






 

Figure 5.5: Time-resolved fluorescence measurements of AcH100I52 under native conditions in the 
presence and absence of imidazole at 20 oC.  The native Trp59 fluorophore was centrally positioned in the 
closed loop form.  (A) In the absence of the imidazole heme-competing ligand and (B) in the presence of 
50 mM imidazole heme-competing ligand.  Data were fit to two exponentials.  Data are shown in blue; 
Instrument response function is shown in red; Black solid line is a double exponential fit to the data.  
Residuals below show how well the data fit to a two exponential equation. 
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Table 5.1: Fluorescence lifetime measurements of AcH100I52 variant under both native 
and denaturing conditions in the presence and absence of imidazole 
 (Native)1 

Imidazole 
Absenta  

(Native)1 
Imidazole 
Presentb  

(Denatured)2 

Closed Loopa  
(Denatured)2 

Opened Loopb  

Intensity 
Averaged 
Lifetime (ns) 

2.13 2.15 2.27 2.29 

Amplitude 
(counts) 

4480 ± 50 5710 ± 50 5080 ± 50 5760 ± 50 

Component 
Lifetime (ns) 

2.83 ± 0.02 2.76 ± 0.02 2.90 ± 0.02 2.81 ± 0.02 

Amplitude 
(counts) 

7920 ± 140 8600 ± 140 7260 ± 140 6720 ± 140 

Component 
Lifetime (ns) 

0.99 ± 0.02 0.90 ± 0.02 0.99 ± 0.02 0.95 ± 0.02 

Fractional 
Amplitude (Fast 
Component) 

0.361 ± 0.004 0.399 ± 0.004 0.412 ± 0.004 0.462 ± 0.004 

Fractional 
Amplitude (Very 
Fast Component) 

0.64 ± 0.01 
 

0.60 ± 0.01 
 

0.59 ± 0.01 
 

0.54 ± 0.01 
 

1Native Conditions: Protein in 3xPi buffer at physiological pH at 20 oC. 
2Denatured Conditions: Protein in 3xPi, 3M gdnHCl buffer at 20 oC. 
aNo imidazole added to solution. 
bImidazole present at 50 mM final concentrations. 
 

 

5.3.4  Fluorescence lifetime and anisotropy measurements of AcH54I2C37 variant 

 Time-resolved fluorescence measurements were subsequently done using the 

AcH54I52C37_AEDANS variant.  A control experiment was carried out to assess the 

maximal donor lifetime and to determine if the donor has a multi-component lifetime.  

For the control experiment, the 1,5 I-AEDANS flourophore was reacted with β-

mercaptoethanol (β-ME) to form the β-ME-AEDANS complex.  Time-resolved 
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measurements of this compound under closed loop (pH 6.36) and opened loop (pH 3.2) 

conditions resulted in similar lifetimes of 9.88 ns in 3 M gdnHCl.  There was also a very 

low population (~0.6%) of a very fast component (~ 0.5 ns) detected.  However, this is 

well within the error of our measurements – a representative trace of this control is shown 

in Figure 5.6.   

 

 

 

Figure 5.6: β-ME-AEDANS used as a control and measured at both pH’s 6.36 (shown) and 3.20 for the 
closed and the opened loop conditions, respectively, in 3 M gdnHCl/3xPi at 20 oC.  Probe lifetimes at both 
pHs were 9.88 ns.  Data are shown in blue; Instrument response function is shown in red; Black solid line is 
a double exponential fit to the data.  Residuals below show how well the data fit to a two exponential 
equation. 
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Time-resolved measurements were then taken for the AcH54I52C37_AEDANS labeled 

variant at various pH’s based on the equilibrium loop formation plot shown in Figure 5.4.  

Various points along the pH curve were chosen so as to obtain a range of data having 

different populations of open and closed loops.  The results of the data are summarized in 

Tables 5.2 and 5.3 and Figures 5.7 to 5.9. 

 

 

Table 5.2: Individually fitted time-resolved fluorescence lifetimes and component 
lifetimes and amplitudes for the AcH54I52C37_AEDANS Variant 

  Component Lifetimes and Amplitudes 

pH τavg (INT) 
(ns) 

Amp1 (% 
cts) 

τ1 (ns) Amp2 (% 
cts) 

τ2 (ns) Amp3 (% 
cts) 

τ3 (ns) 

3.15 5.35 64.8 ± 0.5 6.82 ± 

0.02 

25.6 ± 1.3 3.28 ± 

0.04 

9.6 ± 2.5 0.87 ± 0.02 

3.76 5.24 64.7 ± 0.5 6.77 ± 

0.02 

24.9 ± 1.4 3.11 ± 

0.04 

10.4 ± 2.4 0.80 ± 0.02 

4.26 5.18 63.9 ± 0.6 6.80 ± 

0.00 

26.1 ± 1.3 2.90 ± 

0.00 

10.0 ± 2.5 0.73 ± 0.02 

4.79 4.90 57.4 ± 0.6 6.86 ± 

0.03 

29.9 ± 1.3 2.91 ± 

0.03 

12.7 ± 2.2 0.72 ± 0.02 

5.46 4.28 42.6 ± 0.9 7.10 ± 

0.04 

38.7 ± 1.1 2.91 ± 

0.03 

18.7 ± 1.9 0.71 ± 0.01 

6.59 2.90 20.9 ± 1.0 7.23 ± 

0.08 

45.9 ± 1.2 2.58 ± 

0.02 

33.2 ± 1.6 0.60 ± 0.01 

Data are based on 3 exponential fits of each pH data set individually. 
τavg (INT) is Intensity Averaged Lifetimes. 
 

 

Table 5.2 contains the TR-FRET results for data fitted at individual pH’s.  A 

representative trace of the data is shown in Figure 5.7 for the variant at the pH 
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corresponding to its pKa(obs) value.  Thus, this sample is representative of equal amounts 

of opened versus closed loop forms.  The decay rate constants for all pH’s were 

adequately fitted to three exponentials as seen from the residuals in Figure 5.7.  Plots of 

the intensity weighted lifetimes, component lifetimes and their fractional amplitudes 

versus pH are given in Figure 5.8 (A-C).     

   

 

 

Figure 5.7: AcH54I52C37_AEDANS variant at pH 4.79 in 3 M gdnHCl at 20 oC fitted individually with 
three exponentials.  Residuals indicate an adequate fit of the data.  Data are shown in blue; Instrument 
response function is shown in red; Black solid line is a triple exponential fit to the data.  Residuals below 
show how well the data fit to a three exponential equation. 
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Figure 5.8: Parameters from individually fitting each data set to three exponentials are shown in (A) – (C).  
(A) Intensity weighted and Amplitude weighted averaged lifetime as a function of pH. (B) Individual 
lifetime components as a function of pH.  (C) Fractional amplitudes for each component lifetime as a 
function of pH.  (D) Fractional amplitudes from global fitting of the data showing long, medium and short 
lifetime components as a function of pH.  Some errors are smaller than the symbol used and may not be 
visible. 
 

 

The intensity weighted lifetimes as seen in Figure 5.8 (B) were relatively constant across 

the pH range.  Therefore, the data were globally fitted across all pH data sets.  Figure 5.9 

show the outcome of the global fit at pH 4.79.  As seen from the residuals in Figure 5.9, 

this three exponential global fitting routine adequately described the data (see Figure 5.8 

(D)).     
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Figure 5.9: AcH54I52C37_AEDANS variant at pH 4.79 in 3 M gdnHCl at 20 oC fitted globally with three 
exponentials.  Data are shown in blue; Instrument response function is shown in red; Black solid line is a 
triple exponential fit to the data.  Residuals below show how well the data fit to a three exponential 
equation. 
  
 

 

Table 5.3 summarizes the results of this global fitting routine.  The changes in fractional 

amplitudes for each component lifetime as a function of pH are depicted in Figure 5.8 

(D).  It is evident from the divergence in Figure 5.8 (D) that there is a shift in the 

populations of species or “states” of a loop in the denatured state as expected with 

varying pH.  This result is clear evidence of the ensemble nature of the denatured state 

and further analysis should provide insights into the dynamic behavior of this ensemble.  

The constant presence of the medium timescale decay lifetime is of intriguing interest. 
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Table 5.3: Globally fitted time-resolved fluorescence lifetimes and fractional amplitudes 
for the AcH54I52C37_AEDANS Variant 

  Global Lifetimes and Fractional Amplitudes 

pH ƒAmp1 τ1 (ns) ƒAmp2 τ2 (ns) ƒAmp3 τ3 (ns) 

3.15 0.357 ± 
0.004 

6.69 ± 
0.03 

0.32 ± 0.01 2.55 ± 
0.03 

0.33 ± 0.03 0.64 ± 
0.02 

3.76 0.325 ± 
0.004 

6.69 ± 
0.03 

0.30 ± 0.01 2.55 ± 
0.03 

0.38 ± 0.03 0.64 ± 
0.02 

4.26 0.306 ± 
0.004 

6.69 ± 
0.03 

0.30 ± 0.01 2.55 ± 
0.03 

0.40 ± 0.03 0.64 ± 
0.02 

4.79 0.246 ± 
0.004 

6.69 ± 
0.03 

0.29 ± 0.01 2.55 ± 
0.03 

0.46 ± 0.03 0.64 ± 
0.02 

5.46 0.154 ± 
0.003 

6.69 ± 
0.03 

0.29 ± 0.01 2.55 ± 
0.03 

0.56 ± 0.03 0.64 ± 
0.02 

6.59 0.048 ± 
0.002 

6.69 ± 
0.03 

0.22 ± 0.01 2.55 ± 
0.03 

0.73 ± 0.03 0.64 ± 
0.02 

Data parameters are based on triple-exponential fits of globally fitted pH data sets. 
ƒAMP is the fractional amplitude of each globally fitted lifetime. 
 

 

 Anisotropy measurements were carried out for the end-states of the system being 

studied (i. e. the opened and closed forms of the loop); however, those data have not yet 

been analyzed.  The main reason for anisotropy measurements was to determine whether 

the probe is randomly oriented under 3 M gdnHCl conditions.  Anisotropy measurements 

have been previously carried out for I-AEDANS attached to a similar Cys-labeled 

cytochrome c model under similar denaturing conditions.  The results were consistent 

with the orientation factor (κ2) being 2/3.74; 76  It is generally accepted that an attached 

fluorophore on a fully unfolded protein is sufficiently random in motion to justify the use 

of 2/3.74; 78  Therefore, we confidently assume the κ2 of our probe to be 2/3 for these 

measurements in calculating Ro and distance extractions.        

 187



5.4 Discussion 

5.4.1  Overview 

The mechanism by which proteins fold from their polypeptide chain to their compact, 

functional native structures has been a long sought after goal.  Great advancements have 

been made toward understanding this life-essential mechanism.  The heterogeneity of the 

protein sequence has complicated much of our efforts at a straightforward resolution to 

this folding mechanism.  There have been many different physical techniques employed 

to try to shed light on the underlying key aspects of protein folding.  Elucidating the 

conformational dynamics of the polypeptide chain seems to be one of the better 

approaches.  The complexity of the rapidly exchanging denatured state ensemble193; 194 

requires a specialized approach.  As such, experimental techniques that probe the radius 

of gyration (Rg), such as small angle X-ray and neutron scattering, as well as those that 

look at point-to-point distances (rD-A) and distributions such as time-resolved FRET 

decay, have been the most powerful.78  We have employed the latter of these techniques 

in an attempt to understand the behavior of previously studied loops of various lengths.82  

Since FRET is sensitive to donor-acceptor distances, it reports on the distance 

distribution of the DSE.  Thus, FRET should enable us to spectroscopically view the 

conformational changes a polypeptide chain goes through when it forms a primitive loop.  

These interactions made on this basic conformational walk are essential to the 

understanding of how initial contacts made in loop formation lead to higher order 

structures.  The presence or increase in the presence of a given conformation can shape 

our view of this complex process.  Our venture into probing this “conformational walk” 
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of the polypeptide chain has unearthed some intriguing properties of the denatured state 

and may hold vital information toward cracking the “folding code”. 

 

5.4.2  Extracting discrete distances from observed lifetimes   

Time-resolved FRET experimentation on the AcH54I52C37_AEDANS variant 

allowed us to monitor the behavior of three distinct species in the denatured state going 

from an opened to a closed loop.  Using Eqs 5.1 and 5.2, the Förster critical distance (Ro) 

was calculated to be 35 Å for our AEDANS-Heme (D-A) pair.  A plot of FRET 

efficiency as a function of the critical distance is shown in Figure 5.10.  This value of Ro 

is a bit lower than published values of 39/40 Å for the same D-A pair.76; 101  This may be 

due to the use of the β-ME-AEDANS control, which gives a 9.88 ns lifetime versus the 

routinely used N-acetylcysteine-AEDANS control which gives a 10.2 ns lifetime.76  

Nonetheless, using this Ro value, we extracted distances corresponding to the three 

different species seen in pH-dependent denatured state loop formation.   The globally 

fitted time-resolved FRET lifetimes of 6.69, 2.55 and 0.64 ns correspond to distances of 

40, 29 and 22 Å, respectively. 
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Figure 5.10: Plot of FRET efficiency versus distance for the AEDANS-Heme pair.  Ro at the 50% 
efficiency mark is 35 Å for the pair.  Equations 5.1 and 5.2 were used in this calculation. 
 
 

 

5.4.3  Comparison with donor-acceptor distances predicted for a random coil 

We interpret these extracted distances by first analyzing the expected distances 

from theory for a random coil and a random coil with excluded volume.  According to 

Goldenberg,204 random coil polymers are easily characterized by distributions of 

distances that are Guassian in nature.  These distance distributions are described by a 

mean squared end-to-end distance, <r2>, which scales according to the number of 

residues (n) in the polymer and the length of the bond (l) between the residues.204  The 

general form of the equation is given in Eq 5.3204 below: 

 

22 nlr =          (5.3) 
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For a random polymer with no excluded volume, Goldenberg’s simulations yield Eq 5.4 

for the root mean square distance, RMS(r): 

 

)001.0495.0()02.082.5()( ±±= nrRMS       (5.4) 

 

Using Eq 5.4204 we calculate the random coil distance for the opened loop (20 monomers; 

His18-Cys37) and the closed loop (18 monomers; Cys37-His54) to be ~ 26 Å and ~ 24 Å, 

respectively.  These distances are practically the same and definitely not what we see 

from our AcH54I52 variant.  Proteins and any other polymer are more accurately 

described by taking into account excluded volume effects.  Goldenberg’s simulations 

yield Eq 5.5 when excluded volume is accounted for: 

 

)003.0583.0()08.068.5()( ±±= nrRMS        (5.5) 

 

Using Eq 5.5204, we calculate distances, for a random coil with excluded volume taken 

into account, for the opened and closed loops to be ~33 Å and ~31 Å, respectively.  

These distances are not very different from each other yet again.   

To provide an estimate of the maximal donor-acceptor distance possible, we use 

an extended β-strand (3.5 Å/residue) as a model.  This model produces distances of 70 Å 

and 63 Å for open (20 residues) and closed (18 residues) loops, respectively.  The 

Gaussian distance distribution used by Goldenberg to model the denatured state is 

inconsistent with the nearly equal contributions we observe from three subpopulations of 

the DSE in the open loop form at low pH.  The 22 Å distance is shorter than, the 29 Å 
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Figure 5.12: Schematic representation of the effects of loop formation on the DSE. 

 

  However, we cannot completely rule out the possibility that the multi-exponential 

emission decay component of the AEDANS donor at position 37 of iso-1-cytochrome c is 

due to local sequence effects – possibly quenching by the adjacent Arg 38.  It is not 

possible to detect this effect using the β-ME-AEDANS as a control.  The more peptide-

like N-acetylcysteine-AEDANS control also shows only single exponential decay 

character.76  However, Saxena, et. al. claim it is not possible to see multi-exponential 

emission decay with N-acetylcysteine-AEDANS as the control.78  Thus, further 

experiments with a short peptide model are necessary, to clarify whether local sequence 

affects the decay properties of AEDANS.78  

 

 

5.5  Conclusion 

 The results of this chapter should still be considered preliminary, even though 

there is strong evidence of the behavior of denatured state conformers.  A peptide based 

control needs to be done to account for the possibility of multi-exponential AEDANS 
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fluorescence decay due to local influences of adjacent residues.  Also, additional 

experimentation is needed on different loop sizes with donor labels at different positions 

relative to the heme.  The set of variants currently prepared are of an appropriate variety 

to provide meaningful information.  This additional information will clarify some of the 

interactions seen in this preliminary study.   

 The Cys37 is located on the relatively stable green foldon as defined by 

Englander, et. al.;72 thus, it is not surprising to see compact structures present in DSE of 

AcH54I52C37.  In other TR-FRET studies on iso-1-cytochrome c, increasing gdnHCl 

concentrations from 2.7 M to 4.4 M only decreased the distribution of compact structures 

from 60% to 30% but never completely eliminated them.74  Therefore, possible additional 

experimentation could involve TR-FRET at different gdnHCl concentrations for our sets 

of variants to probe the breakup of assumed hydrophobic clusters around the heme.  

However, at this time it is believed that the highly hydrophobic nature of the heme seems 

to be extremely influential in attracting hydrophobic residues and stabilizing the resulting 

“supercompact” DSE conformations.  However, a recent alternate explanation implied 

that these “compact” conformations are due to stabilizing residual structures from local 

electrostatic interactions.101  These interactions are only effective over short distances and 

may be the stabilizing forces responsible for maintaining the initial contacts which guide 

the polypeptide chain down the folding funnel.101  Also, loop formation studies with 

peptide models have implied that stabilizing forces for initial contacts made are simply 

the abundant intramolecular hydrogen bonding of the peptide backbone.113  

  Previous studies of equilibrium loop formation at different gdnHCl 

concentrations showed that the AcH54I52 variant had the most stable loop [lowest 
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pKa(obs)].82  The m-value (degree of hydrophobic burial) for this variant was the highest 

of several other loop forming variants.82  This variant therefore had an optimal 

hydrophobic content for efficient loop collapse and residual structure formation.  It was 

suggested that this behavior may have evolved because a 35 residue segment is near 

optimal for the formation of supersecondary structure.82  Our current TR-FRET data on 

this same AcH54I52 variant provide additional insights in explaining why this 37-residue 

loop was the most stable loop forming variant among all the other variants previously 

studied.82  The increased stability of loop formation for this 37-residue loop may have 

been due to residual structure in the sequence forming the loop rather than from an 

optimal loop size for hydrophobic collapse by mass action.  Future TR-FRET studies on 

the remaining variants, especially the AcH73I52C45 and the AcH89I52C53 variants 

should be extremely informative in clarifying our interpretations of the effect of loop 

formation on the DSE.  The Cys45 variant is away from the heme therefore stable 

“supercompact” conformer populations might be expected to be drastically reduced, or 

completely converted to extended conformers if the hydrophobic heme is the stabilizing 

entity.  In addition, the attached fluorophore would be in a far less hydrophobic region as 

seen from the Eisenberg hydrophobicity plot in Figure 5.11.  The Cys53 is also intriguing 

because it is a part of a hydrophobic region as well (see Figure 5.11), yet it is away from 

the heme in the native state.  Thus, the influence from intra-residue hydrophobic 

interactions should be high in the unfolded state, but the impact of the heme might be 

diminished.  
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Appendices 
 
 
Appendix A: Table containing loop breakage rate constants at higher pH’s than used for 

calculation of kf rate constants 

 

Table A1: Kinetic parameters for loop breakage at 25 oC in 3 M and 6 M guanidine 
hydrochloride of poly(Ala) iso-1-cytochrome c variants at a higher pH 

  3 M gdnHCl  6 M gdnHCl 

Loop 
size 

Variant kb (pH 3.61 ± 
0.09) (s-1) 

kb (pH 3.96 ± 
0.01) (s-1) 

kb (pH 3.86 ± 
0.09) (s-1) 

kb (pH 4.01 ± 
0.02) (s-1) 

16 NH(-2) 112.0 ± 4.0  80.0 ± 2.1  
22 NH5A 100.5 ± 1.0  69.7 ± 1.5  
28 NH5A-2 78.0 ± 0.5  60.0 ± 1.4  
34 NH5A-3  76.6 ± 0.2  58.6 ± 0.2 
40 NH5A-4  76.5 ± 1.3  57.8 ± 0.2 
46 NH5A-5  76.0 ± 1.9  57.4 ± 0.2 

Data are based on three individual trials and errors are from their standard deviations. 
k(obs) from loop breakage experiments are presented as kb however the contribution from kf at these higher 
pH’s ranges from ~3 – 18 s-1 and ~2 – 13 s-1 under 3 M and 6 M gdnHCl, respectively. 
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Appendix B: Derivation of the pH Dependence of pKa(obs) for Competing Intra- and 

Intermolecular Reactions 

 

 

 
 
 
 
A is the protonated monomer (heme---HisH+) 
B is the species with an intramolecular loop 
A2 is the intermolecular dimer 
 
Conservation of mass gives: [A]t = [A] + [B] + 2[A2],  
 
where [A]t is the total concentration of A in all species. 
 
Using [A2] = KA[A]2/[H+]2 and [B] = KC[A]/[H+] we obtain: 
 
  [A]t = [A] + (KC/[H+])[A] + 2 (KA/[H+]2)[A]2  
 
If we assume that each monomer in A2 and B are spectroscopically equivalent, then at the 
midpoint of a titration, [A] = [A]t/2.  
 
The conservation of mass equation then becomes: 
 
[A]t = [A]t/2 + (KC/[H+])([A]t/2) + 2(KA/[H+]2)([A]t/2)2 
 
Multiplying both sides of the equation by (2/[A]t)[H+]2 and rearranging we obtain: 
 
[H+]2 = KC[H+] + KA[A]t 
 
Thus, 
 
[H+]2 - KC[H+] - KA[A]t = 0 
 
At the midpoint, pKa(obs) = pH, so pKa(obs) can be obtained by obtaining the roots of 
this equation using the quadratic formula: 
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Since [H+] must be a positive quantity: 
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This is Eq 4.1 in the text used to fit data in Figure 4.3 of the text. 
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Appendix C: General Derivation of the Fractional Occupancy of Intra- and 
Intermolecular Forms for Competing Intra- and Intermolecular Reactions as a Function of 
Total Reactant Concentration 
 
 
 

 
 

A + A A2

KA
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A is the monomer (heme---His) 
B is the species with an intramolecular loop 
A2 is the intermolecular dimer 
 
 
Conservation of mass gives: [A]t = [A] + [B] + 2[A2],  
 

where [A]t is the total concentration of A in all species. 
 
Using [A2] = KA[A]2 and [B] = KC[A] we obtain: 
 
  [A]t = [A] + KC[A] + 2 KA[A]2  
 
rearranging gives: 
 

 2 KA[A]2 + (1+KC)[A] - [A]t = 0 
 
Solving for [A] using the quadratic formula: 
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Since concentrations cannot be negative only the positive root of the equation is possible: 
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This provides an expression for [A] in terms of [A]t which is known. 
 
The fraction monomer, fA, then is:  
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A similar treatment based on conservation of mass can yield the fraction of the 
intermolecular product, fB, versus [A] t 
 
Using [A2] = KA[A]2 and [A] = [B]/KC we obtain: 
 
  [A]t = [B] + ([B]/KC) + 2 KA([B]/KC)2  
 
rearranging gives: 
 

 2 (KA/KC
2)[B]2 + (1+(1/KC))[B] - [A]t = 0 

 
Solving for [B] using the quadratic formula yields: 
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Since concentrations cannot be negative only the positive root of the equation is possible: 
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This provides an expression for [B] in terms of [A]t which is known. 
 
 
The equation for fraction of intramolecular product, fB, then is  
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This equation is a general form of Eq 4.2 in the text and was used to fit the data for the 
decrease in intramolecular product at pH 7.1 in Figure 4.15 parts A and B of the text. 
 
The fraction dimer, fA2 is given by: 
 

fA2 = 1- fA - fB 
 
Using the expressions for fA and fB, this equation was used to evaluate the growth in the 
fraction of intermolecular product in Fig. 4.15A of the text. 

 221


