Analysis of prehistoric archaeological features on the Fort Peck Indian Reservation

Brooke M. Simpson

The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation

https://scholarworks.umt.edu/etd/1539

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports.

Please check "Yes" or "No" and provide signature

Yes, I grant permission

No, I do not grant permission

Author's Signature: Brooke M. Simpson

Date: May 20, 2001

Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent.
An Analysis of Prehistoric Archaeological Features on the Fort Peck Indian Reservation

by

Brooke M. Simpson

B.A. Radford University, 1997
B.A. Radford University, 1997

Presented in partial fulfillment of the requirements

For the degree of

Master of Anthropology

The University of Montana

May 2001

Approved by

Chairman, Board of Examiners

Dean, Graduate School

Date
Acknowledgments

I have to thank my committee members for their wonderful advice and their expertise. Without Tom’s patience and wisdom this would have been a much more painful process! Additionally, Bill and Eric’s advice and comments have greatly helped this long process as well, and are enormously appreciated.

Thank you to Stan Wilmoth for this wonderful opportunity to assist the State Historic Preservation Office in meeting their goals of this grant agreement, and his guidance and help.

Paige, thank you for making this experience so much more fun and giving me that kick in the pants when needed! I know graduate school would have not been the same without you! Thanks!

Finally, to my family… you have always been a source of encouragement, love, and support, and that has meant more than you will ever know. Thank you for always having faith in me, even when I doubted myself. I would not be where I am today without you, Mom, Dad, and Craig. And Stephen, thank you for loving me, helping me keep my eye on the ball, and reminding me to focus on the outcome.
Preface

Fort Peck Indian Reservation

The written history of the Fort Peck Indian Reservation area began when the Lewis and Clark Expedition passed through, which was approximately during 1805 (Missouri River Basin Investigations Project 1970).

In 1851, a meeting involving tribes from the Montana and Dakota Territories and the United States government was held at Fort Laramie, Wyoming, which resulted in a treaty. The United States government hoped to accomplish two things with this meeting; the first was to establish fixed boundaries for the Natives, and the second was to encourage peace among the tribes. The tribes desire to be independent and not rely on Europeans resulted in them ceding 20 million acres of land in these territories to the government and 2 million acres retained by the Sioux and Assiniboine Tribes of Fort Peck (Shields 1998; Choong 1992).

The Fort Laramie treaty was the first of many that would eventually establish the Fort Peck Indian Reservation on the Poplar River. A treaty signed October 17, 1855, with the Assiniboine, Blackfeet, and Atsina, established hunting and fishing rights from the Milk River to present-day Havre, MT. In 1868 the Milk River Agency was established for the Atsina; in 1873 the name was changed to the Fort Peck Agency and it was moved to the mouth of Poplar River, while the southern boundary of the reservation was the Missouri River (Choong 1992).
The Fort Peck Trading Post began construction in 1867, and was named after Col. Campbell Peck, a partner of the firm Durfee and Peck, which was building the trading post. Ft. Peck served as a trading post from 1867-1871 (Shane 1974).

In 1869, Sitting Bull and 1,116 Hunkpapa were settled along the Missouri River, and another 2,500 tribal members were settled along the Milk River; this same year smallpox broke out among the upper Assiniboine, who lived west of the Milk River. Because of the disease, Chief Red Stone and his people moved to the mouth of Milk River, joining the Yankton, Yanktonai, Santee, and Cuthead Sioux. Chief Whirlwind and his people stayed on the middle Milk River, dividing the Assiniboine into two groups. This split became permanent by June 1870, when Chief Red Stone and Sioux leaders requested the US government to establish a separate agency from Milk River (Fort Peck Community College 1999).

In 1871, an Indian Agency was established at Fort Peck, to serve the Lower Assiniboine and several of the Sioux bands. This agency was constructed within the stockade at Ft. Peck, which now lies under water behind the Fort Peck Dam. In 1877, the agency was moved to its current location in Poplar, MT, along Poplar Creek, due to flooding and lack of agricultural land at the original location (Ness n.d. and Fort Peck Community College 1999).

In February of 1887, chiefs of the Pikuni Blackfeet, Gros Ventre, Upper and Lower Assiniboine and the Sioux tribes met with the American commissioners to seek relief from the vanishing buffalo and political pressure from cattle and railroad companies. This meeting resulted in the signing of an agreement that surrendered the
Natives’ claims to approximately 17 ½ million acres, in return accepting smaller reservations. This agreement established the Blackfeet, Fort Belknap, and Fort Peck Reservations. The following year, congress ratified this agreement and created Fort Peck Indian Reservation and its present boundaries, which covers 2,093,318 acres of prairie land between Big Muddy and Porcupine creeks, north of the Missouri River in northeast Montana (See Illustration 1) (Fort Peck Community College 1999).

The study area occupies land in four counties: Valley County, Daniels County, Sheridan County, and Roosevelt County. The topography varies from the Missouri River bottom of deciduous trees to irrigated farmland, with elevations varying from 1,900 feet to 3,100 feet (Ness n.d.; Missouri River Basin Investigations Project 1970; and Shields 1992).

Land Ownership

In 1887 Congress passed the General Allotment Act, or the Dawes Act. This policy gave the President the right to take any reservation with valuable agricultural and/or grazing land, survey this land, and then allot parcels to individual Indians of that reservation. By doing so, the government was recognizing the Native Americans as individuals, not in their tribal character. This act brought much change to the reservations, and also allowed for reservation land to be acquired by whites. If it was determined by the President that it was in the reservation’s best interest, the Secretary of the Interior was to discuss with the reservation the purchase of unallotted land (Lopach, et al. 1990 and Washburn 1973).
This act had a strong influence on the Fort Peck Indian Reservation. Between 1908 and 1928 individual Indians received allotted land on the reservation. In 1911, land not allotted was opened to non-Indians for homesteading (United States Bureau of Indian Affairs 1960). In 1990 it was estimated that more than half the land on the reservation was non-Indian owned. Fort Peck Indian Reservation has the largest amount of white ownership of land of any of Montana's seven reservations (Lopach, et al. 1990).
State of Montana Cultural Properties GIS: Reservations In Montana

Illustration 1
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>iii</td>
</tr>
<tr>
<td>Fort Peck Indian Reservation</td>
<td>iii</td>
</tr>
<tr>
<td>Land Ownership</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>viii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Illustrations</td>
<td>xiii</td>
</tr>
<tr>
<td>Chapter One</td>
<td>1</td>
</tr>
<tr>
<td>Introduction: Goals and Contributions</td>
<td>1</td>
</tr>
<tr>
<td>Chapter Two</td>
<td>3</td>
</tr>
<tr>
<td>Methods of Accomplishment</td>
<td>3</td>
</tr>
<tr>
<td>Chapter Three</td>
<td>6</td>
</tr>
<tr>
<td>Analysis of Data</td>
<td>6</td>
</tr>
<tr>
<td>Features and Their Relationships</td>
<td>7</td>
</tr>
<tr>
<td>Chapter Four</td>
<td>53</td>
</tr>
<tr>
<td>Conclusions</td>
<td>53</td>
</tr>
<tr>
<td>Suggestions for Future Research/Work</td>
<td>56</td>
</tr>
<tr>
<td>Appendix A</td>
<td>58</td>
</tr>
<tr>
<td>Prehistoric Site Information</td>
<td>59</td>
</tr>
<tr>
<td>Appendix B</td>
<td>67</td>
</tr>
<tr>
<td>Maps</td>
<td>68</td>
</tr>
<tr>
<td>Appendix C</td>
<td>71</td>
</tr>
<tr>
<td>Cultural Resource Annotated Bibliography System</td>
<td>72</td>
</tr>
<tr>
<td>Bibliography</td>
<td>103</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1
Tipi Rings and Tools
8

Table 2
Tipi Rings and Hearths
9

Table 3
Tipi Rings and Fauna
10

Table 4
Tipi Rings and Cairns
11

Table 5
Tipi Rings and Lithics
12

Table 6
Tipi Rings and Fire Crack Rock
13

Table 7
Tipi Rings and Human Bone
14

Table 8
Tipi Rings and Bison Jumps
15

Table 9
Tipi Rings and Rock Art
16

Table 10
Tools and Hearths
17

Table 11
Tools and Fauna
18

Table 12
Tools and Cairns
19

Table 13
Tools and Lithics
20

Table 14
Tools and Fire Crack Rock
21
<table>
<thead>
<tr>
<th>Table 15</th>
<th>Tools and Human Bone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 16</td>
<td>Tools and Bison Jumps</td>
</tr>
<tr>
<td>Table 17</td>
<td>Tools and Rock Art</td>
</tr>
<tr>
<td>Table 18</td>
<td>Cairns and Lithics</td>
</tr>
<tr>
<td>Table 19</td>
<td>Cairns and Fire Crack Rock</td>
</tr>
<tr>
<td>Table 20</td>
<td>Cairns and Human Bone</td>
</tr>
<tr>
<td>Table 21</td>
<td>Cairns and Bison Jumps</td>
</tr>
<tr>
<td>Table 22</td>
<td>Cairns and Rock Art</td>
</tr>
<tr>
<td>Table 23</td>
<td>Lithics and Fire Crack Rock</td>
</tr>
<tr>
<td>Table 24</td>
<td>Lithics and Human Bone</td>
</tr>
<tr>
<td>Table 25</td>
<td>Lithics and Bison Jumps</td>
</tr>
<tr>
<td>Table 26</td>
<td>Lithics and Rock Art</td>
</tr>
<tr>
<td>Table 27</td>
<td>Hearths and Fauna</td>
</tr>
<tr>
<td>Table 28</td>
<td>Hearths and Cairns</td>
</tr>
<tr>
<td>Table 29</td>
<td>Hearths and Lithics</td>
</tr>
</tbody>
</table>
Table 30
Hearths and Fire Crack Rock

Table 31
Hearths and Human Bone

Table 32
Hearths and Bison Jumps

Table 33
Hearths and Rock Art

Table 34
Fauna and Cairns

Table 35
Fauna and Lithics

Table 36
Fauna and Fire Crack Rock

Table 37
Fauna and Human Bone

Table 38
Fauna and Bison Jumps

Table 39
Fauna and Rock Art

Table 40
Human Bone and Bison Jumps

Table 41
Human Bone and Rock Art

Table 42
Fire Crack Rock and Human Bone

Table 43
Fire Crack Rock and Bison Jumps

Table 44
Fire Crack Rock and Rock Art
Table 45 52
Bison Jumps and Rock Art

Table 46 55
Statistically Significant Relationships

Table 47 58
Prehistoric Site Information
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Illustration 1: Reservations in Montana</th>
<th>vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B: Maps</td>
<td></td>
</tr>
<tr>
<td>Illustration 2: Prehistoric Site Locations</td>
<td>68</td>
</tr>
<tr>
<td>Illustration 3: Prehistoric Sites In Association To Water</td>
<td>69</td>
</tr>
<tr>
<td>Illustration 4: Prehistoric and Historic Sites in Association To Highways</td>
<td>80</td>
</tr>
</tbody>
</table>
Chapter One

Introduction: Goals and Contributions

The goals of my project were straightforward. I proposed to help Stan Wilmoth, State Archaeologist at the Montana State Historic Preservation Office (SHPO), complete a grant agreement between the Montana SHPO and Montana Area Office, Bureau of Reclamation.

The portions of the cooperative agreement that concern this project state that SHPO will research the locale of cultural records that would be meaningful to Fort Peck Tribes (Andrews and Wilmoth 1999). As a portion of the larger project, I focused on the prehistoric cultural resources and the land that had been surveyed on the reservation. The records were collected and sites were marked on 7.5-minute USGS maps to create a baseline database of prehistoric site locations and locations of land on the reservation that have been surveyed.

My goals directly coincide with the needs of the Montana SHPO’s larger project. I proposed to gather all the prehistoric archaeology site forms and survey reports that are related to Fort Peck tribal land, then I would map the known prehistoric sites and archaeologically surveyed locations and/or boundaries on 7.5-minute USGS maps. I would then describe each site type using a set of features; these features were those known to be commonly found at sites. I then sought support for site types using statistical associations between features.

I also transferred the legal locations of sites from the SHPO database into the computer program ArcView and used this to plot the locations of the sites on digital 7.5-
min. topographic maps, downloaded from the internet. This proved beneficial because I was able to create printable maps of the Fort Peck Indian Reservation showing where prehistoric sites are found, thus providing insights into why the known sites are located where they are found. For example, a high frequency of sites located near waterways and roads could be based on compliance to laws requiring archaeological clearance surveys/inventories in areas of development. The maps also serve as a quick reference for location of sites on the reservation for projects of development. These maps will prove useful to the reservation as a management tool for the sites, compliance, and future projects.
Chapter Two

Methods of Accomplishments

I searched through the SHPO database in order to identify all of the sites that had been registered. First, I searched the Cultural Resource Information Systems (CRIS) to identify the legal locations and site types in September 1999. Based on the boundaries of the reservation, I searched the legal locations between townships 26-33 N and ranges 39-55 E. This outlined a block that included the entire reservation. CRIS produced a printout of all known sites within these legal locations. Using this printout I examined each relevant site form, located in the Department of Anthropology at the University of Montana. Photocopies of the site forms describing prehistoric features were made. They were arranged by Smithsonian site numbers and placed into two blue-ring binders. The sites were then marked on 7.5-minute USGS topographic maps, provided by the MT SHPO, using their assigned Smithsonian number as a label.

Based on the site forms, I built a table noting the presence or absence of relevant features (see Appendix A, Table 47). The table contains one row per site. The site number and its legal location, with township, range, section, and quarter section, describe each site. Because this locational information is considered confidential, the table in Appendix A does not include the legal locations of these sites. The table then lists the ten most common types of archaeological features found on the reservation: tipi ring(s), cairn(s), fauna bone, hearth(s), lithics, tools, fire crack rock (FCR), human bone, bison jump, and rock art. Based on what the site form said, a 0 means the feature is not
represented at this site, or a 1 means that one or more of these features are present at this site.

The table was then exported to a statistical program, Statistical Package for Social Sciences (SPSS). I then calculated frequencies of features and cross tabulations of pairs of features. Using this information I was able to determine how many sites had a certain feature present and what features were associated with other features. I used the Pearson Chi-Squared test to determine the significance of associations. The Pearson Chi-Squared test is used to determine if the data provided demonstrates significant associations between two variables (Fletcher and Lock 1994). Since I used a 2x2 table, with one degree of freedom and a .05 significance level, if the value produced from the Pearson Chi-Squared test was greater than 3.84, the relationship of the two features was considered significant. If the number was less than or equal to 3.84, I concluded that the two features compared were not significantly associated. I did not use Chi-Square to analyze tables with extremely low expected frequencies.

Next, I gathered all the reports in the SHPO database that pertained to archaeological surveys on the land of Fort Peck. This search was done using SHPO's database, Cultural Resource Annotated Bibliography System (CRABS) in February 2000. Using CRABS I searched the same legal locations as in CRIS. I printed out the results and located the corresponding reports. The CRABS reports are located at the Montana State Historic Preservation Office, in Helena, Montana. The reports were photocopied and organized based on their unique CRABS number associated to the federal agency and placed in seven black binders. To map the boundaries of surveyed areas, a unique
sequential number was assigned to each report, located on the bottom right side of the
first page of each report. For example, the first report in the black binder series is 1; the
next is 2... and so on. Therefore, when the first survey report’s boundary was located on
the proper USGS map, it was designated with a number 1.

It must be noted, one source of error is that not all site locations and survey
boundaries could be marked on the 7.5-minute quads. Unfortunately, some of the
information provided in site forms and reports were too vague to definitively relocate
certain sites or survey areas on quads. Sometimes legal locations were not provided.
Other times, photocopied maps were of poor quality and indeterminate scales, or the
forms often had no map at all, making it not possible to relocate the sites on quads.
Finally, both the blue and black binders have been turned over to SHPO, to aid in the
preparations of their larger project in the Grant Agreement; eventually, the binders will
be presented to the Fort Peck Tribes.

As mentioned before, I was able to extract the legal data of the site locations from
the SHPO database and export them into the computer program ArcView using SHPO’s
computer. Once this was done I downloaded the appropriate digitized USGS waterway
and highway features that lie within the reservation boundaries from the Montana Natural
Resource Information System website. These digital features were then added to
ArcView as themes. By overlaying these themes in ArcView with the site feature
locations, I was able to get a better understanding of the distribution of known sites near
water and highways.
Chapter Three

Analysis of Data

I found 399 survey reports. Based on these reports I determined that approximately 23,950 acres have been archaeologically surveyed. Since the Fort Peck Indian Reservation encompasses over two million acres of land, only approximately 1.2% of the reservation has been surveyed.

There are 232 prehistoric sites recorded, and with these 232 sites, ten types of features and/or artifacts were observed:

- **Tipi Rings**: 161 of the total sites, or 69.4% have tipi rings. 71 of the total sites, or 30.6% don’t have tipi rings.
- **Cairns**: 64 of the total sites, or 27.6 have cairns. 168 of the total sites, or 72.4% don’t have cairns.
- **Fauna**: 6 of the total sites, or 2.6% have fauna. 226 of the total sites, or 97.4% don’t have fauna.
- **Hearths**: 8 of the total sites, or 3.4% have hearths. 224 of the total sites, or 96.6% don’t have hearths.
- **Lithics**: 95 of the total sites, or 40.9% have lithics. 137 of the total sites, or 59.1% don’t have lithics.
- **Tools**: 18 of the total sites, or 7.8% have tools. 214 of the total sites, or 92.2% don’t have tools.
- **Fire Crack**: 24 of the total sites, or 10.3% have FCR. 208 of the total sites, or 89.7% don’t have FCR.
- **Rock (FCR)**: 208 of the total sites, or 89.7% don’t have FCR.
- **Human Bone**: 2 of the total, or 0.9% have human bone. 230 of the total sites, or 99.1% don’t have human bone.
- **Bison Jump**: 1 of the total sites, or 0.4% have a bison jump site. 231 of the total sites, or 99.6% don’t have bison jumps.
Rock Art 1 of the total sites, or 0.4% have a rock art feature.
231 of the total sites, or 99.6% don’t have rock art.

Features and Their Relationships

Data presented in Appendix A (site numbers and features) were transferred into the SPSS program. These data were used to calculate how many occurrences each pair of features had, and the program calculated the Pearson Chi-Squared value for the two features. As stated before, if the value produced from the Pearson Chi-Squared test was greater than 3.84, the two features were considered to have a significant association. If the number was equal to, or less than 3.84, it was determined that the two features compared were not considered to have a significant associated to one another. Note that features listed as present at a site can have one or more of the features present.

Following is my table by table analysis of the 45 comparisons.
Table 1. Frequencies of sites cross classified by the presence of tipi rings and the presence of tools.

The calculated chi-square of .645 for 1 degree of freedom and alpha equal to .05 does not support the reality of association between tipi rings and tools. A simple comparison of expected to observed frequencies suggests that the presence or absence of one appears to be distributed randomly with respect to the other. Sampling fluctuation is adequate to explain the differences between what was observed and what was expected. This could be explained by the rationalization that a tipi ring is associated with living space, a place to sleep, and tools are used for functions, such as hunting or processing food; which is not classically done in your living quarters. Therefore, there is no predictable relationship between tipi rings and tools.

91% of sites with tipi rings lacked tools.
6% of sites without tipi rings lacked tools.
Table 2. Frequencies of sites cross classified by the presence of tipi rings and the presence of hearths.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that you will most likely find an association of tipi rings and hearths; as expected in a random world, 3/4 of the hearth sites have tipi rings. However, the significance of this remains to be tested with a larger sample.
Table 3. Frequencies of sites cross classified by the presence of tipi rings and the presence of fauna.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that fauna and tipi rings have a 50/50 chance of being found together; half of the fauna sites have tipi rings. However, the significance of this remains to be tested with a larger sample.
Table 4. Frequencies of sites cross classified by the presence of tipi rings and the presence of cairns.

The calculated chi-square of 13.24 for 1 degree of freedom and alpha equal to .05 supports the reality of association of cairns and tipi rings. A simple comparison of expected to observed frequencies suggests that more sites have tipi rings and lack cairns than would be expected in a random world. Additionally, more sites have cairns and lack tipi rings than would be expected in a random world. Since sampling fluctuation is inadequate to explain data, we can infer that the presence of one feature predicts the absence of the other. This could be explained by the use of cairns that have nothing to do with habitation activities that are generally associated to tipi rings. A cairn usually marks a route, like the way to camp, where tipi rings are, or a cairn can mark a trail to hunting; not near a camp.

Conclusion: 80% of the sites with tipi rings lacked cairns. 52% of the sites with cairns also had tipi rings.
Table 5. Frequencies of sites cross classified by the presence of tipi rings and the presence of lithics.

<table>
<thead>
<tr>
<th>Tipi Rings</th>
<th>Lithics</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>53</td>
<td>108</td>
<td>161</td>
</tr>
<tr>
<td></td>
<td>[65.9]</td>
<td>[95.1]</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>42</td>
<td>29</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>[29.1]</td>
<td>[41.9]</td>
<td></td>
</tr>
</tbody>
</table>

The calculated chi-square of 14.03 for 1 degree of freedom and alpha equal to .05 supports the reality of association of lithics and tipi rings. A simple comparison of expected to observed frequencies suggests that more sites have tipi rings and lack lithics than would be expected in a random world. Additionally, more sites have lithics and lack tipi rings than would be expected in a random world. Since sampling fluctuation is inadequate to explain data, we can infer that the presence of one feature predicts the absence of the other. This could be explained by tipi rings and lithics having a compatible, but indirect relationship to one another. Raw lithics could be worked in tipi rings, however lithics could also be randomly processed into tools at the location they are collected.

Conclusion: 67% of the sites with tipi rings lacked lithics. 56% of the sites with lithics also had tipi rings.
Table 6. Frequencies of sites cross classified by the presence of tipi rings and the presence of FCR.

The calculated chi-square of 16.40 for 1 degree of freedom and alpha equal to .05 supports the reality of association of FCR and tipi rings. A simple comparison of expected to observed frequencies suggests that more sites have tipi rings and lack FCR than would be expected in a random world. Additionally, more sites have FCR and lack tipi rings than would be expected in a random world. Since sampling fluctuation is inadequate to explain data, we can infer that the presence of one feature predicts the absence of the other. This could be explained by tipi rings and FCR being associated to fire pits in habitation camps, however FCR could also be part of a food processing area away from a camp.

Conclusion: 95% of the sites with tipi rings lacked FCR. 33% of the sites with FCR also had tipi rings.
Table 7. Frequencies of sites cross classified by the presence of tipi rings and the presence of human bone.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that human bone and tipi rings will not be found together; the expected and actual number of the features found together are low. However, the significance of this remains to be tested with a larger sample.
Table 8. Frequencies of sites cross classified by the presence of tipi rings and the presence of bison jumps.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that bison jumps and tipi rings might be found together. The one bison jump found was associated with tipi rings. However, the significance of this remains to be tested with a larger sample.
Table 9. Frequencies of sites cross classified by the presence of tipi rings and the presence of rock art.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that rock art and tipi rings will not be found together. The one rock art site found was not associated with tipi rings. However, the significance of this remains to be tested with a larger sample.
Table 10. Frequencies of sites cross classified by the presence of tools and the presence of hearths.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that hearths and tools may not be found together; the two features found together are low in both the random and actual worlds. However, the significance of this remains to be tested with a larger sample.
Table 11. Frequencies of sites cross classified by the tools and the presence of fauna.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that fauna and tools may be found together; half the fauna sites have tools associated with them. However, the significance of this remains to be tested with a larger sample.
Table 12. Frequencies of sites cross classified by the presence of tools and the presence of cairns.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that cairns and tools may not be found together; there is a lower expectation for a combination of the two features in the real world than what was expected in a random world. However, the significance of this remains to be tested with a larger sample.
Table 13. Frequencies of sites cross classified by the presence of tools and the presence of lithics.

The calculated chi-square of 7.89 for 1 degree of freedom and alpha equal to .05 supports the reality of association of Tools and Lithics. A simple comparison of expected to observed frequencies suggests that more sites have a combination of tools and lithics than expected in a random world. Additionally, not as many sites have just tools and just lithics as expected in a random world. Since sampling fluctuation is inadequate to explain the data, we can infer that the presence of one features does predict the other. This could be explained because tools are generally made out of lithics. One could have a site where tools were made where the lithic material was gathered and they could have made the tools on-site, or sharpened tools, creating lithic debris. However, because one finds tools or lithics, does not necessarily mean one must have the other.

Conclusion: 28% of the sites with tools lacked lithics. 14% of the sites with lithics also had tools.
Table 14. Frequencies of sites cross classified by the presence of tools and the presence of FCR.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that FCR and tools may or may not be found together; while the actual number of sites with both features is more than what was expected in a random world, it still remains that there is no predictable relationship between the two features. However, the significance of this remains to be tested with a larger sample.
Table 15. Frequencies of sites cross classified by the presence of tools and the presence of human bone.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that human bone and tools may not be found together; the two human bone sites had no tools associated with them. However, the significance of this remains to be tested with a larger sample.
Table 16. Frequencies of sites cross classified by the presence of tools and the presence of bison jumps.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that bison jumps and tools may be found together; the one bison jump has tools associated with it. However, the significance of this remains to be tested with a larger sample.
Table 17. Frequencies of sites cross classified by the presence of tools and the presence of rock art.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that rock art and tools may not be found together; the one rock art site had no tools. However, the significance of this remains to be tested with a larger sample.
Table 18. Frequencies of sites cross classified by the presence of cairns and the presence of lithics.

The calculated chi-square of .130 for 1 degree of freedom and alpha equal to .05 does not support the reality of association between Cairns and Lithics. A simple comparison of expected to observed frequencies suggests that the presence or absence of one appears to be distributed randomly with respect to the other. Sampling fluctuation is adequate to explain the differences between what was observed and what was expected. This could be explained by the fact that there is no known direct link between these two features. Sites that have both features observed could be a random coincidence. Lithics are used for the purpose of making tools for hunting, or processing food, while cairns mark roads or trails. An explanation for the two features being associated would be the carrying of lithics on a cairn marked trail or road to indulge in an activity that requires the need for lithic material, or camping near a carin marked trail, or carins used to make a camp site. However, there is no predictable relationship between the presence of lithics and cairns.

61% of sites with cairns lacked lithics.
58% of sites without cairns lacked lithics.
The calculated chi-square of 3.050 for 1 degree of freedom and alpha equal to .05 does not support the reality of association between Cairns and FCR. A simple comparison of expected to observed frequencies suggests that the presence or absence of one appears to be distributed randomly with respect to the other. Sampling fluctuation is adequate to explain the differences between what was observed and what was expected. This could be explained by the fact that there is no known direct link between cairns and FCR; cairns and FCR have two separate activity uses. A camp may have been set up near a trail or road, explaining a site having both features present, however, there is no predictable relationship between the presence of cairns and FCR.

95% of sites with cairns lacked FCR.
88% of sites without cairns lacked FCR.
Table 20. Frequencies of sites cross classified by the presence of cairns and the presence of human bone.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that human bone and cairns may not be found together, since there were no sites containing both features. However, the significance of this remains to be tested with a larger sample.
Table 21. Frequencies of sites cross classified by the presence of cairns and the presence of bison jumps.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that bison jumps and cairns may be found together. The one site that had a bison jump also had cairn features; often cairns were used to mark both sides of the path leading to the ledge bison were to jump off. However, the significance of this remains to be tested with a larger sample.
Table 22. Frequencies of sites cross classified by the presence of cairns and the presence of rock art.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that rock art and cairns may not be found together; the one rock art site did not have cairns. However, the significance of this remains to be tested with a larger sample.
The calculated chi-square of 19.89 for 1 degree of freedom and alpha equal to .05 supports the reality of association of Lithics and FCR. A simple comparison of expected to observed frequencies suggests that more sites having both lithics and FCR were present than expected in a random world. Additionally, less sites having just lithics than would be expected, as well as less sites had FCR than would be expected in a random world. Since sampling fluctuation is inadequate to explain the data, we can infer that the presence of one feature does predict the other. This could be explained by lithics being processed in camp by a fire that produces FCR. Lithics could be worked near a fire for warmth, and light, or debitage could be tossed into the fire area knowing individuals are not likely to walk through an area that a fire is usually set, therefore reducing injuries from the sharp lithic material.

Conclusion: 79% of the sites with lithics lacked FCR. Only 17% of the sites with FCR lacked lithics.
Table 24. Frequencies of sites cross classified by the presence if lithics and the presence of human bone.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that human bone and cairns have a 50/50 chance of being found together. However, the significance of this remains to be tested with a larger sample.
Table 25. Frequencies of sites cross classified by the presence of lithics and the presence of bison jumps.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>231</th>
<th>232</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>1</td>
<td>94</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>[0.4]</td>
<td>[94.6]</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0</td>
<td>137</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>[0.6]</td>
<td>[136.4]</td>
<td></td>
</tr>
</tbody>
</table>

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that bison jumps and lithics may be found together; the one site with a bison jump is associated with lithics. However, the significance of this remains to be tested with a larger sample.
Table 26. Frequencies of sites cross classified by the presence if lithics and the presence of rock art.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that rock art and lithics may not be found together; the one rock art site has no lithics associated with it. However, the significance of this remains to be tested with a larger sample.
Table 27. Frequencies of sites cross classified by the presence of hearths and the presence of fauna.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that fauna and hearths a 50/50 chance of being found together; of the 6 known fauna sites, half had hearths present, although the expected number of just hearth and just fauna sites are less than expected in a random world. However, the significance of this remains to be tested with a larger sample.
Table 28. Frequencies of sites cross classified by the presence of hearths and the presence of cairns.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that cairns and hearths may not be found together; the expected and actual numbers of the features found together are low. However, the significance of this remains to be tested with a larger sample.
Table 29. Frequencies of sites cross classified by the presence of hearths and the presence of lithics.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that lithics and hearths may not be found together; the expected and actual numbers of the features found together are low. However, the significance of this remains to be tested with a larger sample.
Table 30. Frequencies of sites cross classified by the presence of hearths and the presence of FCR,

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that FCR and hearths may not be found together; the expected and actual numbers of the features found together are low. However, the significance of this remains to be tested with a larger sample.
Table 31. Frequencies of sites cross classified by the presence of hearths and human bone.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that human bone and hearths have a 50/50 chance of being found together; of the two human bone sites, one had a hearth associated with it. However, the significance of this remains to be tested with a larger sample.
Table 32. Frequencies of sites cross classified by the presence of hearths and the presence of bison jumps.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that bison jumps and hearths may not be found together; the expected and actual sites found with individual and shared features are exactly the same. However, the significance of this remains to be tested with a larger sample.
Table 33. Frequencies of sites cross classified by the presence of hearths and the presence of rock art.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that rock art and hearths may not be found together; the expected and actual sites found with individual and shared features are exactly the same. However, the significance of this remains to be tested with a larger sample.
Table 34. Frequencies of sites cross classified by the presence of fauna and the presence of cairns.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that cairns and fauna may not be found together; the expected and actual sites found with individual and shared features are very close. However, the significance of this remains to be tested with a larger sample.
Table 35. Frequencies of sites cross classified by the presence of fauna and the presence of lithics.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that lithics and fauna may be found together, the actual number of sites with both features is more than the expected in a random world and all the fauna sites had lithics present. However, the significance of this remains to be tested with a larger sample.
Table 36. Frequencies of sites cross classified by the presence of fauna and the presence of FCR.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that FCR and fauna may be found together, the actual number of sites with both features is more than the expected in a random world and half of the fauna sites had FCR present. However, the significance of this remains to be tested with a larger sample.
Table 37. Frequencies of sites cross classified by the presence of fauna and the presence of human bone.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that human bone and fauna have a 50/50 chance of being found together; of the two human bone sites, one had fauna associated with it. However, the significance of this remains to be tested with a larger sample.
Table 38. Frequencies of sites cross classified by the presence of fauna and the presence of bison jumps.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggest that human bone and fauna may not be found together; the number of actual sites found with just fauna and just bison jump and a combination of the features are exactly the same as one would expect in a random world and the one bison jump site did not have fauna. However, the significance of this remains to be tested with a larger sample.
Table 39. Frequencies of sites cross classified by the presence of fauna and the presence of rock art.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggest that rock art and fauna may not be found together; the number of actual sites found with just fauna and just rock art and a combination of the features are exactly the same as one would expect in a random world and the one rock art site did not have fauna. However, the significance of this remains to be tested with a larger sample.
Table 40. Frequencies of sites cross classified by the presence of human bone and the presence of bison jumps.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggest that bison jumps and human bone may not be found together; the number of actual sites found with just human bone and just rock art and a combination of the features are exactly as one would expect in a random world and the one bison jump did not have human bone. However, the significance of this remains to be tested with a larger sample.
Table 41. Frequencies of sites cross classified by the presence of human bone and the presence of rock art.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggest that rock art and human bone may not be found together; the number of actual sites found with just human bone and just rock art and a combination of the features are exactly as one would expect in a random world and the one rock art feature had no human bone. However, the significance of this remains to be tested with a larger sample.
Table 42. Frequencies of sites cross classified by the presence of FCR and the presence of human bone.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that human bone and FCR have a 50/50 chance of being found together; of the two human bone sites, one had FCR associated with it. However, the significance of this remains to be tested with a larger sample.
Table 43. Frequencies of sites cross classified by the presence of FCR and the presence of bison jumps.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that bison jumps and FCR may not be found together; the one bison jump found had no FCR associated with it. However, the significance of this remains to be tested with a larger sample.
Table 44. Frequencies of sites cross classified by the presence of FCR and the presence of rock art.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggests that FCR and rock art may not be found together; the one site with rock art was not associated with FCR. However, the significance of this remains to be tested with a larger sample.
Table 45. Frequencies of sites cross classified by the presence of a bison jump and the presence of rock art.

Chi-square was not calculated for this table since it contained expected values less than 5 under a hypothesis of independence. A comparison of the observed and expected frequencies suggest that rock art and bison jumps may not be found together; the number of actual sites found with just bison jumps and just rock art and a combination of the features are exactly the same as one would expect in a random world. However, the significance of this remains to be tested with a larger sample.
Chapter Four

Conclusion

The Pearson Chi-Squared values show several features have an association. Table 46 summarizes the relationships between features based on the chi-squared values stated in the previous chapter with expected values more than 5 under a hypothesis of independence. The following features comparisons are statistically significant relationships based on their observed and expected values.

Tipi ring features are the most common feature found on the Fort Peck Indian Reservation (located 161 sites out of the total 232 sites with this feature). There were more observed tipi ring features without cairns than expected in a random world. Additionally, there were more observed cairn features without tipi rings than expected in a random world. This could be explained by the two separate functions, or uses, of these features. A tipi ring is used as habitation, while cairns mark routes or are used as monuments; not necessarily related to habitation sites.

There are more observed tipi ring features without lithics than expected in a random world. There are also more observed lithic features without tipi rings than expected in a random world. This could also be explained by the differing uses of these features; tipi rings are used in habitation, while lithics are produced from the need of making tools for activities, such as hunting, or processing food- which may or may not take place in habitation areas.

There are more observed tipi ring features without FCR than expected in a random world. Additionally, there are more observed FCR features without tipi rings
than expected in a random world. This could be explained by fires creating FCR not always being in a habitation area, such as a camp with tipi ring features.

There are four features that were observed as having both features shared more than expected in a random world. There are more observed tools with observed lithics than expected in a random world. This could be explained by tools being created from lithic material, and what the site recorder observed as “lithics” (may be flakes, cores, debitage) were by-products of the tools observed; sharpening a tool would create flakes or debitage, and a core would be used to create a tool. There were also more observed FCR features with observed lithic features than expected in a random world. This could be explained by the use of fires (creating the FCR) for light or warmth, or found while manipulating lithic material; furthermore, lithic waste products may have been disposed of in fire as a means reduce un-needed lithics in everyday use areas.
Fort Peck Indian Reservation
Statistically Significant Relationships,
Based on Pearson Chi-Squared Values being greater than 3.84

<table>
<thead>
<tr>
<th></th>
<th>Tipi Rings</th>
<th>Cairn</th>
<th>Fauna</th>
<th>Hearth</th>
<th>Lithics</th>
<th>Tools</th>
<th>FCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipi Ring</td>
<td>-----</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Cairn</td>
<td>+</td>
<td>-----</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fauna</td>
<td>0</td>
<td>0</td>
<td>-----</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hearth</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-----</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lithics</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-----</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tools</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>-----</td>
<td>0</td>
</tr>
<tr>
<td>FCR</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>-----</td>
</tr>
</tbody>
</table>

Table 46

"+" represents a statistically significant relationship
"0" represents no statistically significant relationship
Suggestions for Future Research/Work

It appears many of the sites identified on the reservation are closely associated to the many river and streams on the reservation (See Appendix B, Illustration 3). A clustering of sites also seems to group along US-12, the southern most highway that runs east to west on the reservation (see Appendix B, Illustration 4). Perhaps these sites are clustered due to the construction of the road, archaeological surveying of the road for compliance, and discoveries of these sites due to increased use of this corridor.

Future work based on the baseline data supplied in this report could entail a study on site distributions in relationship to site density and natural landforms, or why the sites were located in a given area. Were these sites found based on archaeological clearances for another purpose—giving reason for the locations of the sites that are known (e.g. high amount of sites seem to be along roads on the reservation, or high density of sites in areas of oil well pad surveys).

The statistically significant relationships features exhibit can further explain aspects such as why the compared features appear to have more observed values than their expected. I have speculated on reasons this might be, however, with more data collected from additional archaeological surveys or excavations, perhaps more definitive reasons may emerge. In addition, research into why hearths and FCR were not statistically related would be interesting. One reason might be more surveys than excavations have been done on the reservation. Since hearths are usually buried they are
not often identified in surveys, on the other hand, the only remains of an eroded hearth are often FCR that were part of the original feature.

It is important to remember when dealing with non-renewable resources, to manage cultural resources to the best of our ability and knowledge. This is but the first step in a long process that must be done to protect our resources, better manage them, and further understand how we have evolved not only as people have, but as a nation.

Research, identify, and preserve!
APPENDIX-A
Table 47

Prehistoric Site Information
Known Prehistoric Archaeological Sites Located on Fort Peck Indian Reservation, MT**

<table>
<thead>
<tr>
<th>Site #</th>
<th>Tipi Ring</th>
<th>Cairn</th>
<th>Fauna Bone</th>
<th>Hearth</th>
<th>Lithic</th>
<th>Tool</th>
<th>FCR</th>
<th>Human Bone</th>
<th>Bison Jump</th>
<th>Rock Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>24DN97</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24DN98</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24DN99</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24DN100</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24DN114</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24DN115</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV7</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV11</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV16</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV17</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV19</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV22</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV23</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV25</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV26</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV27</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV28</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV29</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV30</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV31</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV32</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV34*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>24RV35*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Site #</td>
<td>Tipi Ring(s)</td>
<td>Cairn(s)</td>
<td>Fauna Bone</td>
<td>Hearth(s)</td>
<td>Lithics</td>
<td>Tools</td>
<td>FCR</td>
<td>Human Bone</td>
<td>Bison Jump</td>
<td>Rock Art</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>24RV36*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV37*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV38*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV39*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV44*</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV45</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV46</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV47</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV51</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV52</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV57</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV60</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV61</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV74</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV77</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV78</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV79</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV80</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV85</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV86</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV88</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV89</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV90</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV91</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV92</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV94</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV98</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV99</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV100</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV105</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV106</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Site #</td>
<td>Tipi Ring(s)</td>
<td>Cairn(s)</td>
<td>Fauna Bone</td>
<td>Hearth(s)</td>
<td>Lithics</td>
<td>Tools</td>
<td>FCR</td>
<td>Human Bone</td>
<td>Bison Jump</td>
<td>Rock Art</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>24RV112</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV113</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV115</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV131</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV144</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV145</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV146</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV147</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV148</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV149</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV150</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV151</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV155</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV156</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV157</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV158</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV159</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV160</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV161</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV162</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV163</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV164</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV165</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV166</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV167</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV205</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV206</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV212</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV213</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV214</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV215</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Site #</td>
<td>Tipi Ring(s)</td>
<td>Cairn(s)</td>
<td>Fauna Bone</td>
<td>Hearth(s)</td>
<td>Lithics</td>
<td>Tools</td>
<td>FCR</td>
<td>Human Bone</td>
<td>Bison Jump</td>
<td>Rock Art</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>24RV216</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV217</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV218</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV219</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV220</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV221</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV227</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV229</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV230</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV231</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV232</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV233</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV234</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV236</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV237</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV238</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV241</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV245</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV246</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV247</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV248</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV253</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV254</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV255</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV256</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV258</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV264</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV265</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV267</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV270</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV402</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Known Prehistoric Archaeological Sites Located on Fort Peck Indian Reservation, MT**

<table>
<thead>
<tr>
<th>Site #</th>
<th>Tipi Ring(s)</th>
<th>Cairn(s)</th>
<th>Fauna Bone</th>
<th>Hearth(s)</th>
<th>Lithics</th>
<th>Tools</th>
<th>FCR</th>
<th>Human Bone</th>
<th>Bison Jump</th>
<th>Rock Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>24RV403</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV405</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV407</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV418*</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV423</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV424</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV430</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>24RV435</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV434</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV440</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV441</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV442</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV444</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV446</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV551</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV552</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV553</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV554</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV555</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV556</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV557</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV558</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV559</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV560</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV561</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV562</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV563</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV570</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV571</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV572</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV580</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Site #</td>
<td>Tipi Ring(s)</td>
<td>Cairn(s)</td>
<td>Fauna Bone</td>
<td>Hearth(s)</td>
<td>Lithics</td>
<td>Tools</td>
<td>FCR</td>
<td>Human Bone</td>
<td>Bison Jump</td>
<td>Rock Art</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>24RV583</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV584</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV585</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV586</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV587</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV588</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV651</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV652</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV1026</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>24SH4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24SH16</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24SH17</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24SH18</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24RV37</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24SH623</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24SH687</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL575</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL579</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL580</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL581</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL582</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL584*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL586*</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL588</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL589</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL591</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL594</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL595</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL723</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1170</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Site #</td>
<td>Tipi Ring(s)</td>
<td>Caim(s)</td>
<td>Fauna Bone</td>
<td>Hearth(s)</td>
<td>Lithics</td>
<td>Tools</td>
<td>FCR</td>
<td>Human Bone</td>
<td>Bison Jump</td>
<td>Rock Art</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>---------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>24VL1172</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1173</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1175</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1176</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1177</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1178</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1179</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1180</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1181</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1182</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1183</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1184</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1227</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1228</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1229</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1232</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1233</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1234</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1235</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1237</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1240</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1241</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1242</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1256</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1257</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1258</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1281</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1362</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1363</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1365</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1366</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Site #</td>
<td>TiPi Ring(s)</td>
<td>Caim(s)</td>
<td>Fauna Bone</td>
<td>Hearth(s)</td>
<td>Lithics</td>
<td>Tools</td>
<td>FCR</td>
<td>Human Bone</td>
<td>Bison Jump</td>
<td>Rock Art</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>-------</td>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>24VL1367</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1368</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1369</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1370</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1374</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1621</td>
<td></td>
</tr>
<tr>
<td>24VL1622</td>
<td></td>
</tr>
<tr>
<td>24VL1376</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1377</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1380</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1567</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1598</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1619</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1625</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24VL1630</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

** 1 represents one or more feature(s) at site, not actual number of features at site and
 0 means this feature is not present at this site
* located on Fort Peck Indian Reservation, but land may be allotted
Ft. Peck Indian Reservation: Prehistoric Sites

Appendix-B
Illustration 2
Ft. Peck Indian Reservation: Prehistoric Sites In Association To Water

Appendix-B
Illustration 3
APPENDIX-C

CULTURAL RESOURCE ANNOTATED BIBLIOGRAPHY SYSTEM

A bibliography of CRM reports for Fort Peck Indian Reservation
Appendix C

Montana State Historic Preservation Office:
Cultural Resource Annotated Bibliography System (CRABS)
Reports Associated to Fort Peck Indian Reservation (arranged by CRABS number)
(search performed in February 2000)

SH 3 009522 Cultural Resource Management Report ARCO Oil and Gas Company., ARCO #1 Turtle Mountain. Consultant report (Powers Elevation) prepared for ARCO Oil and Gas Co.

SH 3 009523 Cultural Resource Inventory Energy Development, Cooper Petroleum 1-12 Tribal. Consultant report (Gar C. Wood and Assoc.) prepared for Cooper Petroleum.

Kanning Sodbusting Project Fort Peck Reservation, Class III Cultural Resource Survey Results, Sheridan County, MT. Consultant report Prepared for Bureau of Indian Affairs.

Cultural Resource Inventory Transportation Development, Baltrusch Construction, Waller Gravel Pit #2. Consultant report (Gar C. Wood and Assoc.) prepared for Baltrisch Construction.

The Danielson Site (24SH887): A Preliminary Assessment. Consultant Report (Joyes) prepared for Sheridan County Soil Conservation Service District Office and MT SHPO. (not on reservation, but consulted)

VL 3 010472 Cultural Resource Inventory Energy Development, Axem Resources 4-35 Nashua. Consultant report (Gar C. Woods and Assoc.) prepared for Axem Resources.

VL 3 010482 Cultural Resource Inventory Energy Development, Exxon Company USA, #1 R. Bear Hill Estate. Consultant report (Gar C. Wood and Assoc.) prepared for Exxon Company.

VL 3 010488 Cultural Resource Inventory Energy Development, Cooper Petroleum, Inc., Tract # 17A. Consultant report (Gar C. Wood and Assoc.) prepared for Cooper Petroleum.

VL 3 010489 Cultural Resource Inventory Energy Development, Cooper Petroleum, Inc., Tract # 15A. Consultant report (Gar C. Wood and Assoc.) prepared for Cooper Petroleum.

VL 3 010490 Cultural Resource Inventory Energy Development, Cooper Petroleum, Inc., Tract # 16A. Consultant report (Gar C. Wood and Assoc.) prepared for Cooper Petroleum.

VL 3 010491 Cultural Resource Inventory Energy Development, ARCO-Western Geophysical, South Cottonwood Prospect. Consultant report (Gar C. Wood and Assoc.) prepared for ARCO.

VL 3 010492 Cultural Resource Inventory Energy Development, Universal Resources-SEIS Prospect, Inc., Flynn Project. Consultant report (Gar C. Wood and Assoc.) prepared for SEIS Prospect, Inc.

VL 3 010494 Cultural Resource Inventory Energy Development, Gulf Oil-Geophysical Services, Inc., North Lustre Prospect. Consultant report (Gar C. Wood and Assoc.) prepared for Geophysical Services, Inc.

VL 3 010499 Cultural Resource Inventory Energy Development, Middle Fork Creek, Exxon Company, USA. Consultant report (Powers Elevation) prepared for Sun Exploration.

VL 3 010503 Cultural Resource Inventory Energy Development, Exxon Company USA, R.C. Campbell #2. Consultant report (Gar C. Wood and Assoc.) prepared for Exxon Company USA.

VL 3 010504 Cultural Resource Inventory Energy Development, Exxon Company USA, R.C. Campbell #1. Consultant report (Gar C. Wood and Assoc.) prepared for Exxon Company USA.

VL 3 010505 Cultural Resource Inventory Energy Development, Exxon Company USA, Sylvia Roberts #2. Consultant report (Gar C. Wood and Assoc.) prepared for Exxon Company USA.

VL 3 010506 Cultural Resource Inventory Energy Development, Exxon Company USA, Grey Bear Heirs #1. Consultant report (Gar C. Wood and Assoc.) prepared for Exxon Company USA.
VL 3 010507 Cultural Resource Inventory Energy Development, Exxon Company USA, Tribal #1. Consultant report (Gar C. Wood and Assoc.) prepared for Exxon Company USA.

VL 3 010509 Cultural Resource Management Report, Exxon Company USA, Bellonger-Clark #2. Consultant report (Powers Elevation) prepared for Exxon Company, USA.

VL 3 010511 Cultural Resource Management Report, Exxon Company USA, Salt Water Disposal Project. Consultant report (Powers Elevation) prepared for Exxon Company, USA.

VL 3 010512 Cultural Resource Inventory Energy Development, Exxon Company USA, Tribal #2. Consultant report (Gar C. Wood and Assoc.) prepared for Exxon Company USA.

VL 3 010516 Cultural Resource Management Report, Exxon Company USA, Flowline Sylvia Roberts #1 to Sylvia Roberts #2. Consultant report (Powers Elevation) prepared for Exxon Company, USA.

VL 3 010517 Cultural Resource Management Report, Exxon Company USA, Saltwater Disposal Line from Lily Puentes #1 to Cranston #1. Consultant report (Powers Elevation) prepared for Exxon Company, USA.

VL3 010522 Cultural Resource Management Report, Exxon Company USA, Marie Standing Heirs #1 to Cranston #1. Consultant report (Powers Elevation) prepared for Exxon Company, USA.

VL 3 010525 Cultural Resource Inventory Energy Development, Exxon Company USA, Undesignated Tiger #1. Consultant report (Gar C. Woods and Assoc.) prepared for Exxon Company USA.

VL 3 010527 Cultural Resource Inventory Energy Development, ARCO Company, Spring Creek #1-27. Consultant report (Gar C. Woods and Assoc.) prepared for ARCO Oil and Gas Company.

VL 3 010529 Cultural Resource Inventory Energy Development, ARCO Company, Spring Creek #1-27 Road Inspection. Consultant report (Gar C. Woods and Assoc.) prepared for ARCO Oil and Gas Company.
VL 3 010530 Cultural Resource Inventory Energy Development, ARCO Company, North Tomato Can Creek #1-7. Consultant report (Gar C. Woods and Assoc.) prepared for ARCO Oil and Gas Company.

VL 3 010533 Cultural Resource Inventory Energy Development, ARCO Company, South Tomato Can Creek #1-21. Consultant report (Gar C. Woods and Assoc.) prepared for ARCO Oil and Gas Company.

VL 3 010535 Cultural Resource Management Report, Coastal Oil and Gas- Brown #1. Consultant report (Gar C. Woods and Assoc.) prepared for Coastal Oil and Gas.

VL 3 010536 Coastal Oil and Gas Company, Brown #1 Well Location and Access Road. Consultant report (Enders) prepared for Coastal Oil and Gas Co.

VL 3 010538 Exxon's Bellonger-Clark #3, Well Location and Access, Class III Cultural Resource Inventory. Consultant report (Shaw and Loendorf) prepared for Exxon Oil Company.

VL 3 010539 Walton Reservoir. Consultant report (Keller) prepared for unknown.

VL 3 010540 Ruffcorn Spring. Consultant report (Melton and Charles) prepared for unknown.

VL 3 010541 Ruffcorn Dugouts. Consultant report (Melton and Charles) prepared for unknown.

VL 3 010542 Gleed Reservoir. Consultant report (Melton and Charles) prepared for unknown.

VL 3 010543 Gleed Spring. Consultant report (Melton and Charles) prepared for unknown.
VL 3 010544 Gleed Spring #2. Consultant report (Melton and Charles) prepared for unknown.

VL 3 010545 McDonald Clubmoss Treatment. Consultant report (Melton and Charles) prepared for unknown.

VL 3 010546 Granada Gravel Pit Extension. Consultant report (Melton and Charles) prepared for unknown.

VL 3 010547 Toavs Clubmoss. Consultant report (Melton and Charles) prepares for unknown.

VL 3 010531 Cultural Resource Inventory Energy Development, Exxon Company USA, Dahl- Two Bulls #1. Consultant report (Gar C. Wood and Ass.) prepared for Exxon Company, USA.

VL 3 014715 Brien Sod Busting. Consultant report (Hall) prepared for Land Lessee.

VL 3 013720 Suther Land Exchange. Consultant report (Keller) prepared for Fort Peck Tribes and private landowner.

VL 3 015047 Nielson Sodbusting. Consultant report (Keller) prepared for unknown.

VL 3 015050 Breigenzer Sodbusting. Consultant report (Keller) prepared for unknown.

VL 3 015051 Beier Sodbusting. Consulting report (Keller) prepared for unknown.

VL 3 016734 Cultural Resource Management Report, Susie #1 Tribal Oil Well. Consultant report (Gar C. Wood and Assoc.) prepared for Continental Resources.

VL 3 016747 Short Young Man fee patent #1659-A. Consultant report (Hall) prepared for unknown.

VL 3 016798 Allotment No. 4016. Consultant report (Hall) prepared for unknown.

VL 3 018629 Stovem Sodbusting. Consulting report (Keller) prepared for unknown.

VL 3 018630 Nielson Sodbusting I. Consulting report (Keller) prepared for unknown.

VL 3 019267 Nielson Sodbusting II. Consulting report (Keller) prepared for unknown.

VL 3 019269 Class III Cultural Resource Field Inventory, Larslan Telephone Cable. Consultant report (Julien) prepared for Nemont Telephone Cooperative.

VL 3 019296 Class III Cultural Resource Field Inventory, Sibley Telephone Cable. Consultant report (Julien) prepared for Nemont Telephone Cooperative.

VL 3 020823 Stovem Sodbusting. Consultant Report (Keller) prepared for unknown.

VL 3 020824 Fort Peck Tribal Farm Sodbusting. Consultant report (Keller) prepared for unknown.

VL 3 020827 Wiota Gravel Pit. Consultant report (Keller) prepared for unknown.

VL 3 021043 Range Unit No. 9 Pipeline. Consultant report (Keller) prepared for unknown.

VL 4 010566 North Project. Report by and for Montana Department of Highways.

VL 6 019624 Stockwater Well and Tanks. Consultant negative findings (Beck and Scheetz).

VL 6 019624 Spring Development and 500 feet of pipeline and stockwater. Consultant negative findings (Brag and Irense).
VL 6 021740 Spring Development with delivery pipeline and stockwater. Consultant negative findings (Beck).

DN 3 002328 A “Class III Intensive Inventory” of the proposed McCorrick Tribal 1-29 Drill Pad and Access Route in Daniels County, Montana. Consultant report (University of North Dakota) prepared for Broschat Engineering Management Service.

DN 3 002329 Cottonwood Chisel Plowing. Consultant report (Keller) prepared for unknown.

DN 3 019264 5-21-97. Consultant report (Hall) prepared for unknown.

DN 3 21056 Christianson Sodbusting Project, Fort Peck Reservation, Class III Cultural Resource Survey Reports, Daniels County, Montana. Consultant report (Aaberg Cultural Resource Consulting Service) prepared for Bureau of Indian Affairs.

RV 3 008982 A Cultural Resource Survey for the Century Oil and Gas, Goings 27-2 Well Pad and Access Route in Roosevelt County, Montana. Consultant report (Powers Elevation) prepared for Century Oil and Gas.

RV 3 008992 Superior Oil #1 Fort Peck Tribal Bird. Consultant report (Anthro Research) prepared for Superior Oil.

RV 3 009002 Cultural Resource Management Report, LETEC #1 Blacktail. Consultant report (Powers Elevation) prepared for LETEC.

RV 3 009025 Century Oil and Gas Inc., Tribal 4-10. Consultant report (Gar C. Wood and Assoc.) prepare for Century Oil and Gas Inc.

RV 3 009027 Monsanto Oil-Geoseismic Services, Chelsea Creek #1 Prospect. Consultant report (Gar C. Wood and Assoc.) prepare for Monsanto Oil.

RV 3 009028 Ladd Petroleum-Sioux Seismic Services, Miami Prospect. Consultant report (Gar C. Wood and Assoc.) prepare for Ladd Petroleum.

RV 3 009029 American Petrofina- Sioux Seismic Services, Poplar West Prospect. Consultant report (Gar C. Wood and Assoc.) prepared for American Petrofina.

RV 3 009045 Energy Reserves Group, Tribal Access Road. Consultant report (Gar C. Wood and Assoc.) prepared for Energy Reserves Group.

RV 3 009046 Cultural Resource Management Report, Pend Orielle Oil and Gas Company. Consultant report (Powers Elevation) prepared for Pend Orielle Oil and Gas Company.

RV 3 009056 Cultural Resource Inventory Energy Development, Fort Peck Tribes Oil and Gas Department, Wenona #1 Saltwater Disposal Line. Consultant report (Gar C. Wood and Assoc.) prepared for Fort Peck Tribes Oil and Gas Department.

RV 3 009059 Cultural Resource Management Report, Exxon Company USA-Nancy Buck Elk #1. Consultant report (Gar C. Wood and Assoc.) prepared for Exxon Company USA.

RV 3 009060 Cultural Resources Inventory For Proposed Land Conversion Projects, Fort Peck Reservation. Agency report (McPherson, BIA-Billings) prepared for Bureau of Indian Affairs-Billings.

RV 3 009061 For Peck Plowing Project. Negative Findings Report (Charles) prepared for unknown.

RV 3 009062 Class III Cultural Resource Inventory of Bass Enterprises Production Company BIA Federal #31-41 well and access road. Consultant report (Frontier Archaeology) prepared for Bass Enterprises Production Company.

RV 3 009064 Cultural Resource Management Report, Murphy Oil USA, Inc., East Poplar Unit #112. Consultant report (Powers Elevation) prepared for Murphy Oil USA, Inc.

RV 3 009067 Cultural Resource Management Report, Texaco-Assiniboine/Sioux B-1 South Access Road. Consultant report (Gar C. Wood and Assoc.) prepared for Texaco, Inc.

RV 3 009071 Stensland Clubmoss Treatment. Consultant report (Keller) prepared for unknown.

RV 3 009072 Balcron Oil Corporation, Tribal 11-29, Well Location and Access. Consultant report (University of North Dakota) prepared for Balcron Oil Corporation.

RV 3 009073 O'Connor Slough Dugouts. Consultant report (Melton) prepared for unknown.

RV 3 009074 Balcron Oil Corporation, Well Pad and Pit Location. Consultant report (University of North Dakota) prepared for Balcron Oil Corporation.

RV 3 009075 Wolf Point Sewer Line. Consultant report (Melton) prepared for Indian Health Services.

RV 3 009078 Anderson Reservoir. Consultant report (Melton and Charles) prepared for unknown.
RV 3 009079 Bearcub Dugout. Consultant report (Melton and Charles) prepared for unknown.

RV 3 009080 Clark Dugout. Consultant report (Melton and Charles) prepared for unknown.

RV 3 009081 Bearcub Spring. Consultant report (Melton) prepared for unknown.

RV 3 009082 Calais Hill Road. Consultant report (Melton and Charles) prepared for unknown.

RV 3 009084 Rush Clubmoss Treatment. Consultant report (Melton and Charles) prepared for unknown.

RV 3 009087 9-34 Housing Adjustments. Consultant report (Melton and Charles) prepared for Fort Peck Housing.

RV 3 009088 Coyote Coulee Breaking. Consultant report (Melton) prepared for unknown.

RV 3 009090 Fort Peck Tribal Gravel Source. Consultant report (Keller) prepared for unknown.

RV 3 009091 227 BAO/FP-90, Calais Hill Road Improvement. Consultant report (Melton) prepared for unknown.

RV 3 011142 Fort Peck Gravel Pits for MDOT. Consultant report (Keller) prepared for Montana Department of Transportation.

RV 3 011824 Cultural Resource Management Report, Balcron Oil Company, #43-32 Chaske, Cultural Resources Inventory. Consultant report (Powers Elevation) prepared for Balcron Oil Company.

RV 3 011835 Ricker Landleveling. Consultant report (Keller) prepared for unknown lessee.

RV 3 011836 Frazier Tribal Gravel Pit. Consultant report (Keller) prepared for unknown.

RV 3 012852 Brockton Gravel Pit. Consultant report (Keller) prepared for Fort Peck.

RV 3 012853 Upland Sodbusting. Consultant report (Keller) prepared for unknown.

RV 3 012854 Red Thunder Road Gravel Pit. Consultant report (Keller) prepared for unknown.

RV 3 012855 Sodbusting for Irrigation. Consultant report (Keller) prepared for unknown.

RV 3 012856 Four Tribal Gas Wells. Consultant report (Keller) prepared for Fort Peck Tribes.

RV 3 013256 Red Thunder Road Improvement. Consultant report (Hall) prepared for unknown.

RV 3 013257 Drive in Road Improvement. Consultant report (Hall) prepared for unknown.

RV 3 013258 RY Road Improvement. Consultant report (Hall) prepared for unknown.

RV 3 013259 Red Thunder Road Gravel Pit. Consultant report (Hall) prepared for unknown.

RV 3 013374 RY Road II. Consultant report (Hall) prepared for unknown.

RV 3 013375 Red Thunder Road Barrow Pit II. Consultant report (Hall) prepared for unknown.

RV 3 013376 Wolf Point Streets. Consultant report (Hall) prepared for unknown.

RV 3 013377 Popular Frontage Road. Consultant report (Hall) prepared for unknown.

RV 3 013592 Charles Glenn Connors Fee Patent. Consultant report (Hall) prepared for unknown.

RV 3 013722 South of Brockton Sodbreaking. Consultant report (Keller) prepared for unknown.

RV 3 013725 Red Thunder Road Gravel Pit Expansion. Consultant report (Hall) prepared for unknown.

RV 3 013726 Red Box Gravel Pit. Consultant report (Hall) prepared for unknown.

RV 3 013730 Another Red Thunder Road Gravel Pit. Consultant report (Hall) prepared for unknown.

RV 3 014309 Kaizer Sodbusting. Consultant report (Hall) prepared for unknown.

RV 3 014710 RY Housing Gravel Stock Pile. Consultant report (Hall) prepared for unknown.

RV 3 015048 Tomahawk Stockdam. Consultant report (Keller) prepared for unknown.

RV 3 015049 Beck Chisel Plowing. Consultant report (Keller) prepared for unknown.

RV 3 016721 Poplar Borrow Area. Consultant report (Hall) prepared for unknown.
RV 3 016722 Drive Inn Road Trail. Consultant report (Hall) prepared for unknown.

RV 3 016733 Cultural Resource Management Report, Bauer #1-20 Tribal Oil Well. Consultant report (Gar C. Wood and Assoc.) prepared for Continental Resources.

RV 3 016733 Tribal Gas Well G-5. Consultant report (Hall) prepared for unknown.

RV 3 016746 Benjamin Harris #395. Consultant report (Hall) prepared for unknown.

RV 3 016748 Tribal Complex Access Road. Consultant report (Keller) prepared for unknown.

RV 3 016749 Matejovsky Spring Development. Consultant report (Keller) prepared for unknown.

RV 3 016750 Sethre Dugouts. Consultant report (Keller) prepared for unknown.

RV 3 016753 RY Housing Road Borrow Area. Consultant report (Keller) prepared for unknown.

RV 3 016754 Madison Chisel Plow. Consultant report (Hall) prepared for unknown.

RV 3 016755 Tribal Gas Wells G-2, 4 (A and B) 5. Consultant report (Hall) prepared for unknown.

RV 3 016768 A Class III Cultural Resource Inventory in Portions of Sections 13, 14, 24, 25 and 26 of Township 30N, Range 45E and Sections 17, 20, 21, 28 and 26 of Township 30N, Range 46E, Valley and Roosevelt Counties, Fort Peck Reservation, Montana. Consultant report (Ethos Consultants, Inc.) prepared for Western Geophysical.

RV 3 016769 A Class III Cultural Resource Inventory of Longee Project Area In Portions of Sections 19, 20, 27, 28, 29, 30, 31, 32, 33, and 34 of Township 31N, Range 49E, and 24, 25, and 36 of Township 31N, Range 48E. Consultant report (Ethos Consultants, Inc.) prepared for Reliable Exploration.

RV 3 016772 Smith Road. Consultant report (Hall) prepared for unknown.
RV 3 016796 Allotment No. 1024 A and B. Consultant report (Hall) prepared for unknown.

RV 3 016797 Allotment No. 3082- A and B. Consultant report (Hall) prepared for unknown.

RV 3 017617 Smith Road Telephone Cable Installation. Consultant report (Julien) prepared for Nemont Telephone Cooperative.

RV 3 017619 A Cultural Resource Inventory of a Greenhouse Development Site on the Fort Peck Indian Reservation, Near Wolf Point, Montana. Consultant report (Schwab Cultural Consulting) prepared for Fort Peck Tribes, BIA.

RV 3 017620 L. Burshia to D. Johnson, North of Brockton, Montana Telephone Cable Installation. Consultant report (Julien) prepared for Nemont Telephone Cooperative.

RV 3 017622 Poplar Airport: A Class III Cultural Resource Inventory on the Fort Peck Indian Reservation. Consultant report (Metcalf Archaeological Consultants, Inc.) prepared for Kadmas, Lee and Jackson, PC.

RV 3 017630 A Class III Consultant Resource Inventory in Portions of Sections 9, 15, 16, 20, 21, 22, 27, 28, 29, 31 and 32, Township 29N, Range 51E; and Section 36, Township 29N, Range 50E; and Sections 4 and 5, Township 28N, Range 51E; Roosevelt County, Montana. Consultant report (Ethos Consultants, Inc.) prepared for Western Geophysical Company.

RV 3 018101 Poplar River Bridge Replacement. Consultant report (Keller) prepared for unknown.

RV 3 018102 Smith Road Gravel Pit III. Consultant report (Keller) prepared for unknown.

RV 3 018103 Fort Peck Tribal Complex. Consultant report (Keller) prepared for Fort Peck Tribes.
RV 3 018104 Smith Road Gravel Pit IV. Consultant report (Keller) prepared for unknown.

RV 3 018107 Smith Sodbusting. Consultant report (Keller) prepared for unknown landowner.

RV 3 018162 Smith Road Gravel Pit I. Consultant report (Keller) prepared for unknown.

RV 3 018299 Kadrmas, Lee, and Jackson’s Poplar Airport. Consultant report (Metcalf Archaeological Consultants, Inc.) prepared for Kadrmas, Lee, and Jackson, PC.

RV 3 018497 Boxelder Creek Bridge Replacement. Consultant report (Keller) prepared for unknown.

RV 3 018501 Cultural Resource Management Report, Assiniboine 1-10G Consultant report (Gar C. Wood and Assoc.) prepared for Thomas Hohn.

RV 3 018628 Wolf Point Street Project. Consultant report (Keller) prepared for unknown.

RV 3 018830 Examination of a Proposed Wellsite on the Fort Peck Indian Reservation. Consultant report (Ethos Consultant, Inc.) prepare for BIA Oil Producers.

RV 3 019262 5-20-97. Consultant report (Hall) prepared for unknown.

RV 3 019263 5-20-97. Consultant report (Hall) prepared for unknown.

RV 3 019265 House Construction. Consultant report (Keller) prepared for unknown.

RV 3 019266 Smith Chisel Plowing. Consultant report (Keller) prepared for unknown.

RV 3 019268 Stovem Sodbusting. Consultant report (Keller) prepared for unknown.
RV 3 019270 Class III Cultural Resource Field Inventory, Flynn Creek South Telecommunication Cable. Consultant report (Julien) prepared for Nemont Telephone Cooperative.

RV 3 19288 Braine Sodbusting I. Consultant report (Keller) prepared for unknown tribal member.

RV 3 019289 Braine Sodbusting II. Consultant report (Keller) prepared for unknown tribal member.

RV 3 019290 Braine Sodbusting III. Consultant report (Keller) prepared for unknown tribal member.

RV 3 019291 Long Hair Sodbusting. Consultant report (Keller) prepared for unknown tribal member.

RV 3 019297 Fort Kipp Telephone Cable. Consultant report (Julien) prepared for Nemont Telephone Cooperative.

RV 3 019374 Wilkins Chiseling. Consultant report (Cochran) prepared for unknown.

RV 3 019375 #2192 Atkinson Fee Patent. Consultant report (Cochran) prepared for unknown.

RV 3 019377 #2551 Black Dog Fee Patent. Consultant report (Cochran) prepared for unknown.

RV 3 019379 #4012 Raquel Menz Patent. Consultant report (Cochran) prepared for unknown.

RV 3 019389 Nygrad Telecommunications Cable. Consultant report (Julien) prepared for Nemont Telephone Cooperative.

RV 3 020110 Snell Sodbusting. Consultant report (Keller) prepared for unknown.

RV 3 020111 Johnson Sodbusting. Consultant report (Keller) prepared for unknown.

RV 3 020112 Budak Sodbusting. Consultant report (Keller) prepared for unknown.

RV 3 020116 Budak Sodbusting I. Consultant report (Keller) prepared for unknown.

RV 3 020117 Werner Sodbusting. Consultant report (Keller) prepared for unknown.

RV 3 021073 Range Unit No. 9 Pipeline. Consultant report (Keller) prepared for unknown.

RV 3 021059 Kirn Sodbusting Project, Fort Peck Reservation, Class III Cultural Resource Survey Results Confidential Appendix: Site Forms Consultant report (Aaberg Cultural Resource Consulting Service) prepared for BIA- Billings.

RV 3 022078 Seven Mile Bridge Road. Consultant report (Keller) prepared for unknown.
RV 4 009092 Highway Construction Project F 32-1 (1) 6 Macon-North. Consultant report (Smith) prepared for unknown.

RV 4 012955 Cultural Resource Inventory and Assessment of F1-10 (23) 581 Wolf Point-West. Consultant report (Wyss) prepared for Montana Department of Transportation.

RV 4 019771 Poplar River Bridge Replacement, West of Poplar, BR-1-10' (31) 611: A Cultural Resource Inventory and Evaluation. Consultant report (Malmstron and Rossillon) prepared for Montana Department of Transportation.
RV 4 022395 A Cultural Resource Inventory of the Montana Department of Transportation West Fork Poplar River Bridge Replacement. Consultant report (GCM Services, Inc.) prepared for Montana Department of Transportation.

RV 6 016153 Ken and Alan Hoversland Sodbusting. Consultant report (Soil Conservation Service) prepared for Ken and Alan Hoversland.

RV 6 018849 Results of an Inventory of Cultural Resources for the Nemont Telephone Cooperatives Buried Fiber Optic Wire Networks, Project MT511. Consultant report (Ethos Consultant, Inc.) prepared for Nemont Telephone Cooperative, Inc.

Reports Without a CRABS Number

Exxon Company, USA, Grey Bear Heirs #2. Consultant report (Gar C. Wood and Assoc.) prepared for Exxon Company USA.

Five Proposed Drill Pad Locales within the Fort peck Reservation: Roosevelt County, Montana. Consultant report (Ethos Consultant, Inc.) prepared for Placid Oil Company.

Irrigation Borrow Area. Consultant report (Keller) prepared for unknown.
Bibliography
Bibliography

Andrews, Mike and Stan Wilmoth
1999 Grant Agreement Between The Montana Historic Preservation Office And Montana Area Office Bureau Of Reclamation. Agreement No. 99FG01266

Choong, Henry H.C.

Department of the Interior

Fletcher, M. and G.R. Lock

Lopach, James J., Margery Hunter Brown, and Richmond L. Clow

Montana Fish and Game Commission

Ness, S.
n.d. Assiniboine and Sioux Tribes of the Fort Peck Indian Reservation, Montana. PAM 1811, Montana Historical Society Library, Helena, MT.
Shane, R. M.
1974 *Brief History of the Fort Peck Indian Reservation, Montana.* PAM 1813, Montana Historical Society Library, Helena, MT.

Shields, Kenneth, Jr.

United States
1960 *A Fort Peck Service Unit Program Plan.* Bureau of Indian Affairs, Billings, MT.

Washburn, Wilcombe E.