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Winter Habitat Use by Mule Deer in Idaho and Montana 

SONJA M. SMITH
1
, Boone and Crockett Fellow, Wildlife Biology Program, University of  
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ABSTRACT 

 Winter survival for species such as Rocky Mountain mule deer (Odocoileus hemionus 

hemionus) depends on an energy conservation strategy where they use habitats at lower 

elevations and on south facing slopes with adequate thermal or canopy cover.  However, not all 

mule deer habitats are equivalent in components or weather conditions, which contribute to 

differences in habitat use patterns and behavior among wintering populations.  We examined 

winter habitat use by mule deer on the East Front of the Rocky Mountains, Montana  and Warm 

Springs and Sink Creek, east-central Idaho to determine how weather and vegetation affect 

habitat use in different winter ranges.  We used radiotelemetry to locate adult female mule deer 

and estimated microsite habitat conditions including wind speed, snow depth, percent cover of 

individual plant species, hiding cover, and canopy cover during winter 2010—2011.  We 

compared data at deer locations to random locations across each study area using logistic 

regression, developing models based on pooled data for each study area, times of snow 

accumulation, and times of high wind speeds (for the East Front).  We evaluated model fit using 

a Receiver Operating Characteristic (ROC).  Our final models indicated that deer use different 

habitat components on different winter ranges.  On the East Front, a combination of landscape 
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and weather variables predicted probability of deer use of areas.  These included percent cover of 

trees, creeping juniper (Juniperus horizontalis), buffaloberry (Shepherdia canadensis), curly 

sedge (Carex rupestris), prairie sagewort (Artemisia frigida), whitemargin phlox (Phlox 

albomarginata), percent slope, snow depth, wind speed, and exposure to wind.  These and 

additional covariates changed in magnitude depending upon weather conditions.  Model 

covariates also changed depending on deer behavior.  In Idaho, tall threetip sagebrush (A. 

tripartita tripartita) and phlox (Phlox spp.) were important predictors of mule deer habitat use, 

while tall threetip sagebrush and cumulative forbs predicted use of areas under snow conditions.  

Mule deer habitat use differed between Idaho study areas.  In the Warm Springs study area, 

covariates related to foraging predicted habitat use whereas in Sink Creek, covariates related to 

thermal or hiding cover predicted habitat use.  Differences among all 3 study areas indicate that 

deer use different habitat components under different winter conditions.  Discrepancies among 

winter ranges are important considerations for habitat requirements of mule deer. 

KEY WORDS habitat use, Idaho, Montana, mule deer, Odocoileus hemionus, winter range. 

The Journal of Wildlife Management: 00(0):000-000, 201X 

In northern latitudes, most annual mortality for ungulates occurs during winter (White et 

al. 1996) when forage quality and availability declines (Short et al. 1966, Wallmo et al. 1977) 

and snow accumulation limits access to forage and increases energy demands (Gilbert et al. 

1970, Parker et al. 1984).  Cold temperatures, wind, and precipitation also increase energy 

expenditure for thermoregulation (Short 1966, Mysterud and Ostbye 1999).  These factors force 

ungulates such as Rocky Mountain mule deer (Odocoileus hemionus hemionus) into negative 

energy balance for ≥4 months, inducing physiological stress and catabolization of fat and protein 

reserves (Wallmo et al. 1977, Torbit et al. 1985, Moen and Delgiudice 1997).  Winter survival 



3 

 

primarily depends on accumulating body reserves prior to winter and selecting landscapes that 

provide adequate forage and protection from weather and predators (Mautz 1978, Mackie et al. 

1998).   

Winter habitat use for most northern-temperate ungulates is based on a strategy of energy 

conservation (Moen 1976, Mautz 1978, Mackie et al. 1998).  Important mule deer winter range 

includes areas that reduce the rate of energy loss by providing shallow snow, adequate food 

resources, security cover, and thermal environments (Garrott et al. 1987, Armleder and 

Waterhouse 1994, Mackie et al. 1998, Doerr et al. 2005, D’Eon and Serrouya 2005).  Thus, 

winter ranges for mule deer usually have lower elevations, south-facing slopes, and moderate to 

high canopy cover (Carson and Peek 1987, Garrott et al. 1987, Armleder and Waterhouse 1994, 

D’Eon and Serrouya 2005, Doerr et al. 2005).   

These habitat components are juxtapositioned in various ways.  In Montana, winter range 

characteristics vary in vegetation community, topography, structure, and climate.  Some mule 

deer populations in Montana occupy pine (Pinus spp.), juniper (Juniperus spp.), sagebrush 

(Artemisia spp.), or prairies during winter (Lovaas 1958, Martinka 1968, Mackie 1970, Dusek 

1975).  Elsewhere, mule deer occupy riparian bottoms or mountain shrub communities (Carson 

and Peek 1987).  Some mule deer populations winter in steep, rugged terrain (Carson and Peek 

1987, Nicholson et al. 1997, D’Eon and Serrouya 2005), while others concentrate on level to 

gently sloping sites (Mackie 1970, Schoen and Kirchoff 1990, Armleder and Waterhouse 1994).  

Other mule deer use irrigated and non-irrigated agricultural fields that overlap winter ranges 

(Mackie 1978, Vogel 1989, Garrott et al. 1987, Thomas and Irby 1991).   

In east-central Idaho, winter ranges vary in topography and precipitation, forming a 

gradient of habitat quality based on vegetation types and available forages.  For instance, one 
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winter range near Challis, Idaho (hereafter, Sink Creek) has steeper topography, less 

precipitation, and lower forage availability for mule deer, whereas another winter range < 70 

miles away outside Tendoy, Idaho (hereafter, Warm Springs) receives more precipitation, has 

more vegetation heterogeneity, more potential forages, and gentler topography.  Due to 

differences in habitat conditions, mule deer in these areas may exhibit different patterns of 

habitat use.  For example, mule deer on the Warm Springs winter range may be able make 

gradual movements down in elevation as winter progresses and snow levels fluctuate, whereas 

steeper topography and less vegetation on the Sink Creek winter range force deer to concentrate 

at the lowest elevations for most of the winter.  In addition, mule deer on the Sink Creek winter 

range may be forced into a more rigid energy conservation strategy where disturbance levels and 

thermal and hiding cover may be more important factors in habitat selection than on winter 

ranges with more available forage resources.  If these habitat use and behavioral patterns occur, 

it is important to understand these differences as habitat prioritization will vary for each area. 

In some mountain ranges, mule deer populations contend with energy deficits of longer 

or shorter duration than what mule deer in other areas experience (Mackie et al. 1998).   The 

Eastern Front of the Rocky Mountains in north-central Montana (i.e., East Front) has a 

characteristically diverse climate, where high winds affect temperature and snow cover.  Arctic 

fronts followed by high winds cause sub-zero temperatures and create snow drifts that make 

winter forage inaccessible to mule deer in some areas, while at other times warmer chinook 

winds melt snow and provide foraging opportunities that deer on other ranges may lack (Mackie 

et al. 1998).  Mountain ranges outside the ―chinook zone‖ on the East Front retain low-elevation 

snowpack from late-autumn through early spring (Mackie et al. 1998), but because these winds 

melt or redistribute snow (leaving some areas virtually snow-free), mule deer on the East Front 
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can exploit greater foraging opportunities than previously reported in other studies.  These 

extended foraging opportunities could allow mule deer to maintain their body condition and face 

a lower energy-deficit than other mule deer populations.  Previous studies on the East Front in 

the 1980s and early 1990s examined mule deer distributions and movements (Kasworm 1981, 

Ihsle 1982, Pac et al. 1988, Baumeister 1994), but not mule deer habitat use patterns.  Whereas 

there are numerous studies on deer-habitat relationships across Montana (Wilkins 1957, Lovaas 

1958, Martinka 1968, Mackie 1970, Dusek 1975), habitat use with constantly changing snow 

depths has not been examined.   

Whereas it is possible to make general assumptions about mule deer habitat use across 

landscapes, previous research contributes little to predicting more specialized winter habitat use 

and distributions of unstudied populations (Pauley et al. 1993).  Many studies examining winter 

range also fail to address habitat use under diverse climatic conditions.  Furthermore, little is 

published on important winter ranges.  For example, the Idaho Department of Fish and Game 

(IDFG) recently updated its mule deer management plan, and in central and east-central Idaho, 

wildlife managers are particularly interested in winter range components that are important for 

long-term maintenance and viability of mule deer herds.   

Mule deer habitats vary, but by definition they provide for viable populations and a 

means of comparing behavior and use among various habitat components such as cover and 

forage (Mackie et al. 1998).    Our objective was to study female mule deer habitat use on 3 

winter ranges with variable quality and availability of forage resources and different weather 

conditions.  First, we tested the hypothesis that weather on the East Front affects mule deer 

habitat use differently than for mule deer on winter ranges in Idaho.  If wind on the East Front 

affects mule deer habitat use, mule deer will use exposed sites over sheltered sites because of 
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lower snow depths, however during periods of high winds (i.e., ≥ 5 m/s) that decrease 

thermoregulation (Mautz 1978), mule deer will seek unexposed aspects.  Feeding sites and 

bedding areas would vary due to wind and its effects on snow accumulation.  Bedding areas 

would have greater hiding and canopy cover and be less exposed to wind when compared to 

feeding sites and random locations.  Bedding areas may also have greater snow cover than 

feeding sites in areas where drifts accumulate among trees.  Shrub composition will vary among 

feeding sites and bedding areas.  For instance, feeding sites will have mule deer forage species 

such as creeping juniper (Juniperus horizontalis) and chokecherry (Prunus virginianus), whereas 

bedding areas will contain other trees and shrubs such as limber pine (Pinus flixibilis) or Canada 

buffaloberry (Shepherdia canadensis), which are not as important as forage species.   

Next, we addressed whether differences in topography and vegetation between 2 winter 

ranges in Idaho contributed to differences in habitat use between wintering mule deer.  We 

hypothesized that due to limited forage resources available from less annual precipitation in Sink 

Creek mule deer wintering there may rely on energy conservation more than foraging as an 

influence of winter habitat use than deer on the Warm Springs winter range that receives more 

annual precipitation and has a greater diversity of plant species.  In doing so, they would be more 

likely to use habitat characteristics that contributed to thermal or hiding cover and bedding 

behavior rather than available forages than deer would use in Warm Springs.  Deer in Warm 

Springs may use a wider variety of habitat characteristics that allow for foraging and bedding. 

STUDY AREAS 

East Front, Montana 

A portion of this study took place on the Theodore Roosevelt Memorial Ranch (TRMR) 

on the East Front and surrounding private lands within Hunting District 441 (Figure 1).  The 



7 

 

2,448 ha TRMR was located 14 km southwest of Dupuyer, in Township 27 North, Ranges 8 and 

9.  The East Front consisted of agricultural lands, open prairie, and foothills at lower elevations, 

and steep canyons and limestone reefs of the Continental Divide.  Total relief exceeds 1,500 m 

(Baumeister 1994).  The TRMR and neighboring ranches to the north and south were bordered 

by Lewis and Clark National Forest, the Bob Marshall Wilderness to the west, and private and 

state-owned lands to the east. 

The East Front is characterized by long, cold (≤ -41
o
C) winters and short, warm summers 

(≤ 30
o
C; Aune and Kasworm 1989, Baumeister 1994).  Average annual precipitation varied from 

150—200 cm in the high alpine zones to 30—40 cm along the limestone reefs, foothills, and into 

the prairie, mostly occurring between April and July (Thompson 1981, Moeckel 1997).  Snow 

can fall at any time of the year and accounted for 45—80% of annual precipitation (Baumeister 

1994).  Winds averaged 18.5 km/hr annually (Western Regional Climate Center 2008), but can 

exceed 194 km/hr during winter. 

The East Front consisted of an ecotone between the northern Great Plains and the central 

Rocky Mountains.  It was characterized by >20 vegetation communities (Offerdahl 1989, Barker 

and Whitman 1998, Baumeister 1999).  Prairie grassland and limber pine savannas interspersed 

with aspen (Populus tremuloides) groves and riparian corridors dominated lower-elevation 

regions.  Higher-elevation forests included Douglas-fir, lodgepole pine (P. contorta), or sub-

alpine fir (Abies lasiocarpa) communities (Baumeister 1994). 

The East Front provided important summer and winter range for game species including 

elk (Cervus canadensis), mule deer, white-tailed deer (O. virginianus), and sharp-tailed grouse 

(Pedioecetes phasianellus).  It also included top predators including grizzly bear (Ursus arctos), 

black bear (U. americanus), mountain lion (Felis concolor), golden eagle (Aquila chrysaetos), 
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and gray wolf (Canis lupus).  The TRMR was part of a management complex important for the 

long-term persistence of wildlife along the East Front that included Glacier National Park, the 

Blackleaf Wildlife Management Area, Pine Butte Swamp Preserve, and the Sun River Wildlife 

Management Area (Offerdahl 1989), complementing the Crown of the Continent Ecosystem, 

which remains 1 of the largest, intact natural ecosystems remaining in North America (Fagre 

2003).  Livestock grazing, farming, and recreation were the primary land uses. 

Sink Creek, Idaho 

The Sink Creek study area lies along the eastern edge of Game Management Unit (GMU) 

36B around Centennial Flats and the nearby Bayhorse/Sink Creek areas, Custer Country, Idaho 

(Figure 2).  Elevation ranged from 1,585—2,500 m, and the rolling foothills graded into steep 

slopes of Bald Mountain to the west and characterize much of the terrain (Hurley and Miyasaki 

2005).  Small cuts draining into the Salmon River, which comprises the study area’s eastern 

border, add to complex relief.   

Average temperatures ranged from 3—10
o
C and precipitation ranged from 25—120 cm 

(IDFG 2005).  The majority of precipitation occurred during autumn, winter, and spring; most 

summer precipitation evaporated at lower elevations (IDFG 2005).  The area was also influenced 

by prevailing winds from the west; average wind speeds at Challis were 6.75 km/hr with gusts up 

to 21.1 km/hr, but winds could occasionally exceed 100 km/hr (IDFG 2005, WWRC2008). 

Vegetation was characteristic of xeric shrubland-steppe areas, and largely consisted of 

Wyoming big sagebrush (A. tridentata wyomingensis)—grass communities at lower elevations 

with mountain mahogany (Cercocarpus spp.) and mixed subalpine forest, lodgepole pine, and 

whitebark pine (P. albicaulis) at higher elevations (Hurley and Miyasaki 2005, Yeo 2005).   
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Mule deer and elk occupied GMUs 36B and 36 to the west, and used the lower-elevation 

36B in winter and migrate west to national forests within GMU 36 (Yeo 2005).  The 36B winter 

range was mainly BLM-administered lands but contained some private agricultural lands on its 

eastern border along the Salmon River.  Livestock grazing and recreation were the primary land 

uses of the Challis winter range study area. 

Warm Springs, Idaho 

 The Warm Springs study area occurred in GMU 30 near Warm Springs and Reese Creek, 

Lemhi County, Idaho (Figure 3).  While similar to the Sink Creek site with rolling hills and 

drainages below and steep mountain slopes above, the terrain is neither as complex nor steep; 

elevations ranged from 1,433—2,743m (Hurley and Miyasaki 2005). 

 Precipitation was greater at the Warm Springs area than in Sink Creek, which contributes 

to more heterogeneous vegetation and mule deer forages available at this site.  The area received 

25—127 cm annual precipitation, most of which fell as snow during autumn, winter, and spring 

(IDFG 2005).  This area was characterized by cold winters, with average annual temperatures 

ranging from 2
o
 to 8

o
C (IDFG 2005).   

 Vegetation in this region was also largely Wyoming big sagebrush—grass communities.  

Xeric shrubland and steppe vegetation types dominated lower elevations, which graded into dry 

conifer forests and subalpine forests at higher elevations (IDFG 2005).  Common plants found on 

winter range included Wyoming big sagebrush, basin big sagebrush (A t. tridentata), mountain 

big sagebrush (A. t. vaseyana), tall threetip sagebrush (A. tripartita tripartita), fourwing saltbush 

(Atriplex canescens), greasewood (Sarcobatus vermiculatus), and a variety of forb and grass 

species.   
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The majority of the Salmon mule deer winter range was BLM-administered public lands 

and private lands along the Salmon River.  While livestock grazing was the dominant land use in 

the area, timber harvesting, mining, and outdoor recreation also occurred (IDFG 2005). 

METHODS 

Data Collection 

In February and March 2010, we captured 13 adult female mule deer and fitted them with 

very high-frequency (VHF) collars (Telonics, Mesa, Arizona) on and surrounding the TRMR.  

Mule deer were captured with Clover traps baited with alfalfa hay and sweet feed.  We captured 

an additional 18 female mule deer from December 2010—March 2011.  Deer in the Warm 

Springs and Sink Creek study areas were captured using Clover traps, helicopter-netgunning, 

drive-netting, and drop-net techniques, and fitted with VHF and global positioning system (GPS) 

radiocollars.  We selected 16 females from the Warm Springs study area and 12 females from the 

Sink Creek study area to monitor for habitat use.  These mule deer were selected based on 

previous knowledge of capture locations and accessibility to locate them during winter.  We used 

the same radiotelemetry techniques and vegetation sampling methods in all study areas. 

We began locating deer by triangulation and homing (White and Garrott 1990) after the 

deer were radiocollared for ≥ 1 week (i.e., to eliminate potential capture-related changes in 

behavior).  We visually located all collared deer and recorded behavior (e.g., feeding, moving, 

bedded) at their initial location.  If the collared deer fled from the observer when first seen, we 

ceased tracking efforts and attempted to determine initial location via tracks.  If we were unable 

to do so, data were not recorded for her that day. 

Because weather can be variable throughout the day, we measured temperature and wind 

speed with a Kestrel 3500 pocket weather meter (Nielsen Kellerman, Boothwyn, Pennsylvania, 
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USA), and recorded time, wind direction, and precipitation at each deer location.  We also noted 

the number, age and sex class of other deer ≤ 50 m to the radiocollared individual (or within the 

same group; Clutton-Brock et al. 1982).  If > 1 radiocollared deer was observed in a group, we 

used data from only 1 of those deer to prevent pseudoreplication.  We also recorded presence of 

cattle, white-tailed deer, elk, and predators.   

After the radiocollared deer left the area, we collected microsite habitat data.   At each 

location, we recorded UTM coordinates with a handheld GPS unit, slope (0—5, 6—10, 11—15, 

16—20, 21—30, or ≥31
o
) with a clinometer, position on the slope (i.e., bottom, low, middle, 

upper, ridge), aspect (0—360
o
), with a compass, and elevation (m).  We also listed the most 

prominent vegetation within a 0.04 ha microhabitat sampling plot (Hendricks 2000) and 

measured snow depth (cm) with a tape measure at 3 sites per Daubenmire frame (described 

below) and then averaged the measurements.  

We determined shrub canopy cover with the line intercept method (Canfield 1941, 

Higgins et al. 2005) by forming 2 transects (i.e., 1 transect going upslope—downslope, 1 transect 

going left-slope—right-slope), counting only 1 transect through the center to eliminate double-

sampling.  We estimated canopy cover with a spherical densiometer (Lemmon 1956, Bunnel and 

Vales 1990) at the center and ends of each transect and averaged values for canopy coverage of 

the study plot.  We estimated shrub cover and canopy cover as an index of potential browse, 

hiding (shrub cover only), thermal, and snow-interception cover.  We also measured percent 

cover of forbs and grasses using a Daubenmire frame (Daubenmire 1959).  In spring 2010, we 

placed the frame at the center of each location and at 5 and 10 m along each transect used to 

measure shrub canopy cover (n = 9 frames per location).  We increased the number of 

Daubenmire frame measurements to the center of, and at 3, 6, and 9m along each transect (n = 13 
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frames per location) for the 2010/2011 winter field season to obtain a better estimate of available 

plant species.  We measured hiding cover (i.e., visual cover, vegetative or non-vegetative barriers 

that conceal deer; Rahme 1991) with a cover pole (Griffith and Youtie 1988).   

In the 2010-2011 field season, we established a paired random site for each deer location.  

In 2010 we determined the mean and standard deviation of distances between consecutive deer 

locations, estimating a range of 270-900 m.  Therefore, the random locations ranged from 270-

290 m from the radiocollared deer locations.  We made the same microsite habitat measurements 

described above for deer locations at random sites. 

Data Analysis 

To determine deer habitat use from what was available across each study area, we 

developed models using multivariate logistic regression (Hosmer and Lemeshow 2000, Manly et 

al. 2002, Keating and Cherry 2004).   We derived the relative probability of deer-use via the 

equation:    

  ̂     exp(  ̂     ̂       ̂     (1) 

Where   ̂    is the relative likelihood of a location being a deer-use site as a function of 

covariates    and coefficents    (Hosmer and Lemeshow 2000, Manley et al. 2002).  We 

assumed random locations represented habitat availability within the home range.  Logistic 

regression makes no assumptions about normal distribution of the independent variables, but 

because many of the covariates were left-skewed, we used the transformation ln(x +1) on all 

variables representing plant cover to normalize the distribution of cover given presence while 

still including the observations where species x = 0  (thus, maintaining a presence/absence 

component). 
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We used microsite habitat data collected at mule deer use and random locations as a basis 

for our models.  In the process of, and in addition to data collected, we selected variables based 

on findings from previous literature, what was biologically relevant, and characteristics of the 

study area.  Because mule deer winter resource use is scale-dependent (D’Eon and Serrouya 

2005), we defined resource selection at the 3
rd

-order scale, or locations within the home-range 

(Johnson 1980).  These variables included slope, wind speed, temperature, exposure, solar 

radiation, hiding cover, canopy cover, snow depth, and a combination of line-intercept and 

Daubenmire frame plant cover data.   

Elevation and aspect are the most important predictors of home range selection in mule 

deer (D’Eon and Serrouya 2005), however they were not included as predictor variables because 

at the 3
rd

-order scale, deer are already at lower elevations, and aspect is often analyzed as a 

circular or categorical (e.g., north, north-east) variable, which by itself is of little relevance to 

mule deer.  Instead of aspect, we used solar radiation and wind exposure.  Aspect is generally 

used as a covariate in habitat use studies because of its influence on snow depth, vegetation, and 

temperature (Bilbao 2008).  However, solar radiation (measured as insolation, W/m
2
) is a 

continuous surrogate for aspect and a more direct measure of sun exposure and ensuing thermal 

or snow conditions that still correlates with aspect (Figure 4; Rich et al. 1994, Fu and Rich 2002, 

D’Eon and Serrouya 2005).  To account for the effects of high winds on the East Front, we 

generated a covariate based on Beers’ transformation of aspect, where we compared the inverse 

of wind direction with aspect we measured at each use and random location to get a continuous 

variable representing exposure, where a value of 2 indicated that a deer was completely sheltered 

from wind while a value of 0 indicated complete exposure (Beers et al. 1966). 
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Other weather-related variables included temperature and wind speed collected directly 

from the deer use or random site.  Random locations may not always represent weather 

conditions for the study area. (e.g., a random location behind a sheltered slope during high 

winds), we also gathered information from Snotel sites (http://www.wcc.nrcs.usda.gov/snow/)  

and weather stations to assess snow accumulation and average daily winds across the study area.  

We used STATA 11 (StataCorp, College Station, TX) for all data analyses.  Before 

developing our models, we assessed the potential contribution of each variable to the sample by 

evaluating the number of occurrences in each observation of the dataset, eliminating all variables 

that occurred in ≤ 5% of the data.  Therefore, plant species that were documented only on rare 

occasions were not included in data analysis.  We tested all variables for correlations (using a 

cutoff threshold of r = 0.5), and applied univariate logistic regression to choose candidate 

variables (P < 0.25) to be included in the final model (Hosmer and Lemeshow 2000).  We 

applied manual stepwise selection to assess variable and model significance.   

For the East Front, we constructed 4 models constrained under different weather or 

behavior conditions.  Our first model was a pooled model containing all use and random 

locations under all weather conditions and behaviors.  Next, we constructed a model based on 

snow accumulation by data from Snotel sites for each study area and summing the total 

accumulation (i.e., positive, negative) for the 3-day period up to the date of each deer use and 

random location.  If snow accumulation for that period > 0 cm, we included that observation in 

the snow accumulation model.  If snow accumulated for that 3-day period ≤ 0 cm, the 

observation was included in our 3
rd

 model pertaining to deer habitat use during periods when no 

snow accumulated or snow melted.  We also made a wind model, using data from weather 

stations at each study area (http://www.wunderground.com/weatherstation/index.asp?MR=1).  
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Whereas we measured wind speed at each site, we did not solely rely on these measurements as a 

description of wind across the study area, due to the influences of site-specific topography and 

vegetation.  Similar to the snow accumulation model, we ran a model for observations measured 

on windy days, when daily average wind speed ≥ 5 m/s.  We chose a 5 m/s threshold because 

wind speeds ≥ 5 m/s are enough to begin moving snow particles, and the volume of snow 

movement increases at wind speeds from 7—9 m/s (Winstral et al. 2002, Katlein 2009).  With a 

sustained daily average wind speed of 5 m/s, individual wind measurements taken hourly or 

throughout the day sufficiently exceeded 5 m/s (enough to move snow particles) and the cutoff 

still provided a sufficient sample size.  Finally, we ran a multinomial logistic regression using 

behavior categories (i.e., feeding/moving and bedding) and random locations as response 

variables to examine differences in coefficients and covariate significance based on deer 

behavior.   In Idaho, we also ran 4 models: pooled locations from both of the study areas and all 

weather conditions, pooled locations and snow accumulation, Sink Creek locations, and Warm 

Springs locations.  Daily average wind speed never exceeded 14 km/hr in either Idaho study area 

and thus, wind condition was not a variable for habitat use in Idaho.   

We then applied Akaike’s Information Criterion (AIC) adjusted for small sample size 

(AICc) to select the most parsimonious models if >1 candidate model was generated for each set 

of weather/study area circumstances.  We used a Receiver Operating Characteristic (ROC) to 

evaluate models, which determined sensitivity, the probability that the model returns a positive 

prediction when the animal is present (y = 1) and specificity, where the model predicts a low 

probability when the animal is absent (y = 0; Cumming 2000).  We used the area under the ROC 

curve, AUC, to assess model fit (Cumming 2000).  An AUC of 0.8 indicates that the model has 
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roughly an 80% chance of correctly predicting use from a randomly-selected observation if use 

occurred (Fielding and Bell 1997). 

RESULTS 

We gathered microsite habitat data from 535 combined use and random locations across 

the East Front, Warm Springs, and Sink Creek study areas.  On the East Front, we classified 142 

observations as receiving snow accumulation and 243 observations as non-snow accumulation or 

snow-melt conditions in the analysis.  Also on the East Front, we collected data on 114 

observations during periods when daily average wind speeds ≥ 18 km/hr.  Due to smaller sample 

sizes from Warm Springs and Sink Creek (n = 47 and 50, respectively), both Idaho study areas 

were pooled and 34 observations were used in assessing habitat use under snowy conditions.  

Landscape and weather variables could be used to predict probability of deer use in the East 

Front and Idaho models. 

East Front 

The East Front presented a unique suite of characteristics for mule deer winter range.  

Snow depths at used or random locations ranged from 0—47.9 cm.  On some days, average wind 

speeds reached 40 km/hr, with high winds exceeding 100 km/hr.  These winds redistributed 

snow, creating large snow drifts in some areas and leaving swaths of bare ground and accessible 

forage in others.   

Mule deer on the East Front used habitat variables contributing to thermal/hiding cover, 

environmental variables affecting thermoregulation and forage accessibility, and forage quality 

and availability.  Cover variables included tree cover and percent cover buffaloberry, 

environmental variables included slope, wind speed, exposure, and snow depth, and forage 

variables included creeping juniper, whitemargin phlox (Phlox albomarginata), curly sedge 
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(Carex rupestris), and prairie sagewort (A. frigida; χ10
2
 = 75.07, P < 0.0001; Table 1).  The area 

under the AUC curve totaled 0.81, indicating good model fit (Fielding and Bell 1997). 

Model covariates changed and the predictive capabilities of the covariates varied 

depending upon weather conditions.  During or following periods of snow accumulation (i.e., 

any positive accumulation in the last 3 days), only a subset of these variables (wind speed, 

percent cover creeping juniper and buffaloberry), in addition to the covariates, canopy cover and 

percent cover rough fescue (Festuca campestris) had predictive power (χ8
2
 = 75.07, P < 0.0001, 

AUC = 0.88; Table 2).  In lieu of canopy cover, mean hiding cover, percent tree cover, and 

percent cover of limber pine were also contributors along with the other covariates, but were all 

correlated with canopy cover (r > 0.5) and none gave the model any better predictive capabilities 

than canopy cover alone.   Canopy cover was not related to decreased snow depths (t427 = -0.35, 

P = 0.725), but it exhibited a negative relationship with wind speed (t426 = 2,47, P = 0.014).  

Snow depth was an important univariate predictor (Z = -2.64, P = 0.008) during periods of snow 

accumulation but lost significance when combined with the other covariates in the model, and it 

was also negatively correlated with rough fescue (r = -0.37) when observations were constrained 

to the given weather conditions.  Also, mean snow depth after snow accumulation was 14.0 ± 

14.2 cm.  Snow depth at use sites averaged 10.7 ± 9.84 cm, snow depth at random locations 

averaged 17.3 ± 17.3 cm.   

During periods without snow accumulation or if snow melted, variables associated with 

thermoregulation and potential forages predicted deer habitat use.  These variables included a 

cover variable (limber pine), environmental variables (wind speed, exposure), and 

vegetation/forage variables (creeping juniper, slender wheatgrass [Elymus trachycaulus 

subsecundus], and fringed sagewort (χ6
2
 = 63.46, P < 0.0001, AUC = 0.79; Table 3).   
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Under high wind conditions, tree cover, exposure to wind, percent cover of forage species 

(the 5 main browse species reported as used by deer on the TRMR), junegrass (Koeleria 

macrantha) and curly sedge were the top model predictors (χ5
2
 = 55.40, P < 0.0001, AUC = 

0.84; Table 4).  There was also a negative relationship between tree cover and wind speed (t141 = 

-4.64, P < 0.001) and exposure and wind speed (t141 = -4.18, P < 0.001) under windy conditions.  

Snow depth did not contribute to predicting deer use in the model (Z = -1.80, P = 0.071), nor as a 

univariate predictor (Z = -1.05, P = 0.296).  Also, under windy conditions, mean snow depth was 

0.611 ± 1.08cm.   

Some model covariates varied depending upon deer behavior (Table 5).  For instance, 

snow depth (Z = -2.41, P = 0.016) predicted deer feeding and moving locations but not bedding 

locations, while buffaloberry (Z = 3.20, P = 0.001) and tree cover (Z = 5.09, P < 0.001) predicted 

of deer bedding locations but not feeding or moving locations.    

Idaho 

 When data from both study areas were pooled, tall threetip sagebrush and phlox were the 

best predictors of mule deer use locations versus available (χ3
2
 = 16.89, P = 0.0007, AUC = 0.73; 

Table 6).  Increasing each covariate increased probability of deer use in Idaho, however, the only 

term with coefficient standard errors not overlapping 0 was phlox (Z = 2.11, P = 0.035).  

During or after snow accumulation, increasing percent cover of tall threetip sagebrush 

and cumulative forbs predicted mule deer use over random locations (χ2
2
 = 9.86, P = 0.0072, 

AUC = 0.78; Table 7) with both terms contributing to the model.   

For the Warm Springs study area, increasing percent cover of tall threetip sagebrush, all 

forbs, and possibly wind speed increased probability of deer use (χ3
2
 = 19.14, P = 0.0002, AUC 

= 0.81; Table 8).  Wind speed approached significance in the model (Z = 1.79 P = 0.073) and in 
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univariate regression (Z = 1.94, P = 0.053).  While wind speed did not end up in the final Sink 

Creek model, exposure was included as a variable due to its influence on the AUC curve (AUC 

without exposure = 0.71).  Longleaf phlox (Phlox longifolia) and mean hiding cover also 

positively contributed to the Sink Creek model (χ3
2
 = 11.37, P = 0.0099, AUC = 0.77; Table 9), 

albeit mean hiding cover only approached significance (Z = -1.81, P = 0.071).   

DISCUSSION 

Habitat characteristics such as forage quality and quantity and appropriate cover 

determine the strategies that mule deer employ to effectively maintain themselves and reproduce.  

Survival and reproduction of a mule deer is improved when it uses appropriate habitats 

characteristics for maintenance periods like winter.  As expected, winter habitat use on the East 

Front coincided with an energy conservation strategy, in which the data exhibited a positive 

relationship for probability of deer use favoring lower snow depths and thermal/security cover 

and a combination of potential forages.   

Whitemargin phlox in our East Front models is as a potentially important forb for  female 

mule deer.   Phlox species, particularly Hood’s phlox (Phlox hoodii), have been noted as present 

in mule deer rumen samples or forage sites (Lovaas 1958, Constan 1972, Mackie 1970).  

Bryoides phlox (Phlox bryoides) was an important forage for mule deer in Colorado after other 

browse species such as Saskatoon serviceberry (Amelanchier alnifolia), mountain snowberry 

(Symphoricarpos oreophilus), and yellow rabbitbrush (Chrysothamnus viscidiflorus) were 

depleted (Carpenter et al. 1979).  While Hood’s phlox was not an important covariate in our 

study, it was present in both use and random sites, therefore its availability across the study area 

may not have limited mule deer habitat use.  Alternatively to phlox, there was a negative 

relationship between probability of deer use and percent cover of curly sedge.  There were no 
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known published accounts of mule deer selection or avoidance of curly sedge, however due to its 

tendency to grow in dry areas with a low moisture gradient, it has been noted as avoided by 

another ungulate, muskox (Ovibos moschatus), in winter (Schaefer and Messier 1994, 1995).  In 

Utah, it is a dominant plant on dry, rocky south faces above timberline (Lewis 1958).   Curly 

sedge was positively correlated with elevation (r = 0.49) in our study.   

Canopy cover, slope exposure, and percent cover of shrubs like buffaloberry, may aid in 

reducing wind speeds and providing thermal cover for mule deer during or following 

snowstorms.  Unlike other studies, which report that mule deer use habitats with moderate to 

high canopy cover due to lower snow depths from tree interception (Armleder and Waterhouse 

1994, D’Eon and Serrouya 2005), we report no negative relationship between canopy cover and 

snow depth.   Armleder and Waterhouse (1994) reported that mule deer used old-age tree stands 

with high canopy cover and used these areas more when overall snow depths were high.  In our 

study, canopy cover was important under all conditions but had its greatest effect after snow 

accumulation.  Observations during data collection support our findings, in fact, several areas of 

high canopy cover contained deep snow, especially on leeward aspects where vegetation in these 

areas trapped snow particles during windy conditions.   

 It is possible that deer use of other habitat characteristics such as thermal/hiding cover 

superseded selection for lower snow depths when snow was accumulated across the study area.  

Our snow accumulation model was rather conservative, because any locations that had received 

> 0 cm snow in a 3-day period were included in the model.  Therefore, days in which a 2—3 

centimeters of snow had accumulated were treated similarly to days that received > 20 cm.  Due 

to sample size we did not restrict locations to higher snow accumulations, but because 

distinctions in habitat use occurred even at this level, it is possible that relationships would be 
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more apparent if the model was restricted to higher snow depth conditions.  High variability in 

mean snow depth at both use and random locations in addition to overlapping standard 

deviations make it difficult to determine relationships between snow depth and probability of 

deer use.   

Top model covariates on windy days also varied from covariates in the full model; the 

negative relationship between tree cover and wind speed, and exposure and windspeed, indicates 

that tree cover and exposure may decrease wind speeds experienced by deer in some areas.  Tree 

cover was a more effective predictor of probability of deer use than canopy cover under these 

circumstances because it was likely a better indicator of thermal protection than overhead canopy 

cover by itself.  Snow depths were not indicative of deer use vs. availability on windy days, but 

because mean snow depths at this time were < 1 cm, snow depths during these conditions would 

not have restricted deer foraging or moving opportunities.  Gilbert et al. (1970) suggests that at 

snow depths > 46 cm are sufficient to impeded deer travel and foraging.   

Our data suggest that wind conditions on the East Front may remove enough snow cover 

to open up greater foraging opportunities for mule deer than what deer on other winter ranges 

experience.  The importance of creeping juniper on the East Front was reflected by its presence 

in nearly every model, regardless of weather conditions.  However, the data provided some 

evidence that wind speeds may decrease snow depths and allow deer more foraging 

opportunities, as creeping juniper by itself was not the most important forage variable in the 

wind model.  Rather, the 5 main browse species (i.e., creeping juniper, chokecherry, silverberry, 

serviceberry, and snowberry; Hemmer 2005) were collectively more effective at describing 

probability of deer use than creeping juniper alone.    
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  While there are many studies on mule deer diet, results are site-specific and forage 

selection is based on the available vegetation in a given range.  However, the most commonly-

used browse species across various habitats in Montana are junipers (Lovaas 1958, Martinka 

1968, Mackie 1970, Dusek 1975).  For instance, Hemmer (2005) reported that creeping juniper 

was among the top 5 commonly-used browse species by mule deer on the TRMR.  While 

traditionally considered a low-palatability, emergency browse for deer (Hill 1946, Smith and 

Hubbard 1954, Julander 1962), other studies note it is used in varying degrees and situations 

(Hill and Harris 1943, Anderson et al. 1965).  Junipers contain oils and terpenoids that at high 

levels, can harm rumen microflora (Schwartz et al. 1980a), however when multiple plant species 

are available, deer can consume various amounts of juniper without inhibiting rumen function 

(Schwartz et al. 1980b).  When juniper is the only palatable species for mule deer on winter 

range, winter condition and survival may be affected (Schwartz et al. 1980b).    

In addition to snow storms on the East Front affecting deer habitat use, snowstorms in 

Idaho may have also affected deer habitat use on these winter ranges.  Tall threetip sagebrush 

provided both a cover and forage resource, and combined with the cumulative forage variable 

indicates that deer may be forced to broaden their range of forage selectivity when snow cover 

prohibits foraging on low-growing species such as phlox.  Tall threetip sagebrush grows up to 

1.8 m high, has introgressed with Wyoming big sagebrush in the Salmon, Idaho area, and is 

palatable for mule deer and other wildlife (McArthur et al. 1979, Wambolt 2001, Rosentreter 

2004).  At higher snow depths in Colorado, Carpenter and Wallmo (1979) reported that mule 

deer consumed taller plant species like shrubby vegetation, but lower-profile plant species (forb 

and grass) consumption increased with lower snow depths, and the authors concluded that snow 

depths limited dietary complexity. 



23 

 

  Top model covariates between Sink Creek and Warm Springs differed, providing some 

evidence that deer in Sink Creek versus deer in Warm Springs rely more heavily on cover and 

conserving energy while exhibiting limited foraging opportunities. In Warm Springs, a 

combination of cover, forage, and environmental variables had predicted deer use.  The positive 

relationship between probability of deer use and percent cover of tall threetip sagebrush and 

cumulative forbs may be an indication that mule deer in the Warm Springs area have a 

combination of foraging and bedding opportunities that influence habitat use.  The final model 

for Sink Creek provides some evidence that environmental conditions and thermal or hiding 

cover may be important to mule deer in this area.  The presence of phlox in the Sink Creek 

model further supports our findings on the East Front that phlox species may be an important 

forage resource for mule deer.  Adequate hiding cover and thermal cover aid in energy 

conservation (Mysterud and Ostbye 1999), while a forb such as phlox which remains green 

during winter (Carpenter et al. 1979) could provide some important forage.   

We did not have a sufficient sample size to determine whether deer altered their 

behaviors and increased foraging or bedding time given certain weather conditions, but we were 

able to ascertain behavior-specific habitat attributes, or differences in the magnitude of these 

attributes influenced probability of deer use.  These relationships indicate that certain habitat 

characteristics, while important for deer use in general, suit different purposes in meeting or 

sustaining deer energy requirements.  Environmental factors or catastrophic events cause 

resource limitations and induce periods of stress for mule deer.  However, mule deer have 

evolved unique strategies to cope with these situations.  In addition to using appropriate habitat, 

deer must also alter their behavior to mitigate for winter’s higher energy requirements and sub-

optimal forage conditions.  Travel and foraging time increases with decreasing forage 
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availability (Collins et al. 1978, Wickstrom et al. 1984), and energetic costs of locomotion are 

greatly influenced by snow cover (Parker et al. 1984).  Foraging represents a significant cost to 

an ungulate’s daily energy requirements, and there is a threshold at which energy expenditure 

required for foraging (i.e., locomotion, thermoregulation, eating, digestion) exceeds the energetic 

gains from forage (Short 1975).  This relationship is reinforced with increasing snow depths and 

cold winds (Mautz 1978).  Numerous studies indicate that ungulates modify their foraging 

behavior and conserve energy through reduced food intake during winter (Thompson et al. 1973, 

Mautz 1978) concomitant with decreases in metabolic rate and activity levels (Ozoga and Verme 

1970, Moen 1976, Mautz 1978, Taillon et al. 2006).   

Comparing habitat-use characteristics across multiple winter ranges in association with 

weather conditions provides further insight into winter adaptations and how mule deer mitigate 

for winter conditions.  Across study areas, winter ranges varied in topography, vegetation, and 

weather, resulting in different patterns of habitat use by mule deer.  We hypothesized that wind 

conditions on the East Front would affect mule deer habitat use, and we provide evidence to 

support this hypothesis. For instance, whereas other studies report mule deer use of south-facing 

slopes or areas with higher solar radiation due to lower snow depths, solar radiation was not a 

final variable in our models (D’Eon and Serrouya 2005).  Rather, in our study, exposure was an 

appropriate surrogate for aspect; mule deer used sheltered sites under nearly all weather 

conditions, indicating that high wind speeds on the East Front may take a significant toll on 

thermoregulation and energy conservation.  We further support this with the relationship 

between deer use and lower wind speeds in all 5 of our East Front models.  However, cumulative 

forage species (rather than solely creeping juniper) were important covariates during or 

following periods of high winds (Z = 4.07, P = <0.001), suggesting that winds on the East Front 
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may provide extended foraging opportunities for mule deer.  Also, feeding and bedding locations 

differed via magnitude and significance of coefficient.  Bedding areas were less exposed to wind 

and contained more variables indicative of hiding and thermal cover than feeding sites.  In Idaho, 

deer in Sink Creek used habitat characteristics more in line with thermal and hiding cover than a 

broader suite of forage species, supporting our hypothesis that differences in topography and 

vegetation among study areas contribute to different habitat use patterns in mule deer.   

MANAGEMENT IMPLICATIONS 

On the East Front and east-central Idaho, understanding mule deer habitat use and 

discrepancies in winter habitat use among winter ranges will define optimal mule deer use of 

these areas.  In our study, we analyzed data from 1 winter, which we did not consider a major 

winter event and therefore did not identify limiting factors for these deer populations.  However, 

we were still able to identify habitat relationships in each area. 

For instance, mule deer reliance on variable topography and vegetation indicates that 

maintaining heterogeneity, rather than prioritizing singular habitat components such as elevation, 

canopy cover, south-facing aspects on the East Front landscape is important to ensure mule deer 

use of this winter range during varying weather conditions.  Because different habitat use 

patterns arose among study areas, it is important to understand these differences as habitat 

prioritization will vary for each winter range.   

Mule deer wintering and transitional ranges are located on or adjacent to private lands 

which have more potential for habitat loss (e.g., subdivisions) or degradation (e.g., livestock 

grazing, farming; Carpenter and Wallmo 1981, Mackie et al. 1982, Thomas and Irby 1991, 

Sawyer et al. 2005).  Winter ranges that lie within federal lands are also more prone to greater 
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threat of exploitation (e.g., oil and gas development, livestock grazing; Sawyer et al. 2006) than 

the less-accessible summer ranges.     

There are important considerations regarding where and how to implement habitat 

conservation or improvement projects, for instance, key factors in identifying important habitat 

in areas with suboptimal forage resources (e.g., Sink Creek) may be the abundance of quality 

thermal or hiding cover and low levels of disturbance along with presence of key forb species 

such as phlox.  Because these deer are already limited in their winter range, focus on transitional 

and summer ranges may better enable them to accumulate fat reserves prior to, or regain body 

condition more rapidly following, winter.  Depending on population size and objectives, deer in 

higher-quality winter ranges may not require specific habitat management, better enabling 

agencies to focus on more sensitive areas.   

Conversely, understanding which winter ranges provide suitable or less than suitable 

habitat for mule deer will aid in prioritizing land use.  For instance, energy development is 

becoming an increasing threat to mule deer winter ranges in the west.  Through direct habitat 

loss and increased disturbance, oil and gas development negatively impacts mule deer (Sawyer et 

al. 2006), yet increasing demands for energy put greater pressure on federal lands for these 

developments.  Landscape conservation strategies increasingly focus on areas where populations 

are more likely to persist in the long term (Margules and Pressey 2000).  If an oil well, or any 

other land use that will negatively impact mule deer is to be placed on a given winter range, 

managers will be able to triage winter ranges, potentially conserving the higher-quality winter 

range where deer are more likely to persist than on winter ranges where deer are sensitive to 

disturbance.  
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Table 1.  Parameter estimates for a logistic regression model describing the probability of female 

mule deer use of areas on the East Front, Montana, winter 2010—2011.   

 

Variable 

 

 

Coefficient 

 

S.E. 

 

P 

 

95% CI for coefficient 

Lower                   Upper 

 

Tree (% tree cover) 

 

0.478 

 

0.131 

 

<0.001 

 

0.222 

 

0.734 

Buffaloberry 0.665 0.284 0.019 0.108 1.22 

Exposure to wind 0.706 0.174 <0.001 0.365 1.04 

Wind speed (km/hr) -0.065 0.019 0.001 -0.102 -0.028 

Slope (%) 0.091 0.031 0.004 0.029 0.152 

Snow depth  (cm) -0.023 0.011 0.034 -0.045 -0.002 

Creeping juniper 0.451 0.105 <0.001 0.244 0.657 

Curly sedge -0.648 0.173 <0.001 -0.988 -0.309 

Prairie sagewort -0.553 0.195 0.005 -0.935 -0.170 

Whitemargin phlox 1.00 0.397 0.012 0.224 1.78 

Constant -1.22 0.421 0.004 -2.05 -0.397 
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Table 2.  Parameter estimates for a logistic regression model describing the probability of female 

mule deer use of areas within 3 days of snow accumulation on the East Front, Montana, winter 

2010—2011.   

 

Variable 

 

Coefficient 

 

S.E. 

 

P 

 

95% CI for coefficient 

Lower                   Upper 

 

Canopy cover (100% = open) 

 

-0.179 

 

0.084 

 

0.032 

 

-0.343 

 

-0.015 

Buffaloberry 2.33 0.679 0.001 0.995 3.66 

Wind speed (km/hr) -0.362 0.095 <0.001 -0.548 -0.177 

Creeping juniper 1.33 0.039 0.001 0.570 2.09 

Rough fesscue 0.976 0.210 <0.001 0.563 1.39 

Constant 18.0 8.35 0.031 1.66 34.4 
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Table 3.  Parameter estimates for a logistic regression model describing the probability of female 

mule deer use of areas during periods without snow accumulation on the East Front, Montana, 

winter 2010—2011.   

 

Variable 

 

 

Coefficient 

 

S.E. 

 

P 

 

95% CI for coefficient 

Lower                   Upper 

 

Limber pine 

 

0.628 

 

0.163 

 

<0.001 

 

0.307 

 

0.948 

Exposure to wind 0.662 0.223 0.003 0.225 1.10 

Wind speed (km/hr) -0.050 0.021 0.017 -0.091 -0.009 

Creeping juniper        0.393 0.118 0.001 0.161 0.625 

Prairie sagewort -0.551 0.230 0.017 -1.00 -0.100 

Constant -0.693 0.417 0.097 -1.51 0.124 
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Table 4.  Parameter estimates for a logistic regression model describing the probability of female 

mule deer use of areas during periods of high winds (e.g., daily average ≥ 5 m/s) on the East 

Front, Montana, winter 2010—2011. 

 

Variable 

 

 

Coefficient 

 

S.E. 

 

P 

 

95% CI for coefficient 

Lower                   Upper 

 

Tree  (% tree cover) 

 

0.856 

 

0.268 

 

0.001 

 

0.330 

 

1.38 

Snow depth  (cm) -0.058 0.030 0.052 -0.116 0.000 

Exposure to wind 0.928 0.371 0.012 0.201 1.66 

Wind speed (km/hr) -0.064 0.030 0.033 -0.123 -0.005 

Forage (% cover main browse spp.) 0.993 0.233 <0.001 0.537 1.45 

Prairie junegrass -0.655 0.290 0.024 -1.22 -0.087 

Constant -0.738 0.742 0.320 -2.19 0.717 
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Table 5.  Parameter estimates for a multinomial logistic regression model describing the 

probability of female mule deer use of areas and behavior (active, bedded) on the East Front, 

Montana, winter 2010—2011.   

 

Behavior 

 

Variable 

 

Coefficient 

 

S.E. 

 

P 

 

95% CI for coefficient  

Lower                   Upper 

 

Active 

 

Tree (% tree cover) 

 

0.271 

 

0.146 

 

0.063 

 

-0.015 

 

0.558 

 Buffaloberry 0.285 0.344 0.407 -0.388 0.958 

 Exposure to wind 0.639 0.187 0.001 0.272 1.01 

 Wind speed (km/hr) -0.056 0.020 0.005 -0.095 -0.017 

 Slope (%) 0.086 0.034 0.010 0.020 0.152 

 Snow depth (cm) -0.032 0.013 0.016 -0.058 -0.006 

 Creeping juniper 0.470 0.109 <0.001 0.258 0.683 

 Curly sedge -0.756 0.222 0.001 -1.19 -0.322 

 Prairie sagewort -0.462 0.202 0.022 -0.858 -0.066 

 Whitemargin phlox 0.848 0.412 0.021 0.140 1.76 

 Constant -1.40 0.455 0.002 -2.29 -0.508 
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Table 5. (continued) 

 

Behavior 

 

Variable 

 

Coefficient 

 

S.E. 

 

P 

 

95% CI for coefficient  

Lower                   Upper 

 

Bedded 

 

Tree  (% tree cover) 

 

0.775 

 

0.152 

 

<0.001 

 

0.476 

 

1.07 

 Buffaloberry 1.02 0.320 0.001 0.396 1.65 

 Exposure to wind 0.876 0.249 <0.001 0.388 1.36 

 Wind speed (km/hr) -0.109 0.035 0.002 -0.177 -0.040 

 Slope (%) 0.106 0.041 0.010 0.025 0.187 

 Snow depth (cm) -0.007 0.015 0.634 -0.036 0.022 

 Creeping juniper 0.357 0.150 0.017 0.063 0.650 

 Curly sedge -0.458 0.231 0.048 -0.911 0.005 

 Prairie sagewort -0.870 0.308 0.005 -1.47 -0.266 

 Whitemargin phlox 1.20 0.531 0.024 0.155 2.24 

 Constant -2.76 0.635 <0.001 -4.01 -1.52 
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Table 6.  Parameter estimates for a logistic regression model describing the probability of female 

mule deer use of areas for pooled Sink Creek and Warm Springs, Idaho, winter 2010—2011.   

 

Variable 

 

 

Coefficient 

 

S.E. 

 

P 

 

95% CI for coefficient 

Lower                   Upper 

 

 

Tall threetip sagebrush 

 

0.595 

 

0.345 

 

0.084 

 

-0.080 

 

1.27 

All phlox (% cover all Phlox spp.) 0.610 0.289 0.035 0.043 1.18 

Bitterroot 0.919 0.613 0.134 -0.282 2.12 

Constant -0.619 0.303 0.041 -1.21 -0.026 
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Table 7.  Parameter estimates for a logistic regression model describing the probability of deer 

use of areas during or within 3 days of snow accumulation for pooled Sink Creek and Warm 

Springs, Idaho, winter 2010—2011.   

 

Variable 

 

 

Coefficient 

 

S.E. 

 

P 

 

95% CI for coefficient 

Lower                   Upper 

 

 

Tall threetip sagebrush 

 

0.879 

 

0.481 

 

0.068 

 

-0.064 

 

1.82 

All forbs (% cover all forb spp.) 0.989 0.405 0.015 0.196 1.78 

Constant -1.67 0.789 0.035 -3.21 -0.121 
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Table 8.  Parameter estimates for a logistic regression model describing the probability of deer 

use of areas from Warm Springs, Idaho, winter 2010—2011.   

 

Variable 

 

 

Coefficient 

 

S.E. 

 

P 

 

95% CI for coefficient 

Lower                   Upper 

 

 

Wind speed (km/hr) 

 

0.140 

 

0.079 

 

0.073 

 

-0.013 

 

0.295 

Tall threetip sagebrush 1.09 0.482 0.024 0.147 2.03 

All forbs (% cover all forb spp.) 1.04 0.417 0.013 0.223 1.86 

Constant -2.80 0.977 0.004 -4.71 -0.890 
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Table 9.  Parameter estimates for a logistic regression model describing the probability of deer 

use of areas from Sink Creek, Idaho during, 2010—2011.   

 

Variable 

 

 

Coefficient 

 

S.E. 

 

P 

 

95% CI for coefficient 

Lower                   Upper 

 

 

Exposure 

 

-0.790 

 

0.490 

 

0.107 

 

-1.75 

 

0.171 

Mean hiding cover (5 = no cover) -1.51 0.483 0.071 -3.14 0.127 

Longleaf phlox 1.61 0.597 0.007 0.442 2.78 

Constant 6.52 3.42 0.057 -0.194 13.2 
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Figure 1.  East Front study area, Montana, 2011. 
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Figure 2.   Sink Creek study area, central Idaho, 2011. 
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Figure 3.  Warm Springs study area, east-central Idaho, 2011. 
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Figure 4.  Relationship between aspect and solar radiation (at each female mule deer use and  

random location), combined for the East Front, Sink Creek, and Warm Springs study areas. 
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