GEO 433.01: Global Tectonics

Rebecca Bendick
University of Montana - Missoula

Follow this and additional works at: https://scholarworks.umt.edu/syllabi
Let us know how access to this document benefits you.

Recommended Citation
Bendick, Rebecca, "GEO 433.01: Global Tectonics" (2013). Syllabi. 1252.
https://scholarworks.umt.edu/syllabi/1252

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
Geology 433: Global Tectonics
MWF 2:10-3:00
CHCB 304

Instructor
Rebecca Bendick, CHCB 331
Office hours, MWF 10-12, or by appointment
bendick@mso.umt.edu

Prerequisites
GEOS315 (Structure), M172 (Calculus I)

Texts

Schedule
26-30 August: Introduction; Overview of basic tectonics
READ: Chapters 3 & 4.1

2-6 September: Montana Tectonics: a case study of expression and implications
READ: handouts from the regional literature

7-8 September: field trip option 1

9-13 September: Earth’s condensation and differentiation: mechanical variation with depth (rigid plate approximation)
READ: Chapter 2.3-2.13

16-20 September: stress and strain in elastic media
READ: Supplemental readings

23-27 September: seismology
READ: Chapter 2.1-2.2 and supplemental readings

30 September: no class (DLS2)

2-4 October: gravity and flexure
READ: Chapter 2.11 and supplemental readings

5-6 October: field trip option 2

7-11 October: mantle convection and tectonic driving forces
READ: Chapter 12

14 October: review session

16 October: EXAM 1-individual

18 October: EXAM 1-group exercise

21-25 October: oceanic convergent boundaries
READ: Chapter 9

28 October-1 November: continental convergent boundaries
READ: Chapter 10

29 October – 2 November: oceanic divergent boundaries
READ: Chapter 6

4-8 November: continental divergent boundaries
READ: Chapter 7
11-15 November: transform boundaries
 READ: Chapters 4.2 and 8
18 November: review session
20 November: EXAM 2-individual
22 November: EXAM 2-group exercise
25 November: observing integrated tectonic processes: overview
2-6 December: tectonic information from structure and petrology
9-13 December: tectonic information from paleoseismology, geodesy, and geomorphology
 READ: supplemental

Grading and Requirements
Problem sets: Problem sets will be assigned each week, but for the most part, we will work on them together during Friday class meetings. Participation in these group efforts will be 33% of the problem set grade, the rest will be your final grade on turned-in work. The total problem set grade will constitute 25% of your final grade.

Classroom exams: Two exams will be administered during the semester. The first will test you on physical processes underlying tectonics; the second will test you on the characteristics of standard plate boundaries. Exams will always consist of short answer essay questions, sometimes with a mathematical component. I will always provide mathematical formulae with the exams. The mean of the classroom exams will constitute 25% of your grade.

Field trip and report: We will go on a two-day field trip. We will set the dates and location for the field trip based on student schedules and your particular interests, but it will be in September or early October. You are responsible for a field report after the field trip, which will contain data collected by you in the field, along with analysis of those data, interpretation of their meaning, and other supplemental information from the course material. Graduate students enrolled in the course are expected to include primary research in support of their interpretation in addition to the basic report requirements. This report will constitute 25% of your grade.

Final exam: The final exam will be administered at the standard final time. It will include short questions including all of the class content, with an emphasis on practical problems and case studies. The final will constitute 25% of your grade.

Graduate vs. undergraduate students
Because this is an UG class, the members of the class have different academic backgrounds and levels of prior training. Graduate and undergraduate work will be graded and scaled separately. I expect more thorough and advanced work from graduate students, although students of any level may work together on collaborative assignments.

All students must practice academic honesty. Academic misconduct is subject to an academic penalty by the course instructor and/or a disciplinary sanction by the University.
All students need to be familiar with the Student Conduct Code. The Code is available for review online at http://www.umt.edu/SA/VPSA/index.cfm/page/1321.