Laboratory Characterization of Toxic Air Emission from Fire Retardant Used in Wildfires

Emi Okitsu
University of Montana, W.A. Franke College of Forestry and Conservation, emi.okitsu@umontana.edu

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/umcur
Introduction

What are fire retardant made of?[1]
- Ammonium salt
- Water
- Thickening additive
- Color agents
- Corrosion inhibitors

What are the ecological impacts?
- Contaminate water
- Kill fish
- Fertilize noxious plants

Objectives
- Compare emission factors of fire retardant burning and biomass burning
- Estimate ammonia and VOC emissions from a wildfire
- Investigate health impacts of fire retardant on firefighters

Methods

Instruments
- Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer
- LI-COR CO₂ Analyzer

Materials
- LC-95A-R (Phos-Chek)
 - Ammonium polyphosphate
 - Red iron oxide
- Ponderosa pine needles

Three Burning Experiments
- Fire retardant + pine needle
- Pine needle only
- Fire retardant only

Result: Emission Factor

Fire Retardant Burning vs. Biomass Burning[4]

Result: Exposure

Formaldehyde: CH₂O

Health Impacts: (Short exposure) burning sensation on the eyes, nose, and throat. Nausea and skin irritation. (Long exposure) cause certain types of cancer.[8]

Workplace Exposure Limit: 0.75 ppm (8 hours) 2 ppm (15 minutes)[9]

Conclusion and Implications

- Fire retardant has high emission factors of ammonia and some VOCs
- Applying fire retardant to wildfires can increase ammonia emissions
- Burning both fire retardant and biomass together may enhance firefighter’s health risks

References

Acknowledgements

I would like to acknowledge National Science Foundation and the UM Department of Chemistry and Biochemistry. I would like to thank Dr. Robert Yokelson and Catherine Wielgus for their help with this project.