD_f$$ \hspace{2cm} (3.2)

The I_t and I_m parameters are dimensionless, ranging from 0 to 1 with increasing low-temperature and moisture constraints to GPP and NPP (Figure 3-2). I calculated potential NPP ($NPP_{\text{potential}}$) under non limiting atmospheric conditions by removing both low-temperature and moisture constraints to the PEM calculations. I then calculated NPP using only moisture (NPP_M) and low-temperature (NPP_T) constraints, respectively.
Finally, I determined the proportional (%) losses of potential NPP due to moisture
\((\delta \text{loss}_M)\) and low-temperature \((\delta \text{loss}_T)\) constraints according to the following definitions:

\[
\delta \text{loss}_M = \frac{NPP_{\text{Potential}} - NPP_M}{NPP_{\text{Potential}}} \times 100
\]

\[
\delta \text{loss}_T = \frac{NPP_{\text{Potential}} - NPP_T}{NPP_{\text{Potential}}} \times 100
\]

The study period for analyzing climatic constraints and vegetation productivity are from 1983 to 2005 based on the availability of meteorology reanalysis, solar radiation data and satellite-derived vegetation attributes. To verify changes in moisture availability for the domain, a simple climate moisture index (CMI) (Hogg, 1997; Hogg et al., 2005; Hogg et al., 2008; Hogg & Wein, 2005) was computed as the difference between annual precipitation (P) and potential evapotranspiration (PET), where PET was calculated using a simplified Penman-Monteith approach (Hogg, 1997). The CMI was derived on a 12-month period basis ending on 31 July of each given year from 1974–2005 using regional weather station observations of daily air temperature and precipitation provided by the NCDC CSB Global Surface Summary of the Day. The total number of NCDC CSB stations used to compute the CMI varied annually and ranged from 2,053 to 2,924 stations per year for the domain.

To evaluate the potential effects of incoming solar radiation on vegetation productivity, I also analyzed the spatial change patterns and temporal trends of incoming solar radiation within the pan-Arctic region.
3.2. Satellite FPAR/LAI Inputs

In this study, I used satellite-derived vegetation properties including monthly FPAR and LAI from the NOAA AVHRR PAL (Pathfinder AVHRR Land) 16-km resolution data set (Myneni et al., 1997b) and 8-day FPAR and LAI from the NASA MODIS MOD15 1-km resolution data set (Myneni et al., 2002). The AVHRR PAL FPAR/LAI data are only available from 1982 to 2000, while the MODIS MOD15 FPAR/LAI data are ongoing and available since 2000. Because the NASA/GEWEX SRB shortwave solar radiation data were only available from 1983 to 2005 during this study, I chose 1983–2005 as the study period. A NASA Global Inventory Modeling and Mapping Studies (NASA GIMMS) NDVI product has made some improvements over the AVHRR PAL product and is currently available at 8-km resolution (Pinzon et al., 2005). However, there is currently no alternative GIMMS FPAR/LAI product with similar spatial resolution to the 16-km PAL data set for the study period.

3.2.1. Integration of AVHRR-MODIS FPAR/LAI Time Series

To produce a continuous time series estimation of annual NPP from 1983 to 2005, I first employed a pixel-wise linear regression method to combine the two FPAR/LAI series into a single, continuous record, and then derived the long-term NPP record using the integrated AVHRR-MODIS FPAR/LAI series.

The AVHRR PAL FPAR/LAI data are based on a monthly maximum value compositing of AVHRR spectral reflectance data to mitigate cloud cover, smoke, and other atmospheric aerosol contamination effects. To be consistent with the spatial resolution of the AVHRR PAL FPAR/LAI data, the 8-day 1-km MODIS FPAR/LAI data
were first interpolated to a daily time step by removing cloud contamination and snow effects indicated by the MOD15A2 QC fields (Zhao et al., 2005), followed by temporal linear interpolation of adjacent 8-day values to a daily time step, and spatial aggregation to a 16-km resolution by averaging the FPAR/LAI values of the dominant land cover class. The following procedures were then used to combine the two series: (1) derive monthly maximum values of MODIS FPAR/LAI for each pixel for 2000; (2) regress monthly MODIS FPAR/LAI on corresponding AVHRR FPAR/LAI for the overlapping period in 2000 using simple linear regression on a pixel-by-pixel basis; (3) use the resulting regression equations to adjust the AVHRR FPAR/LAI time series and compute an integrated AVHRR-MODIS FPAR/LAI monthly time series from 1983–2005. Although alternate regressions based on regional groupings by land cover type would increase the sample size for the linear regressions, this approach would not account for the considerable spatial variation in the relationships between AVHRR and MODIS FPAR/LAI series, limiting the accuracy and reliability of this approach. The corrected monthly AVHRR PAL FPAR/LAI data were then resampled to a daily time step by temporal linear interpolation of adjacent monthly values. The daily linear interpolation approach used for this investigation is a relatively simple, but effective means for producing a daily FPAR and LAI time-series for PEM simulations and has been used extensively for global vegetation analyses of the AVHRR Pathfinder series e.g. (Kimball et al., 2006b; Zhang et al., 2007b). Finally, the combined data were reprojected to the 25 km polar EASE-grid format using a nearest-neighbor resampling scheme.

There are three primary justifications for the above integration methods. First, the two products reflect quasi-simultaneous satellite observations of the same objects and
show strong, positive correlations for most pixels. Although the observations were acquired from different sensors, similar physical mechanisms and models (Myneni et al., 2002; Myneni et al., 1997b) were used to produce each FPAR/LAI series. Second, the simple linear regression method is a global unbiased method which guarantees a reasonable error distribution and simplifies the evaluation of errors. Finally, the simple linear regression only involves linear transformation of the AVHRR FPAR/LAI time series, which conserves the same general trend as the original data series.

3.2.2. Validation of the Integrated FPAR/LAI Time Series

To verify the consistency of our results, I compared the corrected monthly AVHRR FPAR/LAI series with corresponding MODIS FPAR/LAI values for 2000 by analyzing the error distribution and correlation results using the validation procedure in Section 2.2.1. In the validation procedure, I regarded the MODIS FPAR/LAI time series as “truth”, while acknowledging that while MODIS has improved precision over AVHRR, there is no truly error free FPAR/LAI data set.

To evaluate the potential propagation of errors from integrated FPAR/LAI inputs on PEM based NPP calculations, I calculated 95% confidence intervals for estimated NPP before 2000. Due to the normal distributions of the errors for both LAI and FPAR, and the strong association between these variables, I assume that the errors for both LAI and FPAR have similar normal distributions. By adding and/or subtracting one standard error to LAI and FPAR inputs in combination and individually, I established 95% confidence intervals for the resulting PEM calculations.
To assess the role of the historical FPAR/LAI record in determining the observed interannual variation in NPP and associated sensitivity of PEM calculations to the AVHRR-MODIS integrated FPAR/LAI series, I conducted a sensitivity analysis by calculating NPP over the 23-year time series using a constant, average seasonal FPAR/LAI time series (i.e., the 23-year means) on a pixel-by-pixel basis. I then assessed differences between these results and the NPP series derived from the historical FPAR/LAI record.

3.3. Timings of Growing Season Onset and End

I used the daily NPP series in each year to derive annual growing season onset ($T_{\text{NPP_Onset}}$) and end ($T_{\text{NPP_End}}$) using a 7-day moving window method. To determine the annual timing of growing season onset, (1) I applied the 7-day moving window over the daily NPP time series on a year-by-year basis; (2) for each 7-day increment I checked whether there were five or more days with positive daily NPP values; (3) if not, the window progressed one day forward and step (2) was repeated; (4) if yes, the first day with positive daily NPP in the 7-day window was assigned as the start of the growing season. A similar method was used to determine the timing of growing season end, but with the moving window applied in reverse, finding the first 7-day period with five or more days of positive NPP and selecting the final positive NPP day as the growing season end date. A schematic representation of this search method is listed in Figure 3-3 (a).
Figure 3-3: Schematic representations for deriving (a) the onset and end of growing season using 7-day moving window along the daily NPP time series and (b) the spring 0-ppm crossing point from the monthly anomalies of atmospheric CO₂ concentrations.

Figure 3-4: Locations of NOAA GMD atmospheric CO₂ monitoring stations across the pan-Arctic region (>50°N).

I compared the daily NPP-derived growing season onset results with the timing of spring drawdown of atmospheric CO₂ concentrations ($T_{CO2, Spr}$) (Zhang et al., 2007a)
derived from NOAA GMD (Global Monitoring Division) monitoring stations across the pan-Arctic region (>50°N) (Figure 3-4), including BRW (71°N), ALT (82°N), MBC (76°N), STM (66°N), CBA (55°N), ICE (63°N), SHM(52°N), SUM (72°N), and ZEP (79°N) stations (GLOBALVIEW-CO2, 2006), to assess relative agreement between the satellite record and atmospheric CO₂ concentrations regarding recent trends and annual anomalies in northern growing season dynamics with regional warming. The average of the nine stations’ mean monthly records were normalized as the difference between monthly and mean annual CO₂ concentrations for each year. The timing of the spring 0-ppm crossing date represents the X-intercept of the normalized monthly CO₂ transition from positive (winter) to negative (summer) conditions (Figure 3-3 (b)) and is an indication of the seasonal timing of vegetation photosynthetic activity (Keeling et al., 1996; Randerson et al., 1997). Previous studies have shown that the seasonal atmospheric CO₂ cycle at high northern latitudes is dominated largely by northern terrestrial ecosystems, with minimal impacts from ocean exchange, fossil fuel emissions, and tropical biomass burning (Erickson et al., 1996; Heimann et al., 1998; Randerson et al., 1997).

3.4. Remote Sensing of Vegetation Greenness

The Normalized Difference Vegetation Index (NDVI) is a widely used remote sensing metric of the vegetation greenness and is defined as (Tucker, 1979):

\[
\text{NDVI} = \frac{\rho_{\text{NIR}} - \rho_{\text{Red}}}{\rho_{\text{NIR}} + \rho_{\text{Red}}} \quad (3.5)
\]
where ρ_{NIR} and ρ_{Red} are the spectral reflectance measurements acquired by sensors onboard satellites or other platforms in the red and near-infrared (NIR) bands, respectively. These spectral reflectance values are themselves ratios of reflected over the incoming radiation in each spectral band; hence they take on values between 0 and 1. By design, the NDVI varies between -1.0 and +1.0. The NDVI is built on the observation that chlorophylls a and b in green leaves strongly absorb light in the red, with maximum absorption at about 690 nm, while the cell walls strongly scatter (reflect and transmit) light in the NIR region (about 850 nm). Therefore, the value of NDVI is strongly sensitive to photosynthetic canopy cover (e.g. Tucker, 1979). As a result, dense vegetation has a high NDVI, while soil values are low but positive, and values over open water are negative due to strong absorption in the NIR.

The NOAA Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) NDVI (Pinzon et al., 2005; Tucker et al., 2005) record extends from 1981 to present and provides the longest continuous record of vegetation greenness on a global scale. The AVHRR GIMMS NDVI record is available at 8-km spatial resolution and twice monthly temporal repeat.

3.5. Remote Sensing of Landscape Freeze-Thaw

Annual vegetation productivity and carbon cycle dynamics for pan-arctic ecosystems are strongly regulated by seasonal cold temperature constraints to photosynthesis and respiration such that annual growing seasons are limited to a
relatively brief period in spring and summer (Churkina & Running, 1998; Nemani et al., 2003). However, a growing body of evidence indicates that growing seasons are shifting in response to global change-related warming and associated decreases in cold temperature constraints to plant growth (Euskirchen et al., 2006; Myneni et al., 1997a; Nemani et al., 2003; Randerson et al., 1999; Randerson et al., 1997). Satellite microwave remote sensing based freeze-thaw algorithms utilize a temporal change classification approach, exploiting the large dynamic response of surface dielectric properties and related microwave emissions that occur as the landscape transitions between predominantly frozen and thawed conditions (McDonald & Kimball, 2005). These methods have been developed and validated using both active and passive microwave observations from a variety of satellite sensors including SSM/I (Special Sensor Microwave/Imager) (McDonald et al., 2004), NSCAT (NASA Scatterometer) (Frolking et al., 1999; Kimball et al., 2004a; Kimball et al., 2001) and SeaWinds (Kimball et al., 2004b). These seasonal variations in landscape dielectric properties have been found to correspond closely with the onset and duration of annual growing seasons for subalpine, boreal, and tundra ecosystems (Frolking et al., 1999; Kimball et al., 2004b). These methods also provide a relatively precise and reliable approach for spatial and temporal mapping of annual growing seasons in boreal and arctic landscapes relative to satellite optical-IR based methods. This is because satellite optical-IR based approaches for monitoring northern phenology are strongly limited by the predominance of evergreen vegetation in boreal biomes. These biomes are not characterized by dynamic seasonal variability in canopy structure. Optical remote sensing at high latitudes is also constrained by reduced solar illumination and shadowing, and the coarse spatial and
temporal compositing necessary to mitigate frequent cloud cover, smoke and other
atmospheric aerosol effects. In contrast, satellite microwave sensors can observe the land
surface effectively day or night, regardless of solar illumination and most atmospheric
effects.

To understand the effects of freeze-thaw processes and other underlying
mechanisms on vegetation productivity, it is necessary to obtain longer and more recent
records of the timing of thawing and the length of non-frozen season derived from the
satellite microwave records. In this study, I used the records of spring thawing and fall
freezing derived from SSM/I remote sensing brightness temperatures from 1988 to 2005
by McDonald et al. (2004) to analyze the changes in seasonal freeze-thaw and the
corresponding constraints on vegetation productivity.

3.6. Trend Analysis

Linear trend analysis was used to analyze regional trends in the biophysical
variables \(y_t \) in this dissertation. The linear model, \(y_t = a_0 + a_t t + \epsilon_t \), is used to model
\(y_t \) against time \(t \) where \(a_0 \) and \(a_t \) are the Y-intercept and slope of the simple linear
regression coefficients, respectively. The statistic \(\frac{a_t}{SE(a_t)} \) has a Student’s t-distribution
where \(SE(a_t) \) is the standard error of estimate associated with the parameter \(a_t \). The
Student’s t-test was used to analyze and classify trend significance into weak, moderate
and strong categories. When \(\frac{|a_t|}{SE(a_t)} < 1.0 \), i.e. \(a_t \) is within one standard deviation, the
trend is classified as weak; when \(1.0 \leq \frac{|a_t|}{SE(a_t)} < t_{0.10} \) where \(t_{0.10} \) is the 10% critical
value of the Student’s t-distribution, the trend is classified as moderate; when
\[|a_i / SE(a_i)| \geq t_{0.10}, \] the trend is statistically significant and classified as strong. These categories were further stratified into six classes according to the slopes of the statistical trends: positive weak, positive moderate, positive strong, negative weak, negative moderate and negative strong.

3.7. Results

3.7.1. Changes of Vegetation Greenness

![Figure 3-5: Spatial distribution of trends in summer (June-August) mean NDVI across the pan-Arctic region from 1983 to 2005 (a). The spatial averages of mean values for all areas identified as the same trend categories are shown in (b).](image)

There is large spatial variability in the trends of summer mean NDVI across the pan-Arctic region from 1983 to 2005 (Figure 3-5 (a)). Summer NDVI shows moderate to strong negative trends in most regions of central Alaska, western, central and eastern Canada, northwestern and southwestern Eurasia, and eastern Siberia, while other areas show generally positive trends. For all six trend categories, the time series of spatial
Table 3-1. Percentages of the six trend types for summer mean NDVI in the three major biome types in the pan-Arctic region.

<table>
<thead>
<tr>
<th>Trend Types</th>
<th>Tundra (10^4 km²)</th>
<th>Boreal Forest (10^4 km²)</th>
<th>Grassland (10^4 km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak</td>
<td>184.7 (18.6%)</td>
<td>194.5 (23.6%)</td>
<td>60.6 (23.8%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>81.4 (8.2%)</td>
<td>122.0 (14.8%)</td>
<td>32.9 (12.9%)</td>
</tr>
<tr>
<td>Strong</td>
<td>123.2 (12.4%)</td>
<td>219.2 (26.6%)</td>
<td>30.8 (12.1%)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>389.3 (39.2%)</td>
<td>535.7 (65.0%)</td>
<td>124.3 (48.8%)</td>
</tr>
<tr>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak</td>
<td>227.5 (22.9%)</td>
<td>162.3 (19.7%)</td>
<td>51.7 (20.3%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>127.1 (12.8%)</td>
<td>73.3 (8.9%)</td>
<td>28.8 (11.3%)</td>
</tr>
<tr>
<td>Strong</td>
<td>249.3 (25.1%)</td>
<td>52.7 (6.4%)</td>
<td>49.9 (19.6%)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>603.9 (60.8%)</td>
<td>288.3 (35%)</td>
<td>130.4 (51.2%)</td>
</tr>
</tbody>
</table>

Averages show generally positive trends from 1983 to 1990, experience sudden drops in 1991 and 1992 caused by temporary global cooling induced by the volcanic eruption of Mount Pinatubo in June 1991 (Lucht et al., 2002; Luhr, 1991), and continue increasing from 1992 to 1997 (Figure 3-5 (b)). For areas showing negative trends during the 23-year period, the time series of spatial averages experience large drops in 1998 and 1999. After 2000, most trend categories generally display decreasing trends until 2005. The areas showing negative trends in summer NDVI mainly occur in boreal forest regions (Table 3-1), while regions with positive trends mainly occur in tundra. Grasslands show mixed results with approximately half of the biome exhibiting negative trends and the other half showing positive trends (Table 3-1).

As a result, the tundra region shows a moderate greening trend (0.9% decade⁻¹; \(P = 0.31 \)), whereas the boreal region displays a moderate browning trend (-1.07% decade⁻¹; \(P = 0.11 \)) (Figure 3-6), and the grassland region shows a weak greening trend. Overall, the pan-Arctic region shows a small, but insignificant greening trend.
Figure 3-6: Time series of annual average summer NDVI values for the three major biome types and entire pan-Arctic region.

3.7.2. Assessment of Integrated FPAR/LAI Inputs

The error distributions of the combined AVHRR-MODIS FPAR/LAI series are shown in Table 3-2. Since the simple linear regression method is unbiased, the mean error of the adjusted AVHRR FPAR/LAI series is zero relative to the MODIS FPAR/LAI product and there is no bias in the combined AVHRR-MODIS FPAR/LAI time series.

Table 3-2. Comparison of accuracy in the integrated FPAR/LAI time series.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Error Distribution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\bar{e}</td>
<td>s_e</td>
</tr>
<tr>
<td>LAI (m2 m$^{-2}$)</td>
<td>0</td>
<td>0.59</td>
</tr>
<tr>
<td>FPAR</td>
<td>0</td>
<td>0.07</td>
</tr>
</tbody>
</table>

aAll correlation coefficients are significant at the level of 0.001.
Figure 3-7: Maps of spatial mean residual distributions of integrated satellite LAI (a) and FPAR (b) in 2000. The non-vegetated areas are masked as grey.

The quartile and median statistics indicate that errors from the adjusted AVHRR FPAR/LAI series are normally distributed; standard error statistics show that the errors have a narrow spread; mean absolute error and root mean square error show that the adjusted AVHRR FPAR/LAI series is generally consistent with the corresponding MODIS data series. Correlation coefficients of 0.91 and 0.93 indicate strong correspondence between the adjusted AVHRR and MODIS FPAR/LAI series. Therefore, both error distribution and correlation analyses indicate that the approach for combining AVHRR and MODIS FPAR/LAI time series is reliable. Although errors from the adjusted AVHRR FPAR/LAI series show a slight spatial variation in 2000 (Figure 3-7), the errors are confined to a relatively small area and narrow intervals (± 0.4 m² m⁻² for LAI; ± 0.06 for FPAR) over more than 90% of the vegetated domain.
Figure 3-8: Comparison of annual NPP anomalies driven by integrated FPAR/LAI inputs and those driven by constant FPAR/LAI inputs. The 95% confidence intervals of estimated NPP before 2000 are also shown, and account for potential errors from the AVHRR-MODIS FPAR/LAI integration method.

The narrow 95% confidence intervals of estimated NPP before 2000 (Figure 3-8) indicate that the methods for combining the AVHRR and MODIS time series are reliable and robust, and that potential FPAR/LAI errors do not introduce significant uncertainty into NPP calculations for the domain. The NPP results derived using constant FPAR/LAI inputs accounted for 86.13% ($P < 0.001$) of the variability in NPP results derived from the historical FPAR/LAI record (Figure 3-8), indicating that the estimated pan-Arctic NPP trends are primarily climate driven rather than a response to changes in photosynthetic canopy cover. These results also indicate that uncertainties associated with the combined AVHRR-MODIS FPAR/LAI series have a relatively small impact on PEM based estimates of regional NPP trends and annual variability for the domain.
3.7.3. Changes in Climatic Factors of Vegetation Productivity

Figure 3-9: Spatial patterns of changes in growing season (GS, April to October) (a) I_r, (b) I_m, and (c) SW_t across the pan-Arctic region from 1983 to 2005.

Since vegetation sequesters carbon mainly during the growing season (GS), I chose to analyze potential changes in climatic drivers of vegetation productivity during the GS. The general GS (April-October) in this region is defined as all months in which the 1983-2005 monthly average air temperature for the pan-Arctic domain is above 0.0°C. The GS I_r generally shows negative trends in approximately 89% of the pan-Arctic region, and has the strongest positive trends in the coastal regions around Hudson Bay, and central, southern and far-eastern Eurasia, while the GS I_m shows positive trends over approximately 61% of the region. These areas with strongest low-temperature stress reductions generally show the largest increases in moisture stress, because warming air temperatures can greatly increase the capacity of the atmosphere to hold water vapor, resulting in increased vapor pressure deficits (VPDs) without sufficient increases in precipitation and evaporation to meet the additional atmospheric moisture demand. Incoming solar radiation during the growing season showed insignificant changes over
approximately 97% of the domain, but with negative trends over 58% of the domain likely caused by recent increases in cloudiness (Wang & Key, 2003).

3.7.4. Changes in Seasonal Freeze-Thaw and Growing Season, and Connection to Vegetation Productivity

The satellite NPP record indicates that the pan-Arctic region is experiencing an advancing trend of 1.7 days per decade ($P = 0.23$) in regional average annual onset of the growing season ($T_{\text{NPP-Onset}}$), which is generally consistent with the atmospheric CO$_2$

![Figure 3-10](image)

Figure 3-10: Correspondence among annual anomalies of regional average NPP-derived growing season onset ($T_{\text{NPP-Onset}}$), timing of the spring drawdown of atmospheric CO$_2$ from NOAA GMD high latitude (>50 °N) monitoring sites ($T_{\text{CO2-Spr}}$), and regional average timing of the spring thaw (T_{Thaw}) across the pan-Arctic region.
Figure 3-11: Correspondence between annual anomalies of regional average NPP-derived growing season end (T_{NPP_End}) and regional average timing of the fall freezing (T_{Freeze}) across the pan-Arctic region.

Observation derived estimates of growing season onset (T_{CO2_Spr}) ($r = 0.78; P < 0.001$) and satellite microwave remote sensing derived measures of regional average timing of spring thaw (T_{Thaw}) ($r = 0.48; P = 0.05$) (Figure 3-10). These results indicate that the PEM captures the annual timing and generally earlier arrival of the growing season with regional warming. The negative (earlier) trends of T_{CO2_Spr} and T_{Thaw} also reveal that the growing season and annual non-frozen period are advancing in the pan-Arctic as a response to regional warming.

The pan-Arctic region also shows a significant lengthening trend in regional average annual termination of the growing season (T_{NPP_End}: 6.9 days per decade; $P < 0.0001$) and timing of fall freezing (T_{Freeze}: 2.9 days per decade; $P = 0.08$) (Figure 3-11). The favorable correspondence between T_{NPP_End} and T_{Freeze} ($r = 0.46; P = 0.07$) indicates...
that the timing of growing season cessation and fall freezing are similar, though growing season cessation is influenced by additional environmental factors in the high latitudes including solar illumination and plant-available moisture (e.g. Kimball et al., 2004b).

The general advance in growing season onset and spring thaw timing, and the significant delays in growing season cessation and fall freezing indicate that the growing season and annual non-frozen period are lengthening in the pan-Arctic as a result of warming; these results also confirm previous findings (Euskirchen et al., 2006; Smith et al., 2004). The favorable correlations between growing season timing and the non-frozen season that annual vegetation productivity and carbon cycle dynamics in the high latitudes are strongly regulated by seasonal freeze-thaw cycle. The correlation between T_{Thaw} and annual NPP is negative for approximately 78% of this region (Figure 3-
12 (a)), while 31% of areas with negative correlations are statistically significant (Figure 3-12 (b)). The correlation map (Figure 3-12 (a)) also shows that this negative correlation becomes stronger at higher latitudes, indicating the increasing impact of the freeze-thaw cycle, i.e. low temperature constraints, on vegetation productivity at higher latitudes.

3.7.5. Vegetation Productivity Changes

![Figure 3-13: Time series of annual average GPP, NPP and autotrophic respiration (RSAu) from 1983 to 2005 for the pan-Arctic region (a). The ratio of NPP to GPP (i.e. CUE) is also shown in (b).](image)

To better understand the biophysical processes driving regional productivity trends I examined regional trends in the gross primary production (GPP) and autotrophic respiration (RSAu) components of NPP. Mean annual GPP for the pan-Arctic domain shows a significant positive linear trend (53.38 Tg C yr\(^{-1}\); \(P < 0.001\)) from 1983 to 2005 (Figure 3-13 (a)), while mean annual autotrophic respiration (RSAu) also displays a significant positive linear trend (33.11 Tg C yr\(^{-1}\); \(P < 0.001\)). The linear GPP trend during the 23-year period is larger than the RSAu trend, resulting in a positive linear NPP trend
Figure 3-14: Annual NPP anomalies, mean growing season (GS, Apr.–Oct.) I_m and mean GS I_t from 1983 to 2005 for the pan-Arctic domain; the Y-axis for I_m and I_t increases from upper to lower portions of the graphic and corresponds to increasing environmental constraints on productivity. Linear trends for the three variables are shown as dotted lines.

of 0.34% per year ($20.27 \text{TgC/yr} \; P = 0.002$) from 1983 to 2005 (Figure 3-13 (a)).

However, the increasing rate of RS_{Au} is larger than the increasing rate of GPP because the ratio of NPP to GPP (i.e. the carbon use efficiency, CUE) is significantly decreasing ($-0.11\% \text{ yr}^{-1} \; P = 0.002$) during the 23-year period (Figure 3-13(b)).

The generally increasing NPP trend during the 23-year period is mainly driven by a declining trend (-0.43% per year; $P < 0.001$) in low-temperature stress (I_t) during the growing season (Apr.–Oct.) (Figure 3-14). However, a coincident and strong increasing trend (0.49% per year; $P = 0.04$) in growing season moisture stress (I_m) partially counteracts the positive effects of more favorable temperatures for photosynthesis. The larger magnitude of I_t relative to I_m (Figure 3-14) indicates that low temperature during
Table 3-3. Summary of annual NPP trend and growing season (Apr.–Oct.) atmospheric moisture stress (I_m) and low temperature stress (I_t) indices within the study domain for the three major biome types.

<table>
<thead>
<tr>
<th>Land cover</th>
<th>NPP trend</th>
<th>I_m</th>
<th>I_t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trend (% yr(^{-1}))</td>
<td>Mean (Tg C)</td>
<td>Trend (% yr(^{-1}))</td>
</tr>
<tr>
<td>Tundra</td>
<td>0.50***</td>
<td>2288.79</td>
<td>0.34</td>
</tr>
<tr>
<td>Boreal forests</td>
<td>0.20</td>
<td>3364.90</td>
<td>0.59*</td>
</tr>
<tr>
<td>Grassland</td>
<td>0.69***</td>
<td>297.90</td>
<td>1.18**</td>
</tr>
</tbody>
</table>

* Mean is the 23-year mean.

$P < 0.05$, ** $P < 0.01$, *** $P < 0.001$

The growing-season is generally the dominant limiting factor for NPP in the pan-Arctic domain. The NPP series also captured large regional productivity declines in 1991 and 1992, which have been attributed to temporary global cooling following the Mount Pinatubo eruption in June, 1991 (Lucht et al., 2002; Luhr, 1991). Earlier onset and lengthening of growing seasons with regional warming are also potential drivers of positive NPP trends (Kimball et al., 2006a; McDonald et al., 2004).

There was considerable spatial variability in NPP anomalies and trends (Figure 3-15), and associated moisture (I_m) and temperature (I_t) constraints to productivity (Table 3-3). For tundra, the PEM results showed a positive NPP trend (0.50% per year, $P < 0.001$) that was primarily driven by a declining trend in I_t (-0.41% per year, $P < 0.001$), indicating a relaxation of the low temperature constraint to productivity. The tundra biome showed positive, but insignificant trends in I_m, indicating that moisture limitations are increasing with regional warming but are not yet a major influence on tundra NPP trends. For the boreal forest biome, annual NPP showed a weak, positive trend (0.20% per year) over the long-term record. The I_t results for this region showed a
strong decreasing trend (-0.49% per year, $P < 0.01$) for the period, which coincided with a significant positive trend in the associated moisture constraint to NPP. For the grassland and cropland biomes, mean annual NPP showed a positive regional trend (0.69% per year, $P < 0.001$) coinciding with opposing trends in I_r and I_m of -0.46% ($P < 0.001$) and 1.18% ($P < 0.01$) per year, respectively.

The results summary in Figure 3-16 shows that the low-temperature constraint to productivity is relaxing over the 23-year period, leading to less potential NPP loss for the three biomes, whereas the moisture constraint is increasing and partially counteracting the potential benefits of warmer temperatures. Over the long-term record, moisture constraints reduce annual NPP by 10.11% relative to potential conditions for the pan-Arctic region. This relative annual NPP reduction increased from 9.51% in the 1980s to 11.16% after 2000. Annual productivity for tundra benefits most from the warming trend.
Figure 3-16: Proportional losses of potential NPP due to (a) low-temperature (δloss$_T$) and (b) moisture (δloss$_M$) constraints for the three major land cover types within the pan-Arctic domain. The dashed lines denote linear trends.

and suffers least from moisture limitations, since tundra is mainly temperature limited, with average 47.96% and 5.32% losses relative to potential conditions due to low-temperature and moisture constraints, respectively. The boreal forest biome shows a similar moisture constraint to productivity as the grassland and cropland biomes, but the increasing trend in NPP losses due to moisture limitations is much larger for boreal forest (0.11% yr$^{-1}$, $P = 0.002$) than for grassland and cropland biomes (0.04% yr$^{-1}$, $P = 0.46$). The warming trend brings comparable benefits for boreal forest and grassland and cropland biomes as indicated by similar respective decreasing trends in potential NPP losses of -0.21% yr$^{-1}$ ($P = 0.0002$) and -0.25% yr$^{-1}$ ($P < 0.0001$).

The Figure 3-16 summary also shows that relatively cool conditions in 1992, 1996 and 2004, and periodic dry conditions from 1989–1991, 1998–1999, and 2001–2003 coincided with large NPP declines for the pan-Arctic region, as shown in Figure 3-14. The results (Figure 3-16) indicate three major drought periods for the pan-Arctic
Figure 3-17: Mean annual climate moisture index ($P-PET$) for the pan-Arctic basin and Alaska domain and 1974–2005 period; error bars denote the standard deviation of annual observations for the domain. The total number of NCDC CSB stations used to compute the index ranged from 2053 to 2924 per year.

region from 2001–2003, 1998–1999, and 1989–1991, which are ranked in terms of highest to lowest relative severity of potential NPP losses due to moisture limitations. These drought events are confirmed by mean annual CMI anomalies derived from the regional surface weather station network (Figure 3-17). The CMI shows a drying trend of -2.73 mm yr^{-1} ($P < 0.001$) from 1974 to 2005 for the domain. The relative strength of the negative CMI anomalies and proportional losses of potential NPP from increasing I_m based constraints after 2000 indicates that the severity and persistence of the post-2000 drought is unprecedented for the 30+ year station record. These conditions also promoted a widespread NPP decline relative to potential conditions for the domain (Figure 3-14).
The spatial patterns of summer I_m and annual NPP anomalies for 1998, 2001, 2002, and 2003 are presented in Figure 3-18. These results indicate summer drought across much of the domain with corresponding decreases in annual NPP. Summer (June–August) drought, indicated by anomalous increases in I_m, contributed to reductions in PEM derived annual NPP for predominantly inland areas including western and central Canada and southern and central Eurasia. Model results for eastern Alaska also indicated widespread drought effects. These results are consistent with the timing and location of recent documented drought events. Waple et al. (2002) reported that Canada experienced one of its most serious and extensive droughts on record in 2001, while the most severely affected areas occurred in the Canadian Prairies where the 2001 drought followed two to three consecutive years of below-average rainfall. Waple and Lawrimore (2003) also reported that some areas of central Canada suffered the driest August on record and western Canada suffered the second consecutive year with the most severe drought on record in 2002. Alaska had the warmest recorded year to date in 2002, while Russia reported a substantial precipitation deficit in July and August of 2002, which led to meteorological and hydrological drought for most of the region. In 2003, drier-than-normal conditions continued in the western provinces despite relatively wet conditions in other regions of Canada (Levinson & Waple, 2004); during July, anomalously warm and dry conditions appeared in some regions of Eurasia.
Figure 3-18: Maps of (a) annual NPP and (b) summer (Jun.–Aug.) I_m anomalies (relative to the 23-year mean) for 1998, 2001, 2002, and 2003. A positive anomaly for I_m corresponds to increasing moisture constraints on productivity relative to the long-term mean.
3.7.6. Comparison between PEM-based Vegetation Productivity and Stand Inventory Records

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth ($m^2 ha^{-1} yr^{-1}$)</td>
<td>0.0</td>
<td>0.4</td>
<td>0.8</td>
<td>1.2</td>
<td>0.0</td>
<td>0.4</td>
</tr>
<tr>
<td>NPP anomaly ($g C m^{-2} yr^{-1}$)</td>
<td>-160</td>
<td>-120</td>
<td>-80</td>
<td>-40</td>
<td>0</td>
<td>40</td>
</tr>
</tbody>
</table>

Figure 3-19: Comparison between PEM derived NPP anomalies and boreal aspen growth derived from tree-ring analyses for 72 CIPHA stands across western Canada. Vertical dotted lines and dashed lines denote major drought and insect defoliation years, respectively, as reported by (Hogg et al., 2005).

Figure 3-19 shows the CIPHA stand inventory network derived mean boreal aspen growth observations from 1951 to 2004 and corresponding PEM based mean annual NPP anomalies from 1983 to 2004. Also shown are the major drought and defoliation years for the region as reported by Hogg et al. (2005). The trend line using a best-fit quadratic equation is also shown, indicating a general increasing growth trend with large annual variations due to the effects of periodic insect defoliations, drought, and vegetation re-growth. It should be noted that the tree ring based growth estimates also
reflect the normal process of stand development, e.g., age, mortality, and competition, though annual growth variations have been linked to the effects of climate and insects (Hogg et al., 2005).

The PEM based annual NPP anomalies were positively correlated \((r = 0.56; P = 0.007) \) with mean stand-level observations of boreal aspen growth for the 72 CIPHA sites. Both the PEM and CIPHA time series showed large decreases in plant growth in 1995, 1998, 2002, and 2003. These anomalous productivity declines have been attributed to severe regional drought conditions for these years (Hogg et al., 2005). Both data series also confirm a generally positive vegetation growth trend for the 1980s and 1990s (1.65% per year, \(P = 0.03 \) for CIPHA Aspen growth; 0.67% per year, \(P = 0.07 \) for PEM derived NPP) and recent drought-induced NPP decreases after late-1990s.

3.8. Discussion and Summary

The PEM based NPP results may be negatively impacted by uncertainties in satellite remote sensing inputs including the PAL FPAR/LAI product, which incorporates uncertainties from dropped scan lines, navigation errors, data drop outs, edge-of-orbit composite discontinuities, and other artifacts of the AVHRR PAL NDVI series (Cihlar et al., 1997; Tucker et al., 2005). The NASA GIMMS NDVI product has attempted to correct most of the above problems and is currently available at 8-km resolution (Pinzon et al., 2005; Tucker et al., 2005). However, although the GIMMS LAI product is now available, there is no alternative GIMMS FPAR product. Though the SRB solar radiation product is of generally good quality, solar radiation has a larger uncertainty relative to the other PEM inputs for the domain. Therefore, the solar radiation inputs may introduce
uncertainty into the PEM calculations. However, the impact of these uncertainties on NPP calculations is partially mitigated by the relative importance of other surface meteorological inputs to the PEM.

Despite the potential negative effects of the above uncertainties, the generally consistent temporal patterns between PEM derived NPP and tree-ring based aspen growth observations (Figure 3-19) indicate that the NPP time series from relatively coarse resolution satellite remote sensing effectively captures the regional impacts of summer drought, along with the impacts of transient global cooling following a major volcanic eruption. Both stand inventory observations and satellite based PEM results also confirm a generally positive vegetation growth trend for the 1980s and 1990s across west-central Canada and recent drought-induced NPP decreases after the late 1990s.

The results show that increasing productivity trends generally occur in tundra regions while NPP reductions occur in boreal forest regions. These findings are consistent with previous AVHRR GIMMS based analyses of regional photosynthetic trends (Bunn & Goetz, 2006; Goetz et al., 2005). The results also indicate that recent widespread NPP reductions in boreal forest regions were due to vegetation drought stress, which is also consistent with previous studies of AVHRR-based photosynthetic trends (Bunn & Goetz, 2006; Goetz et al., 2007). The negative effects of recent drought on terrestrial productivity are widespread for boreal regions, impacting not only western and central Canada but also eastern Alaska and south-central Eurasia. These results are also supported by other published field observations. In Alaska, tree-ring studies showed a reduction in the growth of white spruce (Barber et al., 2000; Barber et al., 2004; Davi et al., 2003), even at some upper tree-line sites (Lloyd & Fastie, 2003; Wilmking et al., 2003).
2004), because of a recent increase in temperature-induced drought stress. Hogg and Wein (2005) also reported the negative impacts of recent drought on forest growth and regeneration in southwestern Yukon, Canada.

Over western and central Canada, most available moisture for precipitation comes from the Pacific Ocean in winter (November–March) and the Gulf of Mexico in summer (May–August) (Liu *et al.*, 2004). Thus regional precipitation has strong teleconnections to global sea surface temperature (SST) patterns (Shabbar & Skinner, 2004), especially variations in tropical and north Pacific SSTs (Seager *et al.*, 2005; Zhang *et al.*, 2007a), which may explain the relative persistence of recent drought in southern Alaska and south-western Eurasia. Goetz *et al.* (2007) reported the lagged correlation between spring climate fields (like temperature and precipitation) and spring boreal North America net carbon exchange and suggested teleconnections between carbon fluxes in the pan-arctic region and large-scale atmospheric/oceanic oscillations such as the Arctic Oscillation and ENSO. More explicit analyses of teleconnections between climate oscillations and pan-Arctic NPP patterns were also documented in Zhang *et al.* (2007a). The results of this study show that the largest negative NPP anomalies are predominantly located in relatively drought prone inland areas with greater annual extremes in temperature and precipitation. In addition, earlier spring thawing and corresponding earlier and longer growing seasons in this region (Kimball *et al.*, 2006a; Levinson & Waple, 2004; McDonald *et al.*, 2004; Waple & Lawrimore, 2003; Waple *et al.*, 2002) may be contributing to drought by enhancing vegetation growth and potential water loss. Bunn and Goetz (2006) reported that the recent boreal browning trends are more pronounced in more densely forested areas, as derived from MODIS tree cover products, which may
reflect a greater vegetation water use requirement and potential drought stress for these areas.

Future changes in terrestrial productivity will depend strongly on adequate supplies of plant-available moisture to support positive vegetation growth trends under a warming climate. Positive trends in regional warming and drying (Figure 3-14), and earlier onset of the growing season (Figure 3-10) are consistent with previous studies. Current and projected future warming of the region with a declining or negative water balance (i.e., the difference between precipitation and evaporation) will likely result in more frequent and severe drought, leading to further decreases in regional productivity and impairing the potential terrestrial sink strength for atmospheric CO₂. However, regional warming with commensurate increases in precipitation and a positive water balance (Cassano et al., 2007) will likely support further increases in productivity. In addition, future warming likely surpasses the photosynthetic temperature optimum of many boreal tree species such as black spruce (Way & Sage, 2008), reducing forest carbon sequestration and altering associated species composition in this region. However, our results also indicate that in tundra biomes the relaxation of low-temperature constraints to photosynthesis is still the dominant environmental factor driving positive NPP trends despite concurrent increases in plant available moisture constraints. These results are consistent with AVHRR GIMMS based observations of positive photosynthetic trends for North American tundra (Goetz et al. 2005). The observed regional trajectory in \(I_m \) indicates that the negative effects of increasing moisture constraints on productivity are likely to become more severe and widespread under a warming climate, counteracting the positive effects of a lengthening growing season,
without sufficient increases in precipitation to offset increasing evapotranspiration demands. Improvements in the spatial resolution of regional climate reanalyses coupled with standardization and augmentation of solar radiation and precipitation monitoring networks, and enhanced resolution satellite remote sensing products would dramatically improve the regional assessment of NPP changes and associated linkages between the terrestrial water and carbon cycles.

3.9. References Cited

cycle models through simulations of the seasonal cycle of atmospheric CO\textsubscript{2}: First results of a model intercomparison study. *Global Biogeochemical Cycles*, 12, 1-24.

4.1. Introduction

Hydrological and ecological processes are strongly coupled in northern high
latitude boreal forest and Arctic tundra regions. Precipitation and snowmelt influence
plant-available moisture during the growing season, which impacts water, energy and
carbon cycles through vegetation canopy controls on transpiration, plant-atmosphere
exchanges of water vapor and carbon dioxide, and the partitioning of net radiant energy
into sensible and latent heat fluxes. Substantial changes in hydrological and ecological
processes have been observed in the northern high latitudes with persistent climatic
warming over the past century (Trenberth et al., 2007), while further warming is
projected to continue (Meehl et al., 2007). Recent hydrological changes observed for
boreal forest and tundra regions include changes in seasonality and magnitude of river
discharge, thawing and degradation of permafrost and associated rapid gains/losses in
lake area, increasing soil active layer depths, and receding glaciers (McClelland et al.,
2006; Oelke et al., 2004; White et al., 2007; Zhang et al., 2005). Ecological responses to
these changes include earlier onset and lengthening growing seasons, increased
vegetation structure and growth, and alteration of land-atmosphere CO$_2$ exchange
(McDonald et al., 2004; Oechel et al., 2000; Sturm et al., 2001; Zhang et al., 2007b). A
growing body of evidence indicates that changes in the regional water cycle are
impacting ecological processes in this domain. Recent, post-2000 occurrences of
widespread and persistent drought have occurred across the boreal high latitudes (Schindler & Donahue, 2006; Zhang et al., 2008), resulting in a general decrease in vegetation productivity for boreal forest indicated by atmospheric CO2 anomalies (Angert et al., 2005), satellite NDVI and vegetation productivity records (Goetz et al., 2005; Zhang et al., 2008), and stand inventory data (Hogg et al., 2008; Schindler & Donahue, 2006).

According to the well-known Clausius-Clapeyron relationship between air temperature and water vapor capacity of the atmosphere, warming is expected to promote increases in evapotranspiration and precipitation leading to a general intensification (i.e., acceleration) of the global water cycle (Held & Soden, 2000; Meehl et al., 2007). Huntington (2006) reviewed the literature regarding historical trends in hydrologic variables and suggested an ongoing intensification of the global water cycle. Because the northern high-latitudes have experienced substantial warming during the last decades, the water cycle in these regions may also be intensifying. Serreze et al. (2006) and White et al. (2007) showed that the major components of the Arctic freshwater cycle including precipitation, runoff and precipitable water have generally experienced increasing trends consistent with an intensifying water cycle. However, the relative magnitudes and spatial heterogeneity of these trends are highly uncertain due to sparse measurement networks and large natural variability in seasonal to annual weather patterns for the region.

Better understanding of recent changes in the northern high latitude terrestrial water cycle requires improved documentation of spatial patterns and changes of its primary components including precipitation, evapotranspiration and river discharge. Precipitation and river discharge measurements are currently available from pan-Arctic
observation networks (McClelland et al., 2006; Yang et al., 2005). Evapotranspiration (ET) is highly heterogeneous both spatially and temporally due to strong vegetation canopy control on transpiration. However, there are very few direct measurements of ET over global land areas. The ET fields from GCM-based reanalyses such as ERA-40 and NNR are not considered reliable because they are not well constrained by precipitation and radiation (Betts et al., 2003; Ruiz-Barradas & Nigam, 2005). ET plays an important role in linking the water, energy and carbon cycles and represents over 60% of precipitation on a global basis (L'vovich & White, 1990). Soil evaporation and plant transpiration are determined by surface meteorology and plant biophysics. Relatively sparse measurements of these variables for the northern high latitudes make accurate assessment of ET a challenge. Remotely sensed data, especially from polar-orbiting satellites, provide relatively frequent and spatially contiguous monitoring of surface biophysical variables affecting ET, including albedo, biome type and vegetation density. Satellite-based ET products have been produced at regional and global scales with varying accuracy (Bastiaanssen et al., 1998a; Bastiaanssen et al., 1998b; Cleugh et al., 2007; Fisher et al., 2008; Mu et al., 2007). However, currently there is no continuous, long-term satellite based ET record for the northern high latitudes. The Normalized Difference Vegetation Index (NDVI) from the NOAA Advanced Very High Resolution Radiometer (AVHRR) record extends from 1981 to present and can be used to estimate regional patterns and trends in ET for the pan-Arctic domain since NDVI is sensitive to vegetation structure and photosynthetic canopy cover.

There are numerous methods to calculate or simulate surface ET, however the Penman-Monteith equation (Monteith, 1965) is arguably the most physically based,
advanced resistance model of evaporation used in hydrological practice today (Shuttleworth, 1992). Based on the Penman-Monteith equation, Priestley and Taylor (1972) defined equilibrium evaporation (E) or ET over large regions by replacing surface and aerodynamic resistance terms with an empirical multiplier to simulate E or ET under optimal conditions (Jones & Kiniry, 1986; Steiner et al., 1991). The Priestley and Taylor method is simpler and requires less parameterization and inputs relative to the Penman-Monteith equation, while the Penman-Monteith equation is more theoretically accurate. Both methods have been applied to estimate ET on a regional or global basis by incorporating satellite remote sensing information (Cleugh et al., 2007; Mu et al., 2007; Fisher et al., 2008).

In this chapter, I developed a satellite-based algorithm by applying the Penman-Monteith equation, modified Penman-Monteith equation, and Priestley-Taylor method with AVHRR GIMMS NDVI (Pinzon et al., 2005; Tucker et al., 2005) based vegetation attributes and daily surface meteorology inputs from regionally corrected meteorology reanalysis to calculate canopy transpiration, soil evaporation and water body evaporation, respectively for the pan-Arctic basin and Alaska based. I then applied these results with available precipitation records, and river discharge measurements to assess recent changes in the pan-Arctic terrestrial water balance. I also compared these results to satellite based vegetation productivity records to determine whether observed changes in the water balance are consistent with recent trends in vegetation productivity for the region. The primary objectives of this chapter are to (1) assess spatial patterns and temporal trends in ET and precipitation over the northern high latitudes from 1983 to 2005; (2) determine whether these results and associated changes in the regional water
balance are consistent with an intensification (acceleration) of the terrestrial water cycle, and (3) assess whether the regional water balance changes are consistent with satellite based records of a greening arctic and recent drought-induced declines in boreal forest productivity.

4.2. Evapotranspiration Algorithm Logic

In the ET algorithm, I first identified water body and vegetated pixels using the remote sensing based land cover classification (Figure 4-1). For vegetated pixels, ET is partitioned into soil evaporation and canopy transpiration by partitioning available energy for evapotranspiration using the fractional vegetation cover \(f_c \) defined as:

\[
 f_c = \frac{\text{NDVI} - \text{NDVI}_{\text{min}}}{\text{NDVI}_{\text{max}} - \text{NDVI}_{\text{min}}} \tag{4.1}
\]

where \(\text{NDVI}_{\text{min}} \) and \(\text{NDVI}_{\text{max}} \) are the signals from bare soil and dense green vegetation, which are set as seasonally and geographically invariant constants 0.05 and 0.95, respectively; \(\text{NDVI} \) is the Normalized Difference Vegetation Index. Mu et al. (2007) used the MODIS enhanced vegetation index (EVI) instead of NDVI to calculate \(f_c \) because of saturation of the NDVI signal under high biomass conditions. However, the NDVI is generally below saturation for the northern high latitudes due to characteristically low biomass conditions. The MODIS EVI data are only available since 2000, while the AVHRR GIMMS NDVI is the only available vegetation index product covering the entire 1983-2005 study period.
The available energy for evapotranspiration (\(A : \text{W m}^{-2} \)) is determined as the difference between net all-wave solar radiation (\(R_n : \text{W m}^{-2} \)) and soil heat flux (\(G : \text{W m}^{-2} \)) derived from daily average temperature (\(T_{\text{avg}} : \text{K} \); \(T_{\text{avg}} \) is transferred to the Kelvin scale),
incoming short-wave solar radiation \((SW_{↓} : \text{W m}^{-2}) \) and albedo \((\alpha) \) using the energy formulas of Cleugh et al. (2007):

\[
A = R_n - G \tag{4.2}
\]

\[
R_n = SW_{↓} (1 - \alpha) - (1 - \epsilon_a) \sigma T_{av}^4 \tag{4.3}
\]

\[
G = c_G R_n \tag{4.4}
\]

where \(\sigma \) is the Stefan-Boltzmann constant \((= 5.670400 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}) \); \(c_G \) is the ratio of the soil heat flux \(G \) to the net radiation and set to 0.1 by the suggestion of Cleugh et al. (2007); \(\epsilon_a \) is called atmospheric emissivity and calculated from air temperature using the formula of (Idso & Jackson, 1969):

\[
\epsilon_a = 1 - 0.261 \exp \left[-7.77 \times 10^{-4} \times \left(T_{av} - 273 \right) \right]^2 \tag{4.5}
\]

The \(A \) term is then linearly partitioned into available energy components for the canopy \((A_{\text{Canopy}} : \text{W m}^{-2}) \) and soil surface \((A_{\text{Soil}} : \text{W m}^{-2}) \) using \(f_c \) (Mu et al., 2007) such that:

\[
A_{\text{Canopy}} = A \times f_c \tag{4.6}
\]

\[
A_{\text{Soil}} = A \times (1 - f_c) \tag{4.7}
\]

4.2.1. Vegetation Transpiration

The Penman-Monteith equation (Monteith, 1965) is used to calculate vegetation transpiration as:

\[
\lambda E_{\text{Canopy}} = \frac{\Delta A_{\text{Canopy}} + \rho_{air} C_P (e_{sat} - e_a) / r_a}{\Delta + \gamma (1 + r_s / r_a)} \tag{4.8}
\]
where $\lambda E_{\text{Canopy}}$ (W m$^{-2}$) is the latent heat flux of canopy (i.e., LE_{Canopy}) and λ (J kg$^{-1}$) is the latent heat of vaporization; $\Delta = d(e_{\text{sat}})/dT$ (Pa K$^{-1}$) and is the slope of the curve relating saturated water vapor pressure (e_{sat}: Pa) to air temperature (T: K); e_a (Pa) is the actual air water vapor pressure, so $e_{\text{sat}} - e_a = VPD$, where VPD (Pa) is the vapor pressure deficit; ρ_{air} (kg m$^{-3}$) is the air density; C_p (J kg$^{-1}$ K$^{-1}$) is the specific heat capacity of air; r_a (s m$^{-1}$) is the aerodynamic resistance and its reciprocal, g_a (m s$^{-1}$), is the aerodynamic conductance. The psychrometric constant is given by $\gamma = (M_a / M_w)(C_p P_{\text{air}} / \lambda)$, where M_a (kg mol$^{-1}$), M_w (kg mol$^{-1}$) and P_{air} (Pa) are the molecular mass of dry air, the molecular mass of wet air, and the air pressure, respectively. The bulk surface resistance term (r_s: s m$^{-1}$) is the effective resistance to canopy transpiration.

The relative accuracy of the Penman-Monteith equation depends upon accurate estimation of r_s or its reciprocal – surface conductance (g_s: m s$^{-1}$). A common approach to simulate surface conductance is the so-called Jarvis-Stewart formula (Jarvis, 1976; Stewart, 1988), which can be expressed as:

$$g_s = g_0 \cdot m(\theta_1) \cdot \ldots \cdot m(\theta_n) \quad (4.9)$$

where g_0 is a biome-dependent (i.e. vegetation cover dependent) maximum value of g_s; $m(\theta_1), ..., m(\theta_n)$ are a series of multiplicative factors (i.e. stress factors) representing one or more environmental constraints ($\theta_1, ..., \theta_n$) such as sub-optimal conditions for water vapor, temperature, solar radiation and soil moisture. This general approach is effective and has been widely used (e.g. Dolman & van Den Burg, 1988; Granier & Loustau, 1994;
Granier et al., 2000). Cleugh et al. (2007) determined canopy \(g_s \) by multiplying the mean surface conductance per unit leaf area index \((c_L: \text{m s}^{-1})\) using satellite derived leaf area index (LAI) inputs. Mu et al. (2007) then introduced the Jarvis-Stewart-type water stress and temperature multipliers into the Cleugh et al.’s surface conductance equation, as:

\[
g_s = c_L \cdot m(T_{\text{min}}) \cdot m(VPD) \cdot LAI
\]

where \(T_{\text{min}} \) \(^{\circ}{\text{C}}\) is the daily minimum temperature; \(m(T_{\text{min}}) \) and \(m(VPD) \) represent respective low-temperature and moisture constraints on potential plant transpiration (Mu et al., 2007).

Mu et al. (2007) then applied this method to calculate ET globally and assessed the model results over 19 AmeriFlux eddy covariance flux towers with generally favorable agreement with tower based ET. However, their results also showed large biases for some sites that were attributed to biased estimates for some model parameters and uncertainty in satellite derived LAI. Moreover, the application of Mu et al.’s method required LAI inputs. The empirical integration of AVHHR PAL and MODIS LAI series by Zhang et al. (2008) and the subsequent global LAI product derived from the AVHRR GIMMS NDVI (Ganguly et al., 2008a; Ganguly et al., 2008b) provides a long-term LAI record for the pan-Arctic domain. However, considering the uncertainties in these products and the fact that LAI is a derived product of NDVI, we chose NDVI instead of LAI to define vegetation canopy attributes and ET in this study. Therefore, we defined a NDVI-based Jarvis-Stewart-type surface conductance as:

\[
g_s = g_0(\text{NDVI}) \cdot m(T_{\text{day}}) \cdot m(VPD)
\]
where \(g_0(\text{NDVI}) \) is the biome-dependent potential (i.e. maximum) value of \(g_z \), which is a function of \(\text{NDVI} \); \(T_{\text{day}} \) (°C) is the daylight average air temperature; \(m(T_{\text{day}}) \) is a temperature stress factor and function of \(T_{\text{day}} \); \(m(\text{VPD}) \) is a water/moisture stress factor and function of \(\text{VPD} \). Based on general ecological principles and previous approaches from (June et al., 2004) and Mu et al. (2007), we established a new expression for \(m(T_{\text{day}}) \):

\[
m(T_{\text{day}}) = \begin{cases} \exp\left(- \frac{\left(T_{\text{day}} - T_{\text{opt}}\right)}{\beta}\right) & T_{\text{day}} \leq T_{\text{close} \text{ min}} \\ 0.01 & T_{\text{close} \text{ min}} < T_{\text{day}} < T_{\text{close} \text{ max}} \\ 0.01 & T_{\text{day}} \geq T_{\text{close} \text{ max}} \end{cases}
\]

(4.12)

where \(T_{\text{opt}} \) (°C) is a biome-specific optimum air temperature for photosynthesis;

\(T_{\text{close} \text{ min}} \) (°C) and \(T_{\text{close} \text{ max}} \) (°C) are the biome-specific minimum and maximum critical temperatures for stomatal closure and the effective cessation of plant photosynthesis;

\(\beta \) (°C) is a biome-specific empirical parameter. In this study, \(m(\text{VPD}) \) is calculated using the same formula in Mu et al. (2007):

\[
m(\text{VPD}) = \begin{cases} 1.0 & \text{VPD} \leq \text{VPD}_{\text{open}} \\ \frac{\text{VPD}_{\text{close}} - \text{VPD}}{\text{VPD}_{\text{close}} - \text{VPD}_{\text{open}}} & \text{VPD}_{\text{open}} < \text{VPD} < \text{VPD}_{\text{close}} \\ 0.1 & \text{VPD} \geq \text{VPD}_{\text{close}} \end{cases}
\]

(4.13)

where \(\text{VPD}_{\text{open}} \) (Pa) is the biome-specific critical value of \(\text{VPD} \) at which the canopy stomata are completely open; \(\text{VPD}_{\text{close}} \) (Pa) is the biome-specific critical value of \(\text{VPD} \) at which canopy stomata are completely closed.
4.2.2 Evaporation for Water Bodies and Soil

The evaporation over water bodies was calculated using the Priestley-Taylor equation (Priestley & Taylor, 1972):

\[\lambda E_{\text{Water}} = a \frac{\Delta A}{\Delta + \gamma} \] \hspace{1cm} (4.14)

where the constant \(a \) accounts for the evaporation arising from the humidity deficit in addition to the equilibrium term and is set to 1.26 following Priestley and Taylor (1972).

Soil evaporation is calculated using the soil evaporation equation used in Mu et al. (2007), which is a combination of an adjusted Penman-Monteith equation and the complementary relationship hypothesis (Bouchet, 1963; Fisher et al., 2008). The details of these equations can be found in Mu et al. (2007) and are expressed in the context of this study as:

\[\lambda E_{\text{Soil}} = RH^{(VPD/k)} \frac{\Delta A_{\text{Soil}} + \rho C_p VPD / r_a}{\Delta + \gamma \cdot r_{\text{tot}} / r_a} \] \hspace{1cm} (4.15)

\[r_a = r_c r_r / (r_c + r_r) \] \hspace{1cm} (4.16)

\[r_r = \rho C_p / \left(4.0 \times \sigma \times T_{\text{day}}^3 \right) \] \hspace{1cm} (4.17)

\[r_{\text{tot}} = r_{\text{tot}} \times R_{\text{corr}} \] \hspace{1cm} (4.18)

\[R_{\text{corr}} = \frac{1.0}{\left(\frac{273.15 + T_{\text{day}}}{293.15} \right) \times \frac{101300}{P_{\text{air}}}} \] \hspace{1cm} (4.19)

where \(RH \) is the relative humidity of air with values between 0 and 1; \(k \) (Pa) is a parameter to fit the complementary relationship (Fisher et al., 2008) and is set to 100 Pa by Mu et al. (2007); for this study \(k \) is adjusted for different vegetation types; \(r_r \) (s m\(^{-1}\))...
is the resistance to radiative heat transfer and is calculated using Equation (4.17) (Choudhury & DiGirolamo, 1998); \(\sigma = 5.670400 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4} \) is the Stefan–Boltzmann constant. In Equation (4.17), the unit of \(T_{day} \) is in degrees Kelvin. The \(r_c \) (s m\(^{-1}\)) term is the resistance to convective heat transfer and is assumed to be equal to the boundary layer resistance (Thornton, 1998). General boundary layer resistance values were obtained for each land cover class from reported values for similar global biome types (White et al., 2000). The \(r_{tot} \) (s m\(^{-1}\)) term is the total aerodynamic resistance to vapor transport and the sum of surface resistance and the aerodynamic resistance components. The \(r_{tot,corr} \) (s m\(^{-1}\)) term is the corrected value of \(r_{tot} \) from the standard conditions for temperature and pressure (STP) using the correction coefficient (\(R_{corr} \)) (Jones, 1992). The value of \(r_{tot} \) is set to a constant 107 s m\(^{-1}\) for all vegetation types in Mu et al. (2007), while \(r_{tot} \) is adjusted by land cover class for this investigation. All of the above biome-specific parameters for the ET algorithm are given in Appendix A.

4.2.3. Fitting of Relationship between Potential Surface Conductance and NDVI

To establish the biome-specific relationship between \(g_0 \) and NDVI, I first removed the calculated latent heat flux from soil evaporation (\(LE_{soil} \), namely \(\lambda E_{soil} \)) driven by \textit{in situ} tower meteorology coinciding with tower observed \(LE \) (see Section 4.3) to produce the latent heat flux from canopy transpiration (\(LE_{Canopy} \) or \(\lambda E_{Canopy} \)). I then derived the surface conductance term (\(g_s \)) from \(LE_{Canopy} \) and measured meteorology from the six flux towers (section 4.3.2) using the rearranged Penman-Monteith equation:
\[g_s = \frac{g_a \cdot LE_{Canopy}}{\Delta A_{Canopy} + \rho_{air} \cdot C_p \cdot VPD \cdot g_s - LE_{Canopy} \cdot (\Delta + \gamma)} \]

(4.20)

Due to lack of available vertical wind profile measurements, I set values of \(g_a \) as biome-specific constants based on evidence that the range of \(g_a \) variability is generally conservative over low wind speeds (e.g. \(\leq 5 \text{ m s}^{-1} \)) and aerodynamically rough surfaces following (Monteith & Unsworth, 2008). The use of a constant \(g_a \) has been successfully applied for similar satellite based ET mapping studies (e.g. Mu et al., 2007). Substituting \(g_s \) in Equations (4.20) and (4.11) I define the derived potential surface conductance as:

\[g_0^* = \frac{g_a \cdot LE_{Canopy}}{\left[\Delta A_{Canopy} + \rho_{air} \cdot C_p \cdot VPD \cdot g_s - LE_{Canopy} \cdot (\Delta + \gamma) \right] \cdot m(T_{day}) \cdot m(VPD)} \]

(4.21)

I (1) calculated daily \(g_0^* \) for the four general biome types using daily surface meteorology and LE measurements from the six flux towers; (2) removed outliers falling below the 10\(^{th}\) percentile and above the 90\(^{th}\) percentile for \(g_0^* \); (3) calculated the average daily values of \(g_0^* \) and NDVI (i.e., \(g_0^* \) and \(\text{NDVI} \)) for each NDVI interval (the size of interval is 0.04) with sufficient samples (\(\geq 10 \)), and (4) fitted the scatter plots of \(g_0^* \) vs. NDVI using sigmoid response functions for each biome type:

\[g_0(\text{NDVI}) = 1/[b_1 + b_2 \cdot \exp(-b_3 \cdot \text{NDVI})] + b_4 \]

(4.22)

where \(b_1 (\text{mm s}^{-1}) \), \(b_2 (\text{mm s}^{-1}) \), \(b_3 \) (dimensionless) and \(b_4 (\text{mm s}^{-1}) \) are empirical parameters, and \(g_0(\text{NDVI} = 0) = 0 \).
4.3. Data

4.3.1. Meteorological and Satellite Inputs to the ET Algorithm

I used the regional bias-corrected version of the NNR daily surface meteorology (Section 2.5) as the primary meteorological inputs to the ET model. The original and bias-corrected NNR products are provided in a global Gaussian grid (T62, 192 × 94 points) format with approximately 1.9°latitude × 1.875°longitude resolution. The daily meteorological inputs from the bias-corrected NNR include daily minimum and average air temperatures (T_{min} and T_{avg} : °C) and daylight average vapor pressure deficit (VPD : Pa). The T_{min} and T_{avg} variables are also used to calculate the daylight average air temperature (T_{day} : °C). Daily incident shortwave solar radiation ($\downarrow SW$: W m$^{-2}$) and albedo (α) inputs are derived from the NASA World Climate Research Programme/Global Energy and Water-Cycle Experiment (WCRP/GEWEX) Surface Radiation Budget (SRB) Project (http://eosweb.larc.nasa.gov/PRODOCS/srb/table_srb.html) data set with 1.0° × 1.0° resolution. All of the above meteorological and climatic variables are interpolated to the study sites or pixels using the spatial interpolation method of Zhao et al. (2005).

In this study, I derived a daily NDVI series for each grid cell in the domain using temporal linear interpolation of adjacent semi-monthly values of the 8-km semi-monthly AVHRR GIMMS NDVI product. The daily linear interpolation approach is a relatively simple, but effective means for producing daily time series of satellite-observed vegetation state variables including fraction of photosynthetically active radiation (FPAR) and LAI and has been successfully applied for vegetation based analyses of the AVHRR series (e.g. Kimball et al., 2006; Kimball et al., 2007; Zhang et al., 2007b).
Figure 4-2: Locations of six flux towers and regional land cover derived from the NASA MODIS-IGBP global land cover classification (see Figure 1-1) within the pan-Arctic region.

4.3.2. Eddy Covariance Flux Towers

The model ET parameters and outputs for this study were calibrated and verified using daily meteorology and latent energy flux measurements from six eddy covariance flux tower sites representing dominant vegetation classes within the study domain (Figure 4-2). The six sites represent four distinct vegetation types (Table 4-1; Figure 4-2) including wet sedge and tussock tundra, boreal evergreen needleleaf forest, boreal deciduous broadleaf forest, and northern temperate grassland. Coastal wet sedge tundra is represented by the Barrow sites (BRW1 and BRW2) and is characterized by low topography and a shallow water table with numerous thaw lakes, while the Atqasuk (ATQ) site represents tussock tundra. The wet sedge tundra is predominantly composed
Table 4-1. Site abbreviations, latitude (lat), longitude (lon), MODIS IGBP land cover (MODIS LC) (Friedl et al., 2002) and dominant vegetation community within each 1 km² tower footprint (Tower LC) for the six eddy covariance flux tower sites; OSH: open shrubland; GRS: grassland; ENF: evergreen needle forest; MF: mixed forest.

<table>
<thead>
<tr>
<th>Site</th>
<th>Abbrev.</th>
<th>Lat (°)</th>
<th>Lon(°)</th>
<th>MODIS LC</th>
<th>Tower LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrow 1, AKᵃ</td>
<td>BRW₁</td>
<td>71.32</td>
<td>-156.62</td>
<td>OSH</td>
<td>Wet-sedge tundra</td>
</tr>
<tr>
<td>Barrow 2, AKᵇ</td>
<td>BRW₂</td>
<td>71.32</td>
<td>-156.62</td>
<td>OSH</td>
<td>Wet-sedge tundra</td>
</tr>
<tr>
<td>Atqasuk, AK</td>
<td>ATQ</td>
<td>70.47</td>
<td>-157.41</td>
<td>OSH</td>
<td>Tussock tundra</td>
</tr>
<tr>
<td>NSA-OBS, Manitoba, CN</td>
<td>NOBS</td>
<td>55.88</td>
<td>-98.48</td>
<td>ENF</td>
<td>Boreal spruce forest</td>
</tr>
<tr>
<td>SSA-OAS, Sask, CN</td>
<td>OAS</td>
<td>53.63</td>
<td>-106.20</td>
<td>MF</td>
<td>Boreal aspen forest</td>
</tr>
<tr>
<td>Lethbridge, Alberta, CN</td>
<td>LTH</td>
<td>49.71</td>
<td>-112.94</td>
<td>GRS</td>
<td>Grassland</td>
</tr>
</tbody>
</table>

ᵃᵇ BRW1 and BRW2 are about 2 km apart and represent contrasting moisture conditions (Engstrom et al., 2006).

of low-growing sedges and mosses, interspersed with areas of shallow standing water. Soils are highly organic and consist of a shallow active layer that thaws each growing season and is underlain by continuous permafrost (Oechel et al., 2000). The two flux towers at Barrow are approximately 2 km apart and represent relatively productive (BRW1) and less productive (BRW2) tundra, respectively. The BRW1 tower is located along the edge of a drained coastal lagoon with a greater proportion of standing water relative to the adjacent BRW2 tower footprint (Harazono et al., 2003; Oechel et al., 1998). The Northern Old Black Spruce (NOBS) tower site is dominated by mature black spruce (*Picea mariana*) forest with a canopy height of 10-13 m, low topographic relief, and understory composed of mosses (*Pleurozium* and *Sphagnum* spp.) overlying discontinuous permafrost (Dunn, 2006; Dunn & Wofsy, 2006). The Old Aspen (OAS) tower site is dominated by mature aspen (*Populus tremuloides*) forest with a mean
canopy height of 21 m, an understory composed of hazelnut (*Corylus cornuta* Marsh.) and low topographic relief (Griffis *et al*., 2004). The Lethbridge (LTH) site is located in the northern Great Plains region with an average canopy height of 18.5 cm and orthic dark-brown chernozem soils (Carlson, 2000; Wever *et al*., 2002). The LTH plant community is dominated by grasses *Agropyron dasystachyum* [(Hook.) Scrib.] and *A. smithii* (Rydb.) (Carlson, 2000; Wever *et al*., 2002).

4.3.3. Precipitation and River Discharge

I selected two alternate precipitation data sources to assess changes in the pan-Arctic regional water balance over the 1983-2005 study period: the Global Precipitation Climatology Project (GPCP) Version 2 monthly precipitation (Alder *et al*., 2003), and the Global Precipitation Climatology Centre (GPCC) monthly precipitation (Rudolf & Rubel, 2005; Rudolf & Schneider, 2005) products. The GPCP monthly precipitation data are provided at 2.5°×2.5° spatial resolution and produced by incorporating precipitation estimates from low-orbit satellite microwave data, geosynchronous-orbit satellite infrared data, and surface rain gauge observations. The GPCC monthly precipitation data are provided at 0.5°×0.5° spatial resolution and produced from surface gauge network observations.

Monthly gauge-observed river discharges were obtained from ArcticRIMS (http://rims.unh.edu/index.shtml), Water Survey of Canada HYDAT (version 2005-2.04) (http://www.wsc.ec.gc.ca/), and GRDC (The Global Runoff Data Centre, 56068 Koblenz, Germany) sources. I selected 22 sub-basins with relatively complete river discharge records at the outlet gauges to analyze recent water balance changes within the study
domain. These river discharge records were converted to runoff depth (Q: mm) to be comparable with precipitation and ET. The 22 sub-basins range in size from 0.03 to 2.9 million km² and include the Yukon (data missing from 1997 to 2000), Mackenzie, Back (data missing in 1997 and 1998), Thelon (data missing in 1997), Thlewiaza, Seal, Churchill, Nelson (data missing from 1983 to 1986), Hayes (data missing in 1998), Winisk (data missing from 1995 to 1998), Attawapiskat (data missing from 1995 to 1998), Albany (data missing from 1995 to 1998), Moose (data missing from 1998 to 2001), Onega (data missing in 1997), Northern Dvina, Mezen, Ob, Yenisei, Anabar (data missing from 2000 to 2005), Lena, Yana and Kolyma (data missing in 2001, 2004 and 2005) basins.

4.4. Results

4.4.1. Fitted Relationship between g_0 and NDVI

Figure 4-3 shows the scatter plot of g_0^* vs. NDVI for the four dominant boreal-Arctic biome types, as represented by LE and surface meteorological measurements from the six flux tower sites and satellite-observed NDVI of pixels overlapping the respective tower footprints. For all four biome types, g_0^* generally increases with increasing NDVI and gradually levels off at higher values of NDVI. The reduced slope of this relationship for higher NDVI levels reflects increasing shading of individual leaves and corresponding boundary layer adjustment with increasing canopy density. These effects provide a negative feedback for transpiration so that stomatal conductance has less effect on canopy water loss at higher NDVI and canopy density levels than would be
expected from an analysis of individual leaves (Jarvis & McNaughton, 1986). These derived surface conductance (i.e., canopy conductance) values are generally consistent with reported ranges from the literature for the major regional biome types. Jones (1992) reported a seasonal range of 1.7-10 mm s$^{-1}$ in canopy conductance for grassland near Matador, Canada. Blanken and Black (2004) showed a seasonal range of 0.1-11 mm s$^{-1}$ in canopy conductance for boreal Aspen forest in Prince Albert National Park, Canada; this area is classified as mixed forest by the MODIS Type 1 land cover classification. Measured canopy conductance values for black spruce forest around the NOBS site by Rayment et al. (2000) varied between 24 and 105 mmol m$^{-2}$ s$^{-1}$ (about 0.5-2.4 mm s$^{-1}$).

I applied a sigmoid function to describe the observed relationship between g_0 and NDVI in Figure 4-3. The fitted curves for the four biome types are also shown in Figure 4-3 and show favorable agreement with the observations. The fitted curves explain 94%,
92% and 86% of the variation in g_o for the mixed forest (MF), grassland (GRS) and evergreen needleleaf forest (ENF) sites, respectively. The fitted curve for open shrubland (OSH) shows favorable agreement with some, but not all tower derived g_o values; three outliers occur under moderate NDVI values, resulting in a fitted curve that only explains 20% of the variation in g_o. The relatively small sample size for OSH (Table 4-2) also contributes to the relatively large uncertainty in the observed relationship between g_o and NDVI for OSH.

4.4.2. Comparison between ET Algorithm Results and Tower Observations

The daily time series of modeled LE fluxes derived from tower daily meteorological measurements and bias-corrected NNR meteorology are plotted in Figure 4-4 with corresponding tower LE measurements. Both sets of model results show generally favorable agreement with the tower observations and capture observed LE seasonality and associated differences among the major biomes represented (Table 4-2), although the model LE fluxes tend to underestimate tower observations in the spring for several sites, especially LTH. This LE underestimation is likely due to spring snowmelt and associated wet soil and vegetation conditions, resulting in greatly reduced surface resistance and enhanced evaporation. Moreover, the use of biome-specific constant aerodynamic conductance terms may contribute to these uncertainties. The ET algorithm from this study also produces comparable but slightly better results relative to the Mu et al. (2007) global ET algorithm for the three tundra sites and markedly improved results for the forest and grassland sites, especially for the LTH site. Overall, the NDVI-based
Table 4-2. Comparison of modeled and measured daily latent heat flux (W m⁻²) for the six flux tower sites. The statistics include mean residual (Estimate – Observation) (MR), root mean squared error (RMSE) and correlation coefficient (r) between modeled and measured values. The modeled results include estimates derived from the NDVI-based ET algorithm using (1) bias-corrected NNR meteorology, (2) tower-measured meteorology, and (3) estimates derived from Mu et al.’s (2007) method using tower-measured meteorology. All correlation coefficients are significant at the 0.01 significance level.

<table>
<thead>
<tr>
<th>Site</th>
<th>Sample Size</th>
<th>Modeling 1</th>
<th></th>
<th>Modeling 2</th>
<th></th>
<th>Modeling 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ε (W m⁻²)</td>
<td>RMSE (W m⁻²)</td>
<td>r</td>
<td>ε (W m⁻²)</td>
<td>RMSE (W m⁻²)</td>
<td>r</td>
</tr>
<tr>
<td>ATQ</td>
<td>183</td>
<td>-2.75</td>
<td>13.42</td>
<td>0.51</td>
<td>0.46</td>
<td>10.57</td>
<td>0.69</td>
</tr>
<tr>
<td>BRW1</td>
<td>143</td>
<td>-7.48</td>
<td>11.93</td>
<td>0.73</td>
<td>-5.55</td>
<td>10.27</td>
<td>0.75</td>
</tr>
<tr>
<td>BRW2</td>
<td>214</td>
<td>2.53</td>
<td>15.53</td>
<td>0.53</td>
<td>4.06</td>
<td>13.21</td>
<td>0.72</td>
</tr>
<tr>
<td>LTH</td>
<td>1008</td>
<td>11.47</td>
<td>31.52</td>
<td>0.87</td>
<td>7.27</td>
<td>25.00</td>
<td>0.91</td>
</tr>
<tr>
<td>NOBS</td>
<td>1513</td>
<td>0.48</td>
<td>17.95</td>
<td>0.83</td>
<td>-0.22</td>
<td>18.91</td>
<td>0.82</td>
</tr>
<tr>
<td>OAS</td>
<td>1018</td>
<td>-2.53</td>
<td>23.67</td>
<td>0.88</td>
<td>-0.69</td>
<td>20.52</td>
<td>0.91</td>
</tr>
<tr>
<td>Overall</td>
<td>4079</td>
<td>2.13</td>
<td>23.03</td>
<td>0.84</td>
<td>1.58</td>
<td>20.25</td>
<td>0.88</td>
</tr>
</tbody>
</table>

*Overall sample includes all daily time series of the six flux tower sites.

ET algorithm reduced bias relative to the daily tower observations from 2.20 W m⁻² using the Mu et al. (2007) method to 1.58 W m⁻²; improved LE accuracy (i.e. RMSE) from 33.55 W m⁻² to 20.25 W m⁻², and enhanced correlation with the measurements from 0.67 to 0.88 for the represented tower sites (Table 4-2). The biome-specific

\(g_\alpha \sim \text{NDVI} \) functions derived from the tower observations play a vital role in improving model performance. In addition, the use of biome-specific parameters (e.g. \(g_\alpha \), \(k \), \(r_{\text{tot}} \), etc.) instead of fixed values for all biomes and the adjusted temperature stress factor (i.e., \(m(T) \)) also contribute to improved model accuracy for the boreal-arctic vegetation types.
Figure 4-4: Time series of daily measured and modeled latent heat flux (LE: W m⁻²). The two sets of modeled LE results derived from the NDVI-based ET algorithm are driven by tower-measured meteorology and bias-corrected NNR meteorology, respectively. The daily measured and modeled LE values are compared for days with complete records for both LE and surface meteorology.
The NDVI-based ET algorithm results derived using bias-corrected NNR reanalysis surface meteorology show reduced accuracy relative to model runs driven by in situ meteorology measurements due to differences between regional weather conditions represented by the relatively coarse (at the $1.9^\circ \times 1.875^\circ$ resolution) NNR and local micrometeorology within the tower footprints. Nevertheless, model results derived from the bias-corrected NNR inputs are in general agreement with the tower derived results, with mean residual and accuracy (RMSE) values of 2.13 W m$^{-2}$ and 23.03 W m$^{-2}$, respectively. The NNR based model results also show relatively strong correspondence ($r = 0.84; P < 0.001$) to observations and capture observed LE seasonality.

On a monthly basis, the model ET results derived from both local tower meteorology and bias-corrected NNR meteorology show good agreement with ET observations at the 6 tower sites (Figure 4-5). Model results derived from tower-
measured meteorology accounted for 92% of the variation in measured ET with a RMSE of 7.4 mm month$^{-1}$ and mean residual difference of 1.20 mm month$^{-1}$, while similar results derived from bias-corrected NNR meteorology accounted for 89% of the variation in measured ET with a RMSE of 8.3 mm month$^{-1}$ and mean residual difference of 1.50 mm month$^{-1}$. Although the model results slightly underestimate tower measured ET, the high coefficients of determination (i.e., R2), low RMSE and small mean residuals for the two sets of monthly model ET results indicate that the model ET results generally capture observed seasonal patterns and site-to-site differences in ET.

4.4.3. Implementing the ET Algorithm for the Pan-Arctic

I applied the NDVI-based ET algorithm driven by bias-corrected NNR meteorology, NASA WCRP/GEWEX SRB solar radiation and albedo, and AVHRR GIMMS NDVI to estimate daily ET over the pan-Arctic basin and Alaska from 1983 through 2005. The ET results were then aggregated to monthly and annual fluxes and used with GPCP and GPCC derived precipitation (P) to evaluate recent changes in the regional water balance (P-ET). Figure 4-6 shows the spatial patterns of multi-year (1983-2005) mean annual ET derived from the model simulations, as well as regional precipitation patterns from both GPCP and GPCC sources. The model based annual ET patterns are spatially complex but show generally reduced ET with increasing latitude. The spatial pattern of ET also corresponds to distributions of the major biome types. Boreal forest regions have the highest annual ET (277.35 ± 68.89 mm yr$^{-1}$) among the three major biome types followed by grassland (248.40 ± 76.94 mm yr$^{-1}$) and arctic tundra (158.98 ± 37.61 mm yr$^{-1}$) biomes. Although open water bodies resolved by the 1-
km resolution global land cover classification cover (Friedl et al., 2002) only 6.4% (1.6×10^6 km^2) of the pan-Arctic domain, they are distributed across a wide geographic range, with relatively large magnitude and spatial variation in annual ET (410.35 ± 142.58 mm yr\(^{-1}\)) relative to vegetated land areas.

Both the GPCP and GPCC sources (Figure 4-6) show similar multi-year mean annual precipitation patterns, though the GPCP precipitation rates are much larger, averaging 1.31 (±0.38) times the GPCC precipitation rates. Both precipitation data sets show portions of Southern Alaska, Northeastern Canada near Hudson Bay and Western Eurasia having the largest precipitation, with relatively arid polar tundra areas showing the least precipitation. Since the GPCC data is produced from surface weather station network observations (Rudolf & Rubel, 2005; Rudolf & Schneider, 2005), it has lower bias and higher accuracy than the GPCP data relative to these observations (Table 4-3). However, due to the extremely sparse pan-Arctic station network density, space-time discontinuities of precipitation data and wind-related biases of gauge observations (Yang
et al., 2005), the gauge data likely underestimate actual precipitation for the region. Comparisons between GPCC precipitation and bias-corrected station observations indicate GPCC underestimation of precipitation by approximately 7.15 mm month\(^{-1}\). The GPCP monthly precipitation data are produced from both gauge data and precipitation estimates from low-orbit satellite microwave data and geosynchronous-orbit satellite infrared data. These data show lower bias than GPCC precipitation (Table 4-3), but have coarser spatial resolution and larger error spread. Despite large discrepancies in spatial resolution and precipitation magnitudes, both datasets show similar spatial patterns (Figure 4-6) and are highly correlated (\(r = 0.91; P < 0.001\)) in terms of year-to-year variability (Figure 4-7).

Table 4-3. Comparison of accuracy in GPCP and GPCC monthly precipitation against gauge observations from pan-Arctic WMO weather stations and bias-corrected station observations from Yang et al. (2005).

<table>
<thead>
<tr>
<th>Sources</th>
<th>(\bar{e}) (mm month(^{-1}))</th>
<th>MAE (mm month(^{-1}))</th>
<th>RMSE (mm month(^{-1}))</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPCP P vs. observation</td>
<td>-7.18</td>
<td>20.27</td>
<td>32.54</td>
<td>0.63</td>
</tr>
<tr>
<td>GPCP P vs. bias-corrected observation</td>
<td>-1.10</td>
<td>19.88</td>
<td>34.95</td>
<td>0.63</td>
</tr>
<tr>
<td>GPCC P vs. observation</td>
<td>1.07</td>
<td>11.05</td>
<td>25.15</td>
<td>0.79</td>
</tr>
<tr>
<td>GPCC P vs. bias-corrected observation</td>
<td>7.15</td>
<td>14.10</td>
<td>30.00</td>
<td>0.76</td>
</tr>
</tbody>
</table>

4.4.4. Changes in the Pan-Arctic Regional Water Balance

As a whole, the pan-Arctic region shows a small increasing trend in annual P for the 1983 to 2005 period, indicated by both GPCP (7.4 mm decade\(^{-1}\); \(P = 0.17\)) and GPCC
Figure 4-7: Annual time series of precipitation (P) derived from GPCP and GPCC data sources; ET derived from the NDVI-based ET algorithm, and corresponding annual P-ET anomalies from the long-term (23-year) mean. Dashed lines show linear trends for the time series. The two P series from GPCP and GPCC sources are highly correlated ($r = 0.91; P < 0.001$). The resulting P-ET anomalies are also highly correlated ($r = 0.89; P < 0.001$).

(4.3 mm decade$^{-1}; P = 0.23$) sources (Figure 4-7), while ET shows a significant increasing trend of 3.8 mm decade$^{-1}$ ($P = 0.05$) for this period coinciding with regional warming (Trenberth et al., 2007) and vegetation greening trends (e.g. Goetz et al., 2005; Zhang et al., 2008). On average, ET represents 44.4 (± 1.6) and 54.7 (± 1.8) percent of P for the pan-Arctic domain relative to the GPCP and GPCC sources, respectively. Both P and ET show increasing trends so the net effect on P-ET is reduced and annual P-ET shows an insignificant wetting trend indicated by both GPCP and GPCC derived results (Figure 4-7). Both GPCP and GPCC derived results show P-ET interannual variability of approximately $\pm 6\%$ relative to the long-term mean. Time series plots of annual P-ET
anomalies for the domain show that the years 1984-1985, 1995-1996, 1998-2001 and 2003 are dry relative to the long-term mean.

Both regional average P and ET show seasonal changes during the 23-year period (Figure 4-8). The GPCP and GPCC data show increasing regional P trends in spring, summer and autumn, with slightly decreasing P trends in winter. The ET results show significant ($P < 0.1$) positive trends for all four seasons, with the largest ET increases in spring and summer, similar to P. These results suggest that regional warming and associated lengthening of the seasonal non-frozen period are promoting increases in annual ET, while increasing P trends during this period (Figure 4-8) are counteracting these evaporative water losses and associated changes to the annual water balance. On a seasonal basis, larger positive trends in P relative to ET in spring, summer and autumn
(Figure 4-8) imply that the pan-Arctic domain is becoming wetter during the growing season. In contrast, decreasing P and slightly positive ET trends indicate that the pan-Arctic domain is becoming drier during the winter period.

There is considerable spatial variability in P, ET and P-ET trends for the domain (Figure 4-9). The two precipitation data sets show similar trends over 70% of the pan-Arctic domain, though large spatial discrepancies in P trends between GPCP and GPCC data occur over northern Arctic coastal tundra areas. The GPCP and GPCC sources show respective positive P trends for 59% and 51% of the domain, while moderate to strong negative precipitation trends occur over 17% and 21% of the region. Areas with negative precipitation trends primarily occur in southern Alaska, western and southeastern Canada (including western Yukon, northeastern British Columbia, Alberta and central Ontario), northeastern Russia, southern and northeastern Siberia, and northern Mongolia. Approximately 72% and 62% of areas with negative P trends occur in boreal forests and grasslands indicated by the GPCP and GPCC sources, respectively (Table 4-4).

The ET results show generally positive trends for 68% of the pan-Arctic domain (Figure 4-9). Approximately 62% of areas with moderate to strong negative ET trends occur over boreal forest, especially boreal regions of North America, while other biomes of North America and Eurasia show generally positive ET trends. Both GPCP and GPCC data sources also show predominantly negative P trends over North American boreal forests. These results are consistent with recent reports of widespread drought (e.g. Levinson & Waple, 2004; Schindler & Donahue, 2006; Waple et al., 2002), vegetation browning (Goetz et al., 2005) and corresponding declines in vegetation productivity (Hogg et al., 2008; Zhang et al., 2008) for these regions.
Figure 4-9: Spatial distributions of trends in annual P ((a) and (b)), P-ET ((c) and (d)) and ET (e), and annual runoff depths of 22 major sub-basins (f) within the pan-Arctic basin and Alaska from 1983 through 2005. There are two sets of P and P-ET that are derived from GPCP and GPCC precipitation sources, respectively. The trends are classified into six categories according to statistical linear trend analysis.
Table 4-4. Trends of annual precipitation, ET and P-ET from 1983 to 2005 for the three primary regional biome types and North American and Eurasian portions of the pan-Arctic domain. Grey color denotes negative trends.

<table>
<thead>
<tr>
<th>Continent Type</th>
<th>Area (10^6 km²)</th>
<th>P Trend (mm de⁻¹)</th>
<th>ET Trend (mm de⁻¹)</th>
<th>P-ET Trend (mm de⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GPCP</td>
<td>GPCC</td>
<td>GPCP</td>
</tr>
<tr>
<td>North American</td>
<td>Tundra</td>
<td>3.90</td>
<td>19.80**</td>
<td>8.77</td>
</tr>
<tr>
<td></td>
<td>Forest</td>
<td>2.69</td>
<td>-7.97</td>
<td>-11.9*</td>
</tr>
<tr>
<td></td>
<td>Grassland</td>
<td>0.72</td>
<td>5.03</td>
<td>5.12</td>
</tr>
<tr>
<td>Eurasia</td>
<td>Tundra</td>
<td>6.21</td>
<td>12.83**</td>
<td>8.70*</td>
</tr>
<tr>
<td></td>
<td>Forest</td>
<td>4.91</td>
<td>2.53</td>
<td>6.27</td>
</tr>
<tr>
<td></td>
<td>Grassland</td>
<td>1.96</td>
<td>-9.99</td>
<td>-6.05</td>
</tr>
</tbody>
</table>

* P < 0.10, ** P < 0.05

The P-ET results show similar spatial patterns with respect to GPCP and GPCC precipitation sources (Figure 4-9). There are also large spatial discrepancies in the northern Arctic coastal areas between P-ET trends derived from GPCP and GPCC data sets. Areas showing moderate to strong negative P-ET trends primarily occur in southern Alaska, western and southeastern Canada, northeastern Russia, southern Siberia, northern Mongolia and northeastern Siberia. Positive P-ET trends generally occur over tundra, while negative trends occur within grassland and boreal forest regions of the domain (Table 4-4).

While the GPCP and GPCC sources show variable precipitation patterns over the domain, both products show predominantly positive trends for the major pan-Arctic sub-basins (Table 4-5). Both the GPCP and GPCC derived P-ET results show insignificant trends for most pan-Arctic sub-basins (Table 4-5). Nine sub-basins show positive water balance (i.e., P-ET) trends indicated by both the GPCP and GPCC sources, while eight
Table 4-5. Summaries of annual ET, runoff (Q) and P-ET trends from 1983 to 2005 for 22 drainage basins within the pan-Arctic domain having available long-term gauge measurements; grey color denotes negative trends.

<table>
<thead>
<tr>
<th>Continent</th>
<th>Ocean</th>
<th>Names of Basins</th>
<th>Area (10^4 km²)</th>
<th>P Trend (mm de⁻¹) GPCP</th>
<th>ET Trend (mm de⁻¹) GPCP</th>
<th>Q Trend (mm de⁻¹) GPCP</th>
<th>P-ET Trend (mm de⁻¹) GPCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific Ocean</td>
<td></td>
<td>Yukon</td>
<td>83.50</td>
<td>-21.54</td>
<td>-10.61</td>
<td>-0.17</td>
<td>4.20</td>
</tr>
<tr>
<td>Arctic Ocean</td>
<td></td>
<td>Mackenzie</td>
<td>176.20</td>
<td>3.39</td>
<td>-17.53*</td>
<td>-2.57</td>
<td>3.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back</td>
<td>14.23</td>
<td>34.84***</td>
<td>0.98</td>
<td>6.57*</td>
<td>-22.72**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HJUBs</td>
<td></td>
<td>Thelon</td>
<td>24.03</td>
<td>22.34*</td>
<td>37.71</td>
<td>6.50**</td>
<td>-0.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thlewiaza</td>
<td>6.48</td>
<td>25.25</td>
<td>80.17*</td>
<td>4.40</td>
<td>1.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seal</td>
<td>5.37</td>
<td>32.44</td>
<td>53.69**</td>
<td>1.27</td>
<td>3.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Churchill</td>
<td>30.00</td>
<td>23.00*</td>
<td>15.07</td>
<td>4.20</td>
<td>12.16*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nelson</td>
<td>111.36</td>
<td>9.47</td>
<td>7.20</td>
<td>1.79</td>
<td>20.21**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hayes</td>
<td>10.58</td>
<td>21.81*</td>
<td>20.82</td>
<td>-1.43</td>
<td>12.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winisk</td>
<td>10.69</td>
<td>14.09</td>
<td>0.48</td>
<td>-6.80**</td>
<td>30.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attawapiskat</td>
<td>3.06</td>
<td>15.01</td>
<td>-19.14</td>
<td>-7.86**</td>
<td>64.80**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moose</td>
<td>10.60</td>
<td>-32.86**</td>
<td>-48.28***</td>
<td>3.62</td>
<td>-10.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurasia</td>
<td>Arctic Ocean</td>
<td>Oenea</td>
<td>6.63</td>
<td>8.52</td>
<td>-2.27</td>
<td>5.82*</td>
<td>10.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mezen</td>
<td>7.72</td>
<td>-6.94</td>
<td>-23.71</td>
<td>1.31</td>
<td>1.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ob</td>
<td>296.04</td>
<td>2.72</td>
<td>3.43</td>
<td>6.49*</td>
<td>7.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yenisei</td>
<td>257.11</td>
<td>-7.35</td>
<td>3.14</td>
<td>9.71**</td>
<td>8.28**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mezen</td>
<td>8.57</td>
<td>20.74**</td>
<td>-9.51</td>
<td>-0.92</td>
<td>67.54***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lena</td>
<td>243.94</td>
<td>12.31</td>
<td>17.88**</td>
<td>1.13</td>
<td>5.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mezen</td>
<td>23.51</td>
<td>-0.13</td>
<td>0.82</td>
<td>10.40***</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kolyma</td>
<td>65.71</td>
<td>11.32</td>
<td>7.21</td>
<td>3.65</td>
<td>0.80</td>
</tr>
</tbody>
</table>

*HJUBs denotes Hudson/James/Ungava Bays; * P < 0.10, ** P < 0.05, *** P < 0.01.
sub-basins display negative water balance trends. For the remaining five basins examined, the GPCP and GPCC derived results show opposite trends. However, only the Moose basin has a significant (with 90% or more confidence) trend confirmed by both GPCP and GPCC sources. The ET results (Table 4-5) show negative trends for the Yukon, Mackenzie, Churchill, Hayes, Winisk, Attawapiskat and Anabar basins but positive trends for the other 15 basins, indicating that ET outputs for the pan-arctic domain are generally increasing during the 23-year period. The measured annual runoff depth (Q) from regional basin gauges show positive trends for 94.3% of total examined basin area, except the Back, Thelon, Moose and Northern Dvina basins. These results indicate that river discharge outputs for the pan-Arctic region are also generally increasing. The general increasing trends in regional river discharges have been attributed to one or more factors including increasing poleward moisture transport and associated precipitation, permafrost thaw, and changes in regional fire regimes (e.g. Berezovskaya et al., 2004; Groves & Francis, 2002; McClelland et al., 2004; Yang et al., 2002). The generally positive trends in ET, precipitation and river discharge for most basins (Figure 4-9; Table 4-5) are consistent with an intensification of the pan-Arctic terrestrial water cycle during the 23-year period. However, some areas have experienced drying trends during this period, including portions of eastern Alaska, southern Yukon, British Columbia, Alberta, southern Siberia and Mongolia. These drying patterns may be due to one or more related factors associated with regional climate warming, including decreasing precipitation inputs; a lengthening growing season and associated increases in evaporative water losses; alteration of regional storages from earlier onset of seasonal snowmelt, permafrost...
Figure 4-10: Time plots of standardized summer (Jun. - Aug.) vegetation moisture stress index (I_m) and corresponding summer P-ET anomalies derived from GPCP and GPCC precipitation sources, respectively; the y axis for standardized summer I_m increases from upper to lower portions of the graphic and corresponds to the changes from less-than-normal to more-than-normal moisture constraints on vegetation productivity.

thawing and increasing soil active layer depths (e.g. Berezovskaya et al., 2004; McDonald et al., 2004; Schindler & Donahue, 2006; Zhang et al., 2005).

The standardized summer vegetation moisture stress index (I_m) and anomalies of summer P-ET were used to detect widespread summer droughts during the 23-year period for the pan-Arctic domain (Figure 4-10). The standardized summer I_m and summer P-ET anomalies (Figure 4-10) indicate that years 1989-1991, 1995, 1998, 2001 and 2003 had the driest summers over the 23-year period. The summer I_m and P-ET anomalies also show similar spatial patterns as illustrated in Figure 4-11 for years 1998, 2001, 2002 and 2003. Both variables indicate persistent, widespread dry conditions for these years, especially for eastern Alaska, Yukon, southern and central Canada, northeastern and
Figure 4-11: Maps of summer P-ET anomalies derived from (a) GPCP and (b) GPCC precipitation sources, (c) standardized summer I_m, and (d) annual NPP anomalies for years 1998, 2001, 2002 and 2003. Negative values of I_m denote less-than-normal moisture constraints on vegetation productivity and are indicated by the blue colors, while positive values indicate more-than-normal moisture constraints on vegetation productivity and are indicated by the red colors.
southeastern Siberia, and northern Mongolia. The North American portion of the domain shows more persistent drought in recent years than the Eurasian portion of the domain. These results are also consistent with the timing and locations of recent documented drought events (e.g. Waple et al., 2002; Waple et al., 2003; Levinson et al., 2004). Previous studies for the region (Kimball et al., 2006; Zhang et al., 2007a; Zhang et al., 2008) show generally positive trends in NPP for the domain, with large drought induced NPP decreases for boreal regions in recent years (Goetz et al., 2005; Zhang et al., 2008). The results from this study show generally consistent declines in P-ET and NPP for major drought years despite generally positive trends over the 23-year period. The relatively close correspondence between the summer regional water balance and NPP (Figure 4-11) reflects the strong impact of summer water balance on CO₂ exchange.

4.5. Discussion and Conclusions

I developed a satellite-based ET algorithm and used this information with regional precipitation data and available river discharge measurements to analyze spatial patterns, annual variability and recent (1983 through 2005) trends in P, ET and the terrestrial water balance (P-ET) for the pan-Arctic basin and Alaska. The pan-Arctic domain as a whole shows a small increasing trend in annual P, a significant increasing trend in annual ET and generally positive trends in measured annual runoff for most of the sub-basins examined. These results imply an intensification of the pan-Arctic terrestrial water cycle during the 23-year period. Both regional average P and ET show significant seasonal trends for the pan-Arctic domain. The ET results display significant positive trends in all four seasons with larger trends in spring and summer. The P results show larger positive
trends in spring, summer and autumn than ET but a small negative trend in winter, indicating that the pan-Arctic region as a whole is becoming wetter during the growing season. However, both P and ET trends show large spatial variability. Some areas have experienced drying trends during this period, including boreal forest and grassland regions of eastern Alaska, southern Yukon, British Columbia, Alberta, southern Siberia and Mongolia. These areas generally experienced recent (post-2000) summer droughts indicated by the spatial maps of summer P-ET decreases and a standardized summer vegetation moisture stress index (I_m), coinciding with anomalous decreases in satellite-detected annual vegetation productivity.

The water balance results may be negatively impacted by large uncertainties in both GPCP (MR = 1.10 mm month$^{-1}$; RMSE = 34.95 mm month$^{-1}$) and GPCC (MR = -7.15 mm month$^{-1}$; RMSE = 30.00 mm month$^{-1}$) precipitation sources, indicated by sparse station observations and associated uncertainties from coarse meteorology reanalysis inputs for model simulations. Open water bodies accounted for 6.4 percent of the pan-Arctic domain, while ET from these water bodies represented approximately 13.0 (\pm0.4) percent of total mean annual ET for the domain; however, ET from open water bodies are likely underestimated due to the characteristic abundance of small open water bodies in tundra regions that may not be adequately resolved by relatively coarse resolution (1 km) MODIS land cover information. Also some 1-km water body pixels may be lost when aggregated to an 8-km resolution by dominant land cover. Other uncertainties in our results reflect limitations of the ET algorithms and incomplete river discharge records for some sub-basins within the pan-Arctic domain. Despite these limitations, the GPCP and GPCC sources generally showed similar spatial patterns of annual P over 70% of the pan-
Arctic domain and high temporal correlation during the 23-year period, while the model ET results showed favorable agreement with tower derived ET (e.g. MR = -1.50 mm month\(^{-1}\); RMSE = 8.3 mm month\(^{-1}\); R\(^2\) = 0.89) over dominant regional land cover types.

Our findings of a general wetting trend for the pan-Arctic region are generally consistent with previous modeling and observational studies. Both precipitation observations and simulations from 22 coupled climate models showed generally increasing trends over high-latitude land areas above 55°N from 1950 to 2000 (Min et al., 2008). Satellite remote sensing based observations also show generally increased poleward moisture transport to the Arctic from 1980 to 1998 (Groves and Francis 2002). A regional synthesis of recent changes in precipitation, runoff and precipitable water also show predominantly positive trends in recent decades for these major components of the Arctic freshwater cycle (Serreze et al. 2006, White et al. 2007). Together, these results provide broad-based evidence in support of a general intensification of the pan-Arctic terrestrial water cycle in response to a warming climate.

Our findings of a general pan-Arctic wetting trend coincide with regional warming (Trenberth et al., 2007) and vegetation greening trends (e.g. Goetz et al., 2005; Zhang et al., 2008). However, the regional water balance changes also show large spatial and temporal variability in the various water cycle components. Boreal forest and grassland areas of the domain show widespread drying trends for the 1983 to 2005 period, with recent (post-2000) large summer drought events coinciding with anomalous decreases in summer water balance and annual vegetation productivity. The impacts of recent droughts on boreal vegetation are also documented in other studies (Bunn & Goetz, 2006; Verbyla, 2008). In Alaska, tree-ring studies show a reduction in the growth of
white spruce (Barber et al., 2004; Davi et al., 2003), even at some upper tree-line sites (Lloyd & Fastie, 2003; Wilmking et al., 2004), because of a recent increase in temperature-induced drought stress. Hogg and Wein (2005) also reported recent drought-induced reductions in forest growth and regeneration in southwestern Yukon, Canada, while Schindler and Donahue (2006) reported widespread and persistent post-2000 droughts in Canada’s western Prairie Provinces. Together these results indicate strong coupling between regional water, energy and carbon cycles. A changing water balance is impacting regional vegetation productivity and associated sequestration of atmospheric CO₂ by altering the supply of plant-available moisture, while vegetation is influencing regional water and energy cycles through strong canopy controls to LE and ET. Northern boreal forest and tundra regions are considered to be an important global carbon sink for anthropogenic CO₂ emissions (Dargaville et al., 2005). However, the stability of this northern carbon sink will likely depend on the continuing supply of adequate moisture and a positive water balance to offset increased evaporative demands of a warming climate.

Precipitation in the pan-Arctic region has strong teleconnections to global sea surface temperature (SST) patterns (Shabbar & Skinner, 2004), especially variations in tropical and north Pacific SSTs (Seager et al., 2005; Zhang et al., 2007a). Zhang et al. (2007a) showed that moisture availability in many areas of the pan-Arctic region has high correlation with the Pacific Decadal Oscillation (PDO) during the growing season. Groves and Francis (2002) showed that the net precipitable water flux across 70°N in winter is 6 times larger than on negative-index days, suggesting that poleward moisture transport is strongly tied to the NAO/AO. Goetz et al. (2007) reported the lagged
correlation between spring climate fields (like temperature and precipitation) and spring boreal North America net carbon exchange and suggested teleconnections between carbon fluxes in the pan-arctic region and large-scale atmospheric/oceanic oscillations such as the AO and ENSO.

The regional water balance trends from this investigation likely reflect both natural climate variability from ocean-atmosphere climate oscillations, and human-induced climate warming. The relative impacts of natural and human induced climate variability on regional water budget calculations are difficult to attribute due to the large natural variability of the Arctic system, and the relatively short record of satellite based observations. However, the continued growth of satellite observational records coupled with improvements in regional climate models will likely lead to improved diagnosis and attribution of global climate change impacts to the pan-Arctic water cycle. The results of this study show that ET and associated water balance changes are spatially complex, with large uncertainties in precipitation inputs due to sparse northern gauge networks and relatively coarse resolution reanalysis data sources. Longer and better precipitation reanalysis products should lead to better understanding of water cycle changes in this region, while improvements in precipitation monitoring networks and river discharge observations would dramatically improve the regional assessment of the terrestrial water balance and associated linkages between the terrestrial water and carbon cycles.

4.6. References Cited

CHAPTER 5: IMPACTS OF LARGE-SCALE OSCILLATIONS ON PAN-ARCTIC VEGETATION PRODUCTIVITY AND THE REGIONAL WATER BALANCE

5.1. Climate Oscillations

Any phenomenon that tends to vary above or below a mean value in some sort of periodic way is properly designated as an oscillation (Oliver, 2005). The large-scale atmospheric circulation patterns (Wallace & Thompson, 2002) and ocean circulation patterns (Siedler et al., 2001) showing quasi-periodic behaviors are generally called climate oscillations. Teleconnections in atmospheric science refer to climate anomalies being related to each other at large distances, typically thousands of kilometers (Glantz et al., 1991). Climate oscillations can generally show be described by their teleconnections and quantified by their respective oscillation indices.

The major oscillations of the planetary atmospheric pressure fields were proposed by Sir Gilbert Walker, who first described and named the seesaw pressure readings of the southern oceans as the Southern Oscillation (Oliver, 2005). Walker’s work went relatively unnoticed until recent decades. In a 1966 paper Bjerknes recognized the contributions of Walker and identified the Walker Circulation (Bjerknes, 1966). Increased research on teleconnections has identified other oscillations. The major global oscillations include El Niño-Southern Oscillation (ENSO) (Rasmusson & Carpenter, 1982), the North Atlantic Oscillation (NAO) (Hurrell & van Loon, 1997), the Pacific Decadal Oscillation (PDO) (Mantua et al., 1997), the Pacific North American Oscillation
(PNA) (Wallace & Gutzler, 1981), the Arctic Oscillation (AO) (Thompson & Wallace, 1998), the Antarctic Oscillation (AAO) (Gong & Wang, 1998), and the Quasibiennial Oscillation (QBO) (Maruyama, 1997).

The ENSO is a pressure anomaly over the Indian and South Pacific Oceans with a slightly variable periodicity averaging 2.33 years. The NAO reflects the atmospheric stability of the Icelandic low-pressure cell and the Azores – Bermuda high-pressure cell and has a marked influence on the climate of Western Europe. The PDO is a relatively long-lived (20-30 year cycle) phenomenon defined by ocean surface temperatures in the northeast and tropical Pacific; the PDO has a long-term influence on the climate of North America. The PNA is an alternating pattern between pressures in the central Pacific Ocean and centers of action over western Canada and the southeastern United States; it is expressed as an index that is both ocean- and land-based. The AO is an oscillation in which atmospheric pressure anomalies, at polar and mid-latitude locations, fluctuate between distinct positive and negative phases. The AAO is represented by an oscillation in values of mid- and high-latitude surface pressure systems in the southern hemisphere. The Quasibiennial Oscillation (QBO) is a low-latitude oscillation that is longer than the dominant annual cycle and whose identification rests with sophisticated computer modeling.

Most oscillations are involved with the strength and location of the major planetary highs and lows (centers of action) and sea surface temperatures, and are derived statistically from long-range atmospheric pressure observation series. For some, and to a lesser extent, rainfall and temperature data series can also be employed.
In this study, I mainly focus on the primary oscillations that may strongly affect regional climate in pan-arctic region. These oscillations include the NAO, AO and PDO. The NAO and the AO are different representations and conceptual interpretations of the same phenomenon (Kerr, 1999; Wallace, 2000). Moreover, the AO correlates strongly (85-95%) with the NAO (e.g., Deser, 2000; Dickson et al., 2000; Hurrell, 1995). The AO captures more hemispheric variability than the NAO because many of the recent changes associated with the AO have occurred in the Laptev, East Siberian, Chukchi and Beaufort Seas – a long way from the NAO’s center of action (Thompson & Wallace, 1998). Therefore, the AO is examined instead of the NAO, and the AO and PDO are the two major climate oscillations addressed in this study.

5.1.1. The Arctic Oscillation

The AO is defined as the leading principal component of sea level pressure (SLP) variability in the Northern Hemisphere, is a robust surface manifestation of the strength of the polar vortex and explains much of the variance both of the surface pressure and of the geopotential height in the troposphere (Thompson & Wallace, 1998). It is the dominant pattern of non-seasonal SLP variations north of 20° N and is characterized by SLP anomalies of one sign in the Arctic and anomalies of opposite sign centered about 37-45° N (Figure 5-1).

The AO exhibits a "positive phase" or “warm phase” with relatively low pressure over the polar region and high pressure at mid-latitudes (about 45 degrees North), and a "negative phase" or “cold phase” in which the pattern is reversed (Figure 5-1). In the
positive phase, higher pressure at mid-latitudes drives ocean storms farther north, and changes in the circulation pattern bring wetter weather to Alaska, Scotland and Scandinavia, as well as drier conditions to the western United States and the Mediterranean. The pressure patterns favor the Jet streams and create strong westerlies that keep cold Arctic air to the north and push warmth and precipitation toward northern Europe. In the negative phase, the pressure patterns disturb the Jet Steams and weaken the westerlies (Figure 5-1). As a result, frigid Arctic air reaches more southerly latitudes. The Northern Europe and Asia get hit with cold Arctic air (Figure 5-1).
The AO is reported to influence winter Eurasian snow cover (Gong et al., 2003), Hudson Bay river discharge (Déry & Wood, 2004), freshwater-ice break/freeze-up dates over Canada (Bonsal et al., 2006) and interannual forest fire variability in Central Siberia (Balzter et al., 2005).

5.1.2. The Pacific Decadal Oscillation

The PDO is the leading principal component of North Pacific sea surface temperature (SST) variability and shifts phases over inter-decadal time scales of approximately 20 to 30 years (Mantua et al., 1997). The PDO is detected as anomalous warm or cool surface waters of the Pacific Ocean, north of 20° N (Figure 5-2). During a "warm" or "positive" PDO phase, western Pacific SST becomes cool and portion of the eastern Pacific warm; during a "cool" or "negative" PDO phase, the opposite pattern occurs (Figure 5-2). The specific drivers of have not been identified, but may involve a response to intrinsic variability in atmospheric conditions of the North Pacific, remote

![Figure 5-2](http://jisao.washington.edu/pdo/)

Figure 5-2: Typical winter time SST (colors), SLP (contours) and surface windstress (arrows) anomaly patterns during warm (left) and cool (right) PDO phases (graphs are from University of Washington, http://jisao.washington.edu/pdo/).
forcing by ENSO, and ocean wave processes associated with ENSO and corresponding adjustment of the North Pacific Ocean by Rossby waves (Schneider & Cornuelle, 2005).

Major changes in northeast Pacific marine ecosystems have been correlated with phase changes in the PDO; warm phases have coincided with enhanced coastal ocean biological productivity in Alaska and inhibited productivity off the west coast of the contiguous United States, while cold PDO phases have coincided with the opposite north-south pattern of marine ecosystem productivity. The PDO has also been correlated with North American precipitation and stream flow patterns (Dettinger et al., 1998), and northeast Asia surface air temperature fluctuations (Minobe, 2000).

5.2. Data and Methodology

Teleconnections between the climate oscillations and vegetation productivity and atmospheric CO$_2$ anomalies with teleconnections were analyzed on a monthly basis since the effects of teleconnections don’t last the whole year, e.g. the AO/NAO contribute significantly to Northern Europe annual surface atmosphere temperatures mainly in winter and early spring (Kryjov, 2004).

I hypothesized that the AO and PDO influence pan-Arctic terrestrial production by regulating the timing of annual growing season onset and the supply of plant-available moisture.

5.2.1. PEM NPP Series and Moisture Stress Index

Daily NPP series were derived from 1983-2005 on a grid cell-by-cell basis with 16km \times 16km resolution using the MOD17A2/A3 production efficiency model (PEM)
driven by satellite remote sensing based monthly leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) developed from NOAA Advanced Very High-Resolution Radiometer (AVHRR) Pathfinder and NASA MODerate resolution Imaging Spectroradiometer (MODIS) records, and a gridded daily surface meteorological dataset developed from a regional correction of the NCEP/NCAR reanalysis and NASA Solar Radiation Budget daily shortwave solar radiation inputs (see Chapter 3).

To quantify the moisture constraints to NPP, I used the simple moisture stress index (I_m) based on the PEM algorithms introduced in Section 3.1. The I_m parameter is dimensionless, ranging from 0 to 1 with increasing VPD constraints to NPP. I calculated a potential annual NPP rate (NPP_{-M}) by eliminating the VPD based moisture constraint in the PEM calculations. I then determined the proportional difference between annual NPP calculations under non-moisture-stressed and actual conditions as a simple NPP loss index: $$\delta_{NPP_Loss} = \frac{NPP_{-M} - NPP_{\text{actual}}}{NPP_{-M}} \times 100\%.$$ The δ_{NPP_Loss} values were then standardized using estimated means and standard deviations of the 1983-2005 time series. The standardized value of δ_{NPP_Loss} (SI_{NPP_Loss}) represents a direct measure of drought-induced NPP losses, whereas the I_m parameter describes the relative strength of the VPD defined moisture constraint on NPP calculations.

5.2.2. Timing of growing season onset

The timing (day of year) of growing season onset was derived from two different approaches, including: the seasonal onset of terrestrial NPP (T_{NPP_Onset}) derived from the
PEM, and timing of the spring drawdown of atmospheric CO₂ concentrations ($T_{CO₂_{Spr}}$) from NOAA CMDL arctic and sub-arctic monitoring stations (>50°N) (see Section 3.3).

5.2.3. AO and PDO Indices

The monthly AO indices were obtained from the US National Weather Service Climate Prediction Center (http://www.cdc.noaa.gov/Correlation/ao.data), while the monthly PDO indices were provided by the University of Washington (ftp://ftp.atmos.washington.edu/mantua/pnw_impacts/INDICES/PDO.latest).

To analyze the relationship between oscillations and the timing of growing season onset in the region, I first calculated early-spring (February- April) mean values of the monthly oscillation indices, and then standardized the values using the means and standard deviations. I then conducted a pixel-wise correlation analysis between the oscillation indices and $T_{NPP_{Onset}}$ time series to examine the spatio-temporal correlations. The same procedures were applied to evaluate linkages between mean oscillation indices during the growing season, I_m and $SI_{NPP_{Loss}}$. The growing season (GS, April-October) is defined as all months in which the 1983-2005 monthly average air temperature for the pan-Arctic domain is above 0.0°C.

5.3. Results

5.3.1. Connection of AO Spring Patterns to Growing Season Onset

The spring AO index (AO_{spr}) showed a strong systematic correlation with $T_{NPP_{Onset}}$ (Figure 5-3). The correlations between AO_{spr} and $T_{NPP_{Onset}}$ were
predominantly negative for the Eurasian portion of the domain, but positive for Central and Northeastern Canada (Figure 5-3). This is because a positive \(A_{0_{spr}} \) reflects stronger-than-normal pressure patterns, resulting in stronger-than-normal westerly winds across the North Atlantic Ocean in the 40-60°N latitude belt, warmer-than-normal conditions and earlier growing season onset over Eurasia, and colder-than-normal conditions and later growing season onset over the eastern Canadian Arctic (Hurrell, 1996). The pan-Arctic regional average \(T_{NPP_Onset} \) was negatively correlated with \(A_{0_{spr}} \) \((r = -0.653; P = 0.001) \) (Figure 5-4). The relatively strong correlation \((r = 0.777; P < 0.001) \) between \(T_{CO2_Spr} \) and regional average \(T_{NPP_Onset} \) (Figure 5-4) also indicates that northern terrestrial ecosystems dominate the seasonal atmospheric CO2 cycle at high northern latitudes and that the PEM captures the annual timing of the growing season onset.
Figure 5-4: Temporal trajectories of the AO$_{spr}$ and annual anomalies of regional average growing season onset derived from PEM calculations (T$_{NPP_Onset}$), and the seasonal pattern of atmospheric CO$_2$ concentrations (T$_{CO2_Spr}$); negative anomalies denote earlier onset of the growing season, while positive values denote the opposite response relative to the 23-year record.

Positive AO$_{spr}$ phases coincided with generally earlier growing season onset, while negative AO$_{spr}$ phases are concurrent with later growing season onset. These results indicate that regional oscillations captured by the AO$_{spr}$ influence annual NPP by affecting the timing of growing season onset. Previous studies indicate that approximately 1% of annual NPP is gained or lost for each additional day advance or delay in the annual onset of the growing season (Baldocchi et al., 2001; Kimball et al., 2004; Kimball et al., 2006). Within the pan-Arctic domain, 86.6% of the vegetated area showed a negative correlation between the timing of growing season onset and annual NPP for the 1983-2005 period, while 59.3% of this area showed a significant correlation with at least 90% confidence (Figure 5-3). A temporal advance in growing season onset

171
promotes vegetation growth by increasing the potential annual duration of photosynthesis, but may not necessarily lead to greater annual vegetation production because of other influences on NPP including plant-available moisture constraints to photosynthesis, fire and related disturbance impacts during the growing season.

5.3.2. Connection of Growing Season PDO Patterns to Plant Moisture Stress and Water Balance

![Maps of (a) pixel-wise correlation between PDOGS and GS Im values and (b) the corresponding statistical P-values for the pan-Arctic region.](image)

Figure 5-5: Maps of (a) pixel-wise correlation between PDOGS and GS Im values and (b) the corresponding statistical P-values for the pan-Arctic region.

The spatial patterns of correlations between PDOGS and GS I_m indicate that the PDOGS shows strong systematic association with GS I_m (Figure 5-5). The PDOGS and GS I_m relationship (Figure 5-5) is predominantly negative for Southern, Central and Northeastern Canada, and Northwestern and Southern Eurasia indicating a reduced VPD constraint to NPP for positive PDO conditions, but positive for Western and Southern
Alaska. Overall, approximately 75.7% of the domain showed a negative correlation between PDO$_{GS}$ and GS I_m for the 23-year period, 29.6% of which showed a significant correlation with at least 90% confidence. Approximately 50.7% of this area showed above-average moisture stress (i.e. greater than average moisture stress relative to the 23-year pan-Arctic regional mean) that was predominantly located in boreal forest and grassland/cropland biomes, rather than tundra (Figure 5-6).

The PDO$_{GS}$ index also shows spatial correlations with the growing season water balance (P-ET) on a pixel-by-pixel basis (Figure 5-7), but the correlations are generally weaker than correspondence between PDO$_{GS}$ and GS I_m. Uncertainties in the precipitation data may reduce the correlations between PDO$_{GS}$ and GS P-ET. However, the results using the GPCP and GPCC sources (Figure 5-7) generally show the similar
The results indicate that the growing season water balance is positively correlated with the PDOGS in Southern, Central and Northeastern Canada, and Northwestern and Southern Eurasia indicating increased net water inputs under positive PDO conditions.
Figure 5-8: Time plots of SI_{NPP_Loss}, and standardized GS I_m and PDO$_{GS}$ anomalies for the pan-Arctic domain. SI_{NPP_Loss} represents drought-induced NPP losses relative to potential conditions, where less-than-normal (green) and larger-than-normal (brown) NPP losses are standardized relative to 23-year mean conditions. Positive PDO$_{GS}$ phases (red) generally corresponded to wetter-than-normal conditions (green), whereas negative PDO$_{GS}$ phases (blue) were generally related to drier-than-normal conditions (brown).

The PDO$_{GS}$ index was correlated to regional average GS I_m ($r = -0.471$; $P = 0.023$) (Figure 5-8), indicating that North Pacific SST patterns during the growing season impact atmospheric moisture inputs to the pan-Arctic land mass, especially for boreal forest and grassland/cropland biomes. Positive phases of the PDO$_{GS}$ generally correspond to wetter-than-normal conditions, while the negative PDO$_{GS}$ phases were concurrent with drier-than-normal conditions for the region. The PDO$_{GS}$ index was also significantly correlated with SI_{NPP_Loss} ($r = -0.485$; $P = 0.019$). The relative influence of PDO$_{GS}$ on GS I_m also showed substantial spatial (Figure 5-5) and temporal variability.
(Figure 5-8). Both GS I_m and $SI_{NPP_{Loss}}$ indicated two widespread and prolonged droughts that resulted in substantial NPP declines from 1988-1991 and 1998-2003. The most recent drought resulted in particularly large NPP losses relative to the 23-year record. Drought-induced NPP losses in 1998, 2002, and 2003 were 1.63, 1.07 and 1.90 standard deviations from mean (23-year) conditions. Both of these droughts corresponded to negative PDO$_{GS}$ phases. The most severe (1998-2003) regional drought coincided with a particularly strong negative PDO$_{GS}$ phase. A previous study (MacDonald & Case, 2005) also reported that a prolonged and strongly negative PDO phase between AD 993 and 1300 is contemporaneous with a severe medieval mega-drought that is apparent in many proxy hydrologic records for the western United States and Canada. Although the PDO$_{GS}$ didn’t show strong correspondence with $SI_{NPP_{Loss}}$ in 2000 and 2003, the relatively weak correlation between PDO$_{GS}$ and $SI_{NPP_{Loss}}$ within less drought prone tundra regions may be partially responsible for this. Since the oceans are the major atmospheric moisture source for the pan-Arctic land mass, the correspondence between PDO$_{GS}$ and $SI_{NPP_{Loss}}$ indicates that large-scale oscillations characterized by the PDO have a major impact on northern terrestrial NPP by regulating the supply of plant-available moisture during the growing season. However, the effect of the PDO on NPP shows strong spatial and temporal variability depending on the sign and relative strength of the PDO phase, and the potential vulnerability of vegetation to drought. The effect of PDO$_{GS}$ on NPP appears to be larger within continental interior regions and southern margins of the boreal forest and grassland/cropland biomes where warmer air temperatures, longer potential growing seasons and a limited summer moisture supply result in larger potential moisture
Figure 5-9: Time series of the proportional area of the pan-Arctic domain showing significant correlation between AOspr and annual NPP and the proportional area of drought prone regions having significant correlations between PDOGS and annual NPP, where the 23-year mean GS I_m exceeds regional mean conditions. The time series represents a nine-year moving correlation analysis, while dashed lines show the linear trends for the time series.

constraints to regional production. The recent increasing trend in GS I_m has been attributed to decreasing plant-available water supply and increasing air temperature, rather than changes in solar irradiance (see Chapter 3). The relative impact of the oscillations on regional productivity may also be changing as warming trends increase potential growing seasons and GS air temperatures.

To assess temporal trends in the relations between AOspr and PDOGS patterns, and annual NPP, I calculated time series of the proportional areas (%) of the pan-Arctic domain showing significant correlations between annual NPP and AOspr, and between annual NPP and PDOGS using a nine-year moving correlation analysis. The NPP-PDOGS relationship was only assessed for drought prone areas where the 23-year mean GS I_m value exceeded pan-Arctic regional mean conditions, because the drought prone areas
covered 50.4% of the total vegetated area, and PDO
covered 50.4% of the total vegetated area, and PDOGS generally showed insignificant
generally showed insignificant
(\(P > 0.1 \)) correspondence to GS \(I_m \) for other areas. The proportional area showing a
significant correlation between \(\text{AO}_{\text{spr}} \) and annual NPP decreased by 1.43% per year
(\(P = 0.176 \)) from 1983 to 2005 (Figure 5-9), indicating that the \(\text{AO}_{\text{spr}} \) influenced timing
of growing season onset became less important to annual NPP as low-temperature
constraints to photosynthesis relaxed under an observed (0.5°C per decade; \(P = 0.002 \))
positive trend in GS air temperature for the period of record (see Section 3.7.3).
Coincidentally, the proportional area of drought prone regions showing significant
correlations between PDOGS and annual NPP increased by 1.75% per year (\(P = 0.104 \)),
indicating that the PDOGS influenced supply of plant-available moisture became an
increasing constraint on annual productivity with regional warming. However, the
significance of these trends is limited by the relatively short duration of the satellite
record.

5.4. Conclusions

Synchronous ocean-atmosphere oscillations of the North Pacific, North Atlantic,
and Arctic regions have a strong impact on the seasonal cycle and magnitude of pan-
Arctic vegetation productivity and the regional uptake and sequestration of atmospheric
\(\text{CO}_2 \) by vegetation biomass. These oscillations affect NPP by influencing the seasonal
pattern of low temperature and moisture constraints to photosynthesis. The early-spring
pattern of the AO influences the timing of growing season onset within the pan-Arctic
domain, while growing season PDO patterns correspond with the supply of plant-
available moisture. As potential growing seasons become longer under a warming climate,
negative phases of the PDO may have increasingly widespread and negative impacts on northern terrestrial uptake and sequestration of atmospheric CO₂, as plant-available moisture becomes more limiting to NPP. The two largest observed drought-induced reductions in regional productivity occurred during the latter half of the 23-year satellite record and coincided with particularly strong, negative PDO₆₈ phases. The influence of the springtime AO on terrestrial production is likely to decline under current warming trends as low temperature constraints to vegetation growth relax and NPP becomes increasingly constrained by the available supply of moisture during the growing season.

5.5. References Cited

CHAPTER 6: CONCLUSIONS AND FUTURE STUDIES

6.1. Key Findings

6.1.1. Uncertainties in Meteorology Reanalyses

There are considerable uncertainties associated with surface meteorology reanalyses products that are used to assess global and regional climate changes and as primary environmental drivers of ecological and hydrological modeling systems in the northern high latitudes.

I developed a mathematical regional correction method to effectively reduce the biases and uncertainties in the meteorology reanalyses using the ground observations. Improved availability and density of northern ground observation networks would be helpful to further improve the quality of meteorology reanalyses.

6.1.2. Changes of Climatic Constraints to Vegetation Productivity

The climate of the pan-Arctic region has undergone rapid and dramatic changes in the past and there is no reason that it could not experience similar changes in the future. Low-temperature, plant-available moisture and solar irradiance are the major climatic constraints to vegetation productivity in this region. The temperature in this region shows the most significant change of these three major climatic factors and corresponds with global warming. As a result, low temperature constraints on pan-Arctic vegetation productivity are significantly decreasing over the 23-year study period and strongly favor additional plant growth. However, vegetation moisture stress also shows strong
increasing trends in response to regional warming, changes in the hydrological cycle and variability in land-ocean moisture exchanges, that are offsetting the potential benefits of longer growing seasons and contributing to recent disturbances in vegetation productivity.

Climate change and human activities are also impacting regional clouds and aerosol properties, and incoming solar radiation. However, changes in incoming solar radiation are generally insignificant over the observed period of record, and appear to have a much smaller impact on pan-Arctic vegetation productivity than the other two environmental constraints.

6.1.3. Changes of Vegetation Phenology, Greenness and Productivity

The satellite remote sensing based retrievals of seasonal freeze-thaw and vegetation productivity indicate that the timings of growing season onset and cessation coincide with the timings of major thaw and freezing events in the pan-Arctic region. Satellite observations of a generally earlier growing season onset are also confirmed by an earlier spring drawdown of atmospheric CO₂ concentrations by plant photosynthesis as observed from the regional air CO₂ measurement network. These results indicate that timing of seasonal thawing and growing season onset are advancing, while onset of seasonal freezing and growing season cessation are retreating and extending the length of the vegetation growing season with regional warming.

The satellite optical-infrared remote sensing record shows that past evidence for ubiquitous “greening” trends have not remained consistent through time or uniform in space. Some areas, mainly located in the boreal forest region, are experiencing recent declines in vegetation greenness and productivity. These “browning” trends generally
occur after the late 1990’s and are largely the result of recent, widespread drought events and generally increasing moisture stress.

Estimated regional average annual GPP, autotrophic respiration and NPP all show significant positive linear trends mainly driven by a significant decreasing trend in low-temperature constraints to vegetation productivity and associated earlier and longer growing seasons. However, vegetation autotrophic respiration shows a stronger rate of increase with regional warming than GPP, resulting in a significant decreasing trend in carbon use efficiency (i.e. the ratio of NPP to GPP). The NPP trends show large spatial variability with generally increasing trends in the tundra region, whereas some boreal forest regions show large NPP decreases in recent years corresponding with widespread summer drought.

6.1.4. Changes of Hydrological Cycle and Water Balance

The developed satellite remote sensing based ET algorithms show high accuracy (RMSE = 7.4-8.3 mm month\(^{-1}\); \(R^2 = 0.89-0.92\)) by comparing the simulated results with measured tower fluxes from regionally dominant land cover types, provide an effective means to estimate actual ET, and have potential for the global application.

The satellite remote sensing based ET results show generally positive trends over most of the pan-Arctic domain, though negative ET trends occurred over 32% of the region, primarily in boreal forests of southern and central Canada. Generally positive trends in ET, precipitation and available long-term river discharge measurements imply that the pan-Arctic terrestrial water cycle is intensifying, though uncertainty in regional precipitation and associated water balance estimates is large. Increasing water deficits
occurred in some boreal and temperate grassland regions including eastern Alaska, the
Canadian Yukon and western Prairie Provinces, and Northern Mongolia, which agree
with regional drought records and recent satellite observations of vegetation browning
and productivity decreases. The results also show that the pan-Arctic water balance is
changing in complex ways in response to global warming, with direct linkages to
terrestrial carbon and energy cycles.

6.1.5. Impacts of Climate Oscillations

Large-scale atmospheric and ocean oscillations, i.e. climate oscillations, represent
the natural variability of the climate system, but may also be influenced by human-
induced climate change. Although the underlying mechanisms behind many climate
oscillations aren’t well understood, many studies have shown that climate oscillations
have strong impacts on land surface processes.

Analyses of regional climate oscillation indices in relation to satellite remote
sensing derived NPP and growing season dynamics for the pan-Arctic region indicate that
the oscillations influence NPP by regulating seasonal patterns of low temperature and
moisture constraints to photosynthesis. Early-spring (February-April) patterns of the
Arctic Oscillation (AO) are proportional to growing season onset ($r = -0.653; P = 0.001$),
while growing season patterns of the Pacific Decadal Oscillation (PDO) are proportional
to plant-available moisture constraints to NPP (I_m) ($r = -0.471; P = 0.023$). Relatively
strong, negative PDO phases from 1988-1991 and 1998-2002 coincided with prolonged
regional droughts indicated by a standardized moisture stress index. These severe
droughts resulted in widespread reductions in NPP, especially for relatively drought
prone boreal forest and grassland/cropland ecosystems. The influence of AO and PDO patterns on northern vegetation productivity appears to be decreasing and increasing, respectively, as low temperature constraints to plant growth relax and NPP becomes increasingly limited by available water supply under a warming climate.

6.2. Suggested Future Research

My study results in Chapters 2, 3 and 4 show that the ground observation network for meteorology and hydrology are relatively sparse and that there are considerable uncertainties in the current meteorology reanalyses. Improvements in the spatial resolution of regional climate reanalyses coupled with standardization and augmentation of solar radiation and precipitation monitoring networks, and enhanced resolution satellite remote sensing products would dramatically improve the regional assessment of NPP changes and associated linkages between the terrestrial water and carbon cycles.

Secondly, it is important to obtain longer ecological and hydrological data records with fine spatial resolution and high quality for assessing climate change and understanding the responses and feedbacks of ecosystems. It is necessary to create and extend a series of science-quality time-series data records, i.e. Land Earth System Data Records, by using the current scientific research satellite observations, refining current satellite-based retrieval algorithms for the land surface processes, and developing model assimilation systems by coupling model simulations with all kinds of observations or measurements. The used satellite-based Productivity Efficiency Model and the developed satellite-based ET algorithms in this study provide potential tools to produce the Land Earth System Data Records.
Thirdly, net ecosystem exchange (NEE) is the residual difference between GPP and ecosystem respiration and the net exchange of CO₂ between the atmosphere and terrestrial ecosystems. Improved regional quantification of NEE spatial patterns and temporal dynamics is needed to identify terrestrial carbon sinks and sources and their response to landscape complexity and environmental perturbations. In this study, I have improved the estimation quality of GPP and NPP by reducing uncertainties in meteorology reanalysis. The next step to accurately quantify NEE is to accurately estimate ecosystem respiration. To accurately estimate terrestrial carbon sources and sinks (i.e. net biome productivity), it is necessary to incorporate satellite remote sensing based retrievals of soil moisture and temperature into process-based ecological modeling to quantify ecosystem respiration. It is also vital to develop improved disturbance modules to quantify the effects of disturbances such as fires, insects, crop harvest, and deforestation on NEE by incorporating remotely sensed data and ground measurements with modeling framework based on ecological and biological knowledge of ecosystem succession. A data assimilation system for estimate of net CO₂ exchange is also imperative to combine simulations and measurements at all spatial levels. For example, measurements from tall towers are representative of an area governed by the integrating effect of boundary layer transport and turbulence, while eddy covariance flux towers provide plot-level measurements.

Lastly, additional studies on the physical mechanisms driving climate oscillations would be helpful to better understand the natural variability of boreal-Arctic climate system to enable improved prediction of future ecosystem responses. Coupled land-ocean-atmosphere model simulations and coordinated interdisciplinary efforts are needed
to better assess physical linkages and feedbacks of the sub-systems of global climate system.
LIST OF ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACIA</td>
<td>Arctic Climate Impact Assessment</td>
</tr>
<tr>
<td>AAO</td>
<td>Antarctic Oscillation</td>
</tr>
<tr>
<td>AO</td>
<td>Arctic Oscillation</td>
</tr>
<tr>
<td>ARCSS</td>
<td>ARCTic System Science</td>
</tr>
<tr>
<td>AMSR-E</td>
<td>Advanced Microwave Scanning Radiometer for EOS</td>
</tr>
<tr>
<td>ATLAS</td>
<td>Arctic Transition in the Land Atmosphere System</td>
</tr>
<tr>
<td>AVHRR</td>
<td>Advanced Very High Resolution Radiometer</td>
</tr>
<tr>
<td>BIOME-BGC</td>
<td>BIOME BioGeochemical Cycles</td>
</tr>
<tr>
<td>BOREAS</td>
<td>BORéal Ecosystem-Atmosphere Study</td>
</tr>
<tr>
<td>BPLUT</td>
<td>Biome Properties Look-Up Table</td>
</tr>
<tr>
<td>CDAS</td>
<td>Climate Data Assimilation System</td>
</tr>
<tr>
<td>CDF</td>
<td>Cumulative Distribution Function</td>
</tr>
<tr>
<td>CMI</td>
<td>Climate Moisture Index (mm yr(^{-1}))</td>
</tr>
<tr>
<td>CRP</td>
<td>Cropland</td>
</tr>
<tr>
<td>CRU</td>
<td>Climatic Research Unit</td>
</tr>
<tr>
<td>CSB</td>
<td>Climate Services Branch</td>
</tr>
<tr>
<td>DNF</td>
<td>Deciduous Needleleaf Forest</td>
</tr>
<tr>
<td>ECMWF</td>
<td>European Centre for Medium-range Weather Forecasts</td>
</tr>
<tr>
<td>ENF</td>
<td>Evergreen Needleleaf Forest</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño-Southern Oscillation</td>
</tr>
<tr>
<td>EOS</td>
<td>Earth Observing System</td>
</tr>
<tr>
<td>ERA-15</td>
<td>15-year ECMWF Re-Analysis</td>
</tr>
<tr>
<td>ERA-40</td>
<td>45-year ECMWF Re-Analysis</td>
</tr>
<tr>
<td>ESH</td>
<td>Earth System History</td>
</tr>
<tr>
<td>ET</td>
<td>Evapotranspiration</td>
</tr>
<tr>
<td>EVI</td>
<td>Enhanced Vegetation Index</td>
</tr>
<tr>
<td>FPAR</td>
<td>Fractional Photosynthetically Active Radiation</td>
</tr>
<tr>
<td>GCM</td>
<td>General Circulation Model</td>
</tr>
<tr>
<td>GDAS</td>
<td>Global Data Assimilation System</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>GEWEX</td>
<td>Global Energy and Water-cycle EXperiment</td>
</tr>
<tr>
<td>GHCN</td>
<td>Global Historical Climatology Network</td>
</tr>
<tr>
<td>GIMMS</td>
<td>Global Inventory Modeling and Mapping Studies</td>
</tr>
<tr>
<td>GMD</td>
<td>Global Monitoring Division</td>
</tr>
<tr>
<td>GPP</td>
<td>Gross Primary Productivity</td>
</tr>
<tr>
<td>GRS</td>
<td>Grassland</td>
</tr>
<tr>
<td>GS</td>
<td>Growing Season</td>
</tr>
<tr>
<td>IASC</td>
<td>International Arctic Science Committee</td>
</tr>
<tr>
<td>ICSU</td>
<td>International Council for Science</td>
</tr>
<tr>
<td>IGBP</td>
<td>International Geosphere-Biosphere Programme</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IPY</td>
<td>International Polar Year</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf Area Index</td>
</tr>
<tr>
<td>LAII</td>
<td>Land-Atmosphere-Ice Interactions</td>
</tr>
<tr>
<td>LE</td>
<td>Latent heat</td>
</tr>
<tr>
<td>LSI</td>
<td>Land-Shelf Interaction</td>
</tr>
<tr>
<td>LTER</td>
<td>Long Term Ecological Research</td>
</tr>
<tr>
<td>MAE</td>
<td>Mean Absolute Error</td>
</tr>
<tr>
<td>MF</td>
<td>Mixed Forest</td>
</tr>
<tr>
<td>MODIS</td>
<td>MODerate resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>NAO</td>
<td>North Atlantic Oscillation</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NCAR</td>
<td>National Center for Atmospheric Research</td>
</tr>
<tr>
<td>NCDC</td>
<td>National Climatic Data Center</td>
</tr>
<tr>
<td>NCEP</td>
<td>National Centers for Environmental Prediction</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalized Difference Vegetation Index</td>
</tr>
<tr>
<td>NIR</td>
<td>Near Infrared</td>
</tr>
<tr>
<td>NNR</td>
<td>NCEP-NCAR Reanalysis</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NPP</td>
<td>Net Primary Productivity</td>
</tr>
<tr>
<td>NSCAT</td>
<td>NASA Scatterometer</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>NSRDB</td>
<td>National Solar Radiation Data Base</td>
</tr>
<tr>
<td>OSH</td>
<td>Open Shrubland</td>
</tr>
<tr>
<td>PAL</td>
<td>Pathfinder AVHRR Land</td>
</tr>
<tr>
<td>PARCS</td>
<td>Paleoenvironmental ARCTic Sciences</td>
</tr>
<tr>
<td>PDO</td>
<td>Pacific Decadal Oscillation</td>
</tr>
<tr>
<td>PEM</td>
<td>Production Efficiency Model</td>
</tr>
<tr>
<td>PET</td>
<td>Potential Evapotranspiration</td>
</tr>
<tr>
<td>PNA</td>
<td>Pacific North American Oscillation</td>
</tr>
<tr>
<td>QBO</td>
<td>Quasibiennial Oscillation</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>SASS</td>
<td>Synthesis of Arctic System Science</td>
</tr>
<tr>
<td>SI</td>
<td>Statistical Independence</td>
</tr>
<tr>
<td>SLP</td>
<td>Sea Level Pressure</td>
</tr>
<tr>
<td>SMMR</td>
<td>Scanning Multichannel Microwave Radiometer</td>
</tr>
<tr>
<td>SNACS</td>
<td>Study of the Northern Alaskan Coastal System</td>
</tr>
<tr>
<td>SRB</td>
<td>Surface Radiation Budget</td>
</tr>
<tr>
<td>SSM/I</td>
<td>Special Sensor Microwave/Imager</td>
</tr>
<tr>
<td>SST</td>
<td>Sea Surface Temperature</td>
</tr>
<tr>
<td>SV</td>
<td>Savanna</td>
</tr>
<tr>
<td>WALE</td>
<td>Western Arctic Linkage Experiment</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
<tr>
<td>WSV</td>
<td>Woody Savanna</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>a constant which is set to 1.26 in the Priestley-Taylor equation</td>
</tr>
<tr>
<td>(a_0), (a_1)</td>
<td>the Y-intercept and slope of the simple linear regression coefficients, respectively</td>
</tr>
<tr>
<td>(A)</td>
<td>available energy for evapotranspiration (W m(^{-2}))</td>
</tr>
<tr>
<td>(A_{\text{Canopy}})</td>
<td>available energy for canopy transpiration (W m(^{-2}))</td>
</tr>
<tr>
<td>(A_{\text{Soil}})</td>
<td>available energy for soil evaporation (W m(^{-2}))</td>
</tr>
<tr>
<td>(AO_{\text{spr}})</td>
<td>early-spring (February-April) mean value of monthly AO indices</td>
</tr>
</tbody>
</table>
| \(b_1\), \(b_2\), \(b_3\), \(b_4\) | fitted empirical parameters for the mathematical functions of \(g_0\) vs. \(\text{NDVI}\)
\[
g_0(\text{NDVI}) = 1/\left[b_1 + b_2 \cdot \exp(-b_3 \cdot \text{NDVI}\right] + b_4)
\]
| \(c\) | column number |
| \(c_G\) | ratio of the soil heat flux \(G\) to the net radiation |
| \(c_L\) | mean surface conductance per unit leaf area index (m s\(^{-1}\)) |
| \(C_p\) | specific heat capacity of air (J kg\(^{-1}\) K\(^{-1}\)) |
| \(d_{SW_i}\) | ratios of observed \(SW_i\) to reanalysis \(SW_i\) |
| \(\tilde{d}_{SW_i}\) | samples of \(d_{SW_i}\) |
| \(e_a\) | daily air water vapor pressure (Pa) |
| \(e_{a,\text{Obs}}\) | observed \(e_a\) (Pa) |
| \(e_{a,\text{Res}}\) | reanalysis \(e_a\) (Pa) |
| \(e_{\text{sat}}\) | daytime air saturated water vapor pressure (Pa) |
| \(E_{\text{Canopy}}\) | canopy transpiration (m) |
| \(E_{\text{Soil}}\) | soil evaporation (m) |
| \(E_{\text{Water}}\) | evaporation over water bodies (m) |
| \(f_C\) | fractional vegetation cover |
| \(FPAR\) | fractional Photosynthetical Active Radiation |
| \(g_{a}\) | aerodynamic conductance (m s\(^{-1}\)) |
g_s surface conductance (m s$^{-1}$)

g_0 biome-dependent maximum value of surface conductance (m s$^{-1}$)

g_0^* derived value of g_0 using the rearranged Penman-Monteith equation from the measurements

G Soil heat flux (W m$^{-2}$)

GPP gross primary productivity (g C m$^{-2}$ d$^{-1}$)

$H(x)$ estimate of the entropy associated with x

$H(y)$ estimate of the entropy associated with y

LAI leaf area index (m2 m$^{-2}$)

I_m moisture stress index

I_i low-temperature stress index

LE_{Canopy} latent heat flux of canopy (W m$^{-2}$)

LE_{Soil} latent heat flux of soil (W m$^{-2}$)

LE_{Water} latent heat flux of water bodies (W m$^{-2}$)

$m(\theta_1),...,m(\theta_n)$ a series of multiplicative factors (i.e. stress factors)

M_a the molecular mass of dry air (kg mol$^{-1}$)

M_w the molecular mass of wet air (kg mol$^{-1}$)

M_ε median of error distribution

nE_{rc} expected number of points falling in the cell (r,c)

nO_{rc} the number of points falling in the cell (r,c)

nS sample size

n_x intervals in the x-axis direction

n_{xc} the number of points in column c

n_y intervals in the y-axis direction

n_{yr} the number of points in row r

$NDVI$ normalized difference vegetation Index

$NDVI_{min}$ the value of NDVI for bare soil and set to 0.05

$NDVI_{max}$ the value of NDVI for dense green vegetation and set to 0.95
actual calculated NPP under actual environmental conditions

NPP

NPP only with moisture constraints

NPP

NPP without moisture constraints

NPP

potential NPP under non limiting atmospheric conditions

NPP

NPP only with low-temperature constraints

P

the air pressure (Pa)

PAR

photosynthetical active radiation (MJ m\(^{-2}\) d\(^{-1}\))

PDOGS

growing season (April-October) mean value of monthly PDO indices

Q\(_1\)

first quartile of error distribution

Q\(_3\)

third quartile of error distribution

r

simple linear correlation coefficient

r_a

aerodynamic resistance (s m\(^{-1}\))

r_c

resistance to convective heat transfer (s m\(^{-1}\))

r_r

resistance to radiative heat transfer (s m\(^{-1}\))

r_s

surface resistance (s m\(^{-1}\))

r_{tot}

total aerodynamic resistance to vapor transport, i.e., the sum of surface resistance and the aerodynamic resistance components (s m\(^{-1}\))

r_{totc}

corrected value of \(r_{tot}\) from the standard conditions for temperature and pressure (STP) using the correction coefficient (\(R_{corr}\))

R_{corr}

correction coefficient for \(R_{corr}\)

R_g

annual growth respiration (g C m\(^{-2}\) yr\(^{-1}\))

R_{m_{-lr}}
daily maintenance respiration of leaves and fine roots (g C m\(^{-2}\) d\(^{-1}\))

R_{m_{-w}}

annual maintenance respiration from live wood (g C m\(^{-2}\) yr\(^{-1}\))

R_s

net all-wave solar radiation (W m\(^{-2}\))

RH

relative humidity of air

RS_{Au}

autotrophic respiration (g C m\(^{-2}\) yr\(^{-1}\))

r

row number

s_e

standard error
$SE(a_t)$ standard error of estimate associated with the parameter

SI_{NPP_Loss} standardized value of δ_{NPP_Loss}

SW_d daily downward solar shortwave radiation (MJ m$^{-2}$ d$^{-1}$ or W m$^{-2}$)

SW_d_{Obs} observed SW_d (MJ m$^{-2}$ d$^{-1}$)

SW_d_{Res} reanalysis SW_d (MJ m$^{-2}$ d$^{-1}$)

t time

T statistic of the statistical independence test or air temperature ($^\circ$C)

T_{avg} daily average surface air temperature ($^\circ$C)

$T_{avg,\text{Obs}}$ observed T_{avg} ($^\circ$C)

$T_{avg,\text{Res}}$ reanalysis T_{avg} ($^\circ$C)

$T_{\text{close}_\text{max}}$ biome-specific maximum critical temperatures for stomatal closure and the effective cessation of plant photosynthesis ($^\circ$C)

$T_{\text{close}_\text{min}}$ biome-specific minimum critical temperatures for stomatal closure and the effective cessation of plant photosynthesis ($^\circ$C)

T_{CO2_Spr} timing of spring drawdown of atmospheric CO$_2$ concentration

T_{day} daylight average air temperature ($^\circ$C)

T_{dew} daily dew point temperature ($^\circ$C)

T_f daily minimum temperature scalar ($^\circ$C)

T_{freeze} timing of fall freezing

T_{\max} daily maximum surface air temperature ($^\circ$C)

T_{\min} daily minimum surface air temperature ($^\circ$C)

$T_{\min,\text{Obs}}$ observed T_{\min} ($^\circ$C)

$T_{\min,\text{Res}}$ reanalysis T_{\min} ($^\circ$C)

T_{NPP_End} growing season end derived from daily NPP time series

T_{NPP_Onset} growing season onset derived from daily NPP time series

T_{opt} biome-specific optimum air temperature for photosynthesis ($^\circ$C)

T_{Thaw} timing of spring thaw

$U(y, x)$ entropy-based measure of the strength of the association between
x and y

VPD daytime air vapor pressure deficit (Pa)

VPD_f vapor pressure deficit scalar

VPD_{close} biome-specific critical value of VPD at which canopy stomata are completely closed (Pa)

VPD_{open} biome-specific critical value of VPD at which the canopy stomata are completely open (Pa)

x vector of observed/measured values, random variable or x axis

\hat{x} vector of estimated values

y_i biophysical variables

α albedo or reflectivity

β a biome-specific empirical parameter for the calculation of the temperature stress factor for plant transpiration ($m(T_{day})$) (°C)

γ psychrometric constant

δ_{loss_M} proportional loss of potential NPP due to moisture constraints (%)

δ_{loss_T} proportional loss of potential NPP due to low-temperature constraints (%)

δ_{NPP_Loss} a simple NPP loss index by comparing actual NPP with the potential NPP without moisture constraints (%)

δ_e relative error

Δ the slope of the curve relating saturated water vapor pressure to air temperature

ϵ residual defined as the observed value minus the estimated value

$\bar{\epsilon}$ mean residual

ϵ_a atmospheric emissivity

ϵ_{e_a} residuals of ϵ_a

$\epsilon_{e_a}^s$ samples of ϵ_{e_a}

$\epsilon_{T_{avg}}$ residuals of T_{avg}

197
\(\tilde{\epsilon}_{\text{avg}} \) samples of \(\epsilon_{\text{avg}} \)
\(\epsilon_{T_{\text{min}}} \) residuals of \(T_{\text{min}} \)
\(\tilde{\epsilon}_{T_{\text{min}}} \) samples of \(\epsilon_{T_{\text{min}}} \)
\(\theta_1, \ldots, \theta_n \) a series of environmental constraint variables on plants
\(k \) a parameter to fit the complementary relationship (Pa)
\(\lambda \) the latent heat of vaporization (J kg\(^{-1}\))
\(\xi \) light use efficiency
\(\tilde{\xi}_{\text{max}} \) maximum light use efficiency
\(\rho_{\text{air}} \) air density (kg m\(^{-3}\))
\(\rho_{\text{NIR}} \) spectral reflectance in the near-infrared band
\(\rho_{\text{Red}} \) spectral reflectance in the red band
\(\sigma \) Stefan-Boltzmann constant (= 5.670400 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4})
APPENDIX A

The Biome Properties Look-Up Table (BPLUT) for the NDVI-based ET

<table>
<thead>
<tr>
<th>Parameter</th>
<th>OSH</th>
<th>SV</th>
<th>GRS</th>
<th>CRP</th>
<th>WSV</th>
<th>ENF</th>
<th>DNF</th>
<th>MF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{\text{close}, \text{min}}$ ($^\circ$C)</td>
<td>-8.00</td>
<td>-8.00</td>
<td>-8.00</td>
<td>-8.00</td>
<td>-8.00</td>
<td>-8.00</td>
<td>-8.00</td>
<td>-7.00</td>
</tr>
<tr>
<td>$T_{\text{close}, \text{max}}$ ($^\circ$C)</td>
<td>38</td>
<td>38</td>
<td>45</td>
<td>45</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>VPD$_{\text{close}}$ (Pa)</td>
<td>3700</td>
<td>3600</td>
<td>3900</td>
<td>3800</td>
<td>3300</td>
<td>2500</td>
<td>3500</td>
<td>2700</td>
</tr>
<tr>
<td>VPD$_{\text{open}}$ (Pa)</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
</tr>
<tr>
<td>T_{opt} ($^\circ$C)</td>
<td>10</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>β ($^\circ$C)</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>k (Pa)</td>
<td>50</td>
<td>50</td>
<td>250</td>
<td>250</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>100</td>
</tr>
<tr>
<td>r_a (s m$^{-1}$)</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td>90</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>r_{tot} (s m$^{-1}$)</td>
<td>111</td>
<td>111</td>
<td>500</td>
<td>500</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>167</td>
</tr>
<tr>
<td>b_1 (mm s$^{-1}$)</td>
<td>0.412</td>
<td>0.412</td>
<td>0.138</td>
<td>0.138</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.10</td>
</tr>
<tr>
<td>b_2 (mm s$^{-1}$)</td>
<td>4.118</td>
<td>4.118</td>
<td>2.5</td>
<td>2.5</td>
<td>14.19</td>
<td>14.19</td>
<td>14.19</td>
<td>3.172</td>
</tr>
<tr>
<td>b_3</td>
<td>8</td>
<td>8</td>
<td>5.8</td>
<td>5.8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>7.53</td>
</tr>
<tr>
<td>b_4 (10^3 mm s$^{-1}$)</td>
<td>220.78</td>
<td>220.78</td>
<td>379.15</td>
<td>379.15</td>
<td>6.923</td>
<td>6.923</td>
<td>6.923</td>
<td>305.65</td>
</tr>
</tbody>
</table>