Apr 27th, 11:00 AM - 12:00 PM

A bacteriophage integrase regulates virulence factor production in Pseudomonas aeruginosa

Autumn J. Robinson
University of Montana, Missoula, aut.jai.rob@gmail.com

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/umcur
Pseudomonas aeruginosa (Pa) biofilms and their clinical importance

- Pa is a bacterial pathogen common in nosocomial infections.
- Pa is resistant to antibiotics, especially if it grows as a biofilm, a community of bacteria within a protective matrix (Costerton et al., 1999).
- Biofilms produce large amounts of Pf phage, which are viruses that infect Pa (Whiteley et al., 2001).

intP integrase

- Pf phage encode an integrase called intP.
- intP inserts Pf phage DNA into the Pa chromosome.

Virulence

- Virulence is a measure of how acute a bacterial infection will be. Pa produces many virulence factors that damage or kill host cells.
- Pf phage increase the virulence of Pa (Rice et al., 2009), but the underlying mechanisms are unknown.
- Pyocyanin is a primary virulence factor produced by Pa (Fig. 1).

Hypothesis

- In previous work, we used the Pf phage-null strain ΔintP.
- We observed that when intP was deleted, pyocyanin (a green pigment) production was repressed relative to wild type Pa (fig. 2 & 3).

Experiment

- We hypothesize that intP regulates pyocyanin production in Pa.

Results

- When intP was overexpressed, production of pyocyanin was enhanced (fig. 3).

Future directions

- One possible explanation for intP-dependent pyocyanin production is that IntP integrates Pf genetic elements into genes involved in pyocyanin production.
- To test this idea, we inactivated the integrase activity of IntP by introducing the point mutation Y380F producing IntP^{Y-F}.
- IntP^{Y-F} over expression did not result in enhanced pyocyanin production (Fig. 4).

Conclusions

- The Pf phage integrase IntP enhances production of the virulence factor pyocyanin
- The integrase activity of IntP is required for pyocyanin production.

Why is this important?

- The World Health Organization recently categorized Pa as a priority pathogen of the greatest risk to human health.
- We need new ways to combat Pa infections.
- Understanding how Pf phage regulate virulence factor production by Pa may reveal new therapeutic strategies, which in turn could save lives.

Fig. 1: Pyocyanin is a redox-active virulence factor produced by Pa.

Fig. 2: Representative images showing pyocyanin production (green) in wild type Pa cultures and in Pa cultures where intP was deleted.

Fig. 3: Pyocyanin was chloroform extracted from the indicated cultures and quantified using absorbance. Results are mean +/- SD of three experiments. **p<0.01.

- These results suggest that intP regulates pyocyanin.