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Chapter 1

Introduction

The dynamics of a forest are dependent on the available resources within the site, whereas
the health of a forest is due to the success of seeds to sprout into a new generation of trees.
Resources, such as water, minerals and sunlight are necessary for the survival of a tree, and are
continually being consumed by adult trees. Though a forest site may have plenty of resources
to support already existing adult tree growth, it may not have enough open space for seedlings
to grow. Open space is necessary for seedlings to sprout and is crcated when adult trees die.
A forest site may, as well, have an over abundance of open space caused by fire, wind or some
other natural event. These sites generally seek equilibrium through growth, mortality and the
introduction of new seedlings. A forest site is in equilibrium when it has a steady state age
distribution of trees and seedlings. When growth exceeds mortality a forest can become saturated
with adult trees for extended periods. Over time this can lead to large oscillations in tree count
and forest volume.

With the introduction of disease in the forest site, yet another dynamic is created. As trees
age, they may become infected with disease. This process, can result in an infected tree dying
rapidly, leaving more available space for seedlings. Infected trees may, as well, have stunted
growth and linger on for years fighting the disease they carry, while spreading it to the remaining
uninfected forest. Though disease is generally considered to be undesirable for a forest, it is an
effective tool to control over-growth or saturation of a forest site, and it plays an important role
for rehabilitation of forest systems.

For this paper we will consider a forest of one tree species and one type of disease. We only
address a “natural” forest in which no artificial planting of trees and no harvesting/thinning takes
place. The trees will be randomly distributed throughout the site, leaving any open space evenly
spread across the remaining area. Competition for this space will take place between trees and
seedlings and will depend on the tree species and type of disease. Space may be a measure

of canopy size, average tree height, or total basal area and is considered to be proportional to



resources consumed by the forest. An initial distribution of diseased trees will be introduced
in the originally healthy system. The system, after this disturbance of disease, will seek re-
growth through the introduction of new uninfected seedlings. We are interested in the response
of the system to these disturbances (steady state or oscillatory). We will consider in this paper a

mathematical model that describes these phenomena.



Chapter 2

Infectious diseases in a forest

In this section we discuss the major components of tree pathology and how they will be used

to model an infected forest.

Trees undergo many types of stress during their adult life. From abiotic forms such as pollution
and mineral deficiencies to biotic, such as viruses, mammals and insects. It is very natural to
expect that a tree undergoes stress from multiple sources at the same time. It is also found that
the interaction of different forms of stress affect how others manifest themselves [4]. We are

interested in modeling a forest that has a single disturbance by a single biotic agent.

An infectious disease is defined as a biotic pathogen that establishes a food relationship with the
host. The life cycle of a disease can be described by a sequence of events. The first event of the
cycle is the transfer of a pathogen to a portal of entry in a host tree. The portal could be cracks in
the outer bark, buds or any other wounds that create an opening in the surface layer of the tree.
The time required for a specific disease to pass through a portal, is called the infection period.
Once the inoculum enters the trees vascular system, the tree will generally show symptoms of
disease. The time for these symptoms to occur, is referred to as the incubation period. For the
disease to spread, the pathogen must produce inoculum and leave the host via a portal of exit.
This is the latent period. Propagules are formed and the disease can then be transported by a

variety of methods (such as wind, water, birds or insects) to infect other hosts.

The success of the pathogen to infect the forest is related to pathogen virulence, a favorable
environment, and host susceptibility [1]. In general, a pathogen that interacts with the host for

an extended period of time infects more tissue and spreads more disease.



Disease Triangle

pathogen host
virulence susceptibility

. V
environment

favorability

Figure 2.0.1: This figure shows a relationship between the three general requirements
for disease to successfully propagate in a forest.

Figure 2.0.1 shows a simple relationship between these three components known as the disease
triangle. The area inside the triangle is related to the amount of disease in the forest, while the
length of any one side is related to the contribution of that component. From this representation
we see that when any one of the components is decreased to zero the disease disappears.

As the infected tree passes through the incubation period it begins to show signs of infection.
These symptoms can be divided into three main categories: necrotic, hypoplastic and hyperplas-
tic [8]. Necrotic symptoms result in complete cessation of function and most often leads to an
accelerated death. Hypoplastic 1s an underdevelopment of function and in adult trees can remain
active for many years without killing the tree. Hyperplastic symptoms are an acceleration of
function.

After this brief summary of the major components of tree pathology we will formulate a math-

ematical model that represents a diseased forest.



Chapter 3

Integro-Partial Differential Equations
model

In this chapter, we derive a set of integro-differential equations that models a diseased forest.

The equations will describe the time-age dynamics of uninfected and infected trees in the forest,

as well as, seedlings.

3.1 Integro-Partial Differential Equations (IPDE) formulation

In this section we state the assumptions and formulate the mathematical model.
We consider for this model a forest site with one tree species, one disease and enough nutrients

to support a forest with maximum coverage. We make assumptions as follows:

¢ The disease has a food source relationship with the host tree.
o The host tree is always susceptible to infection by the disease.
¢ Diseased trees can infect only during their life span.

¢ As an infected tree ages and subsequently dies, it will no longer carry disease. In this

way, when all of the diseased trees have died, the disease has also been removed from the

system.
¢ The environment is always favorable for pathogen growth.

o The method of transport of propagules to infect other hosts is random across the current

age distribution of trees in the forest site.
e A forest site will have a minimum number of seedlings present at all times.
e Trees always have enough nutrients to continue growth.

5



Some other assumptions, such as on the character of resource consumption by the trees, will be
added as particular model equations are introduced.
With these assumptions, we can formulate a specific model that describes the dynamics of such

a forest. For this model we will consider the characteristic time domain,

0<t<T, (3.1.1)

and age distribution of trees in the following range:

0<a<ama. (3.1.2)

We introduce the differentiable functions U(#,a) and W (¢,a), measured in trees per unit age,
that represent the age density of uninfected and infected trees in the forest site at the instant of
time ¢, respectively. In this way, for example, the total number of uninfected trees in the forest
site between ages a; and a; is found by [72U(z,a)da.

For this model we consider two distinct ways a tree can die out of the forest. One way cor-
responds to natural or non-infectious single events. These may include lighting strike, flood or
deterioration due to a natural aging process. All these decay processes are characterized by a
death rate constant x. We may consider this to be a natural thinning process, which is respon-
sible for a non-diseased forest site having few older trees. The other way corresponds to trees
removed by infectious disease, with characteristic death rate constant y. Uninfected trees can
become infected by disease at a rate proportional to the volume ¥,,(¢) of infected trees, that es-
tablishes the amount of disease in the forest. We use the Law of Mass Action, where the rate of
change of the uninfected and infected trees in the forest is considered to be proportional to the

number of trees in the forest. The dynamics of a forest with disease can be generalized by the

“reaction” equations:

U 4 die (3.1.3)
v P
w L die

The proportionality constant 3 may represent the susceptibility of the host to disease or the
virulence of the pathogen, where an increase in 3 suggests a more favorable condition for disease
propagation. Once a tree is infected it dies at the rate proportional to Yy, corresponding to the
specific manifestation of symptoms caused by a disease. Symptoms that are necrotic in nature

correspond to a greater Y compared to those that are hypoplastic. As trees die and space in

6



the forest becomes available, new seedlings S(¢) are introduced. These seedlings have ample
nutrients to survive and their number is dependent on the available space in the forest K(V(¢)),
which we introduce as the seedling carrying capacity. A mathematical model describing these

dynamics can be written as a system of integro-partial differential equations,

9U(1.a) | dU(t.a)

ot da = _#U(t7a) - BVW(I)U(t)a)a (314)

oW (1, oW (s,
a(zt 2 + a(; 2 —YW(t,a) + BV (1)U (¢,a), (3.1.5)

with initial conditions,

/0"“" U(t,a)8(a)da = U(1,0) = S(1), (3.1.6)
U(0,a) = ®(a), (3.1.7)
W(,0) =0, (3.1.8)
w(0,a) = ¥(a). (3.1.9)

Functions ®(a) and ¥(a) describe the initial age distribution of uninfected and infected trees
in the forest, respectively. In (3.1.6) the Dirac delta function is used to describe the seedling
function S(¢) which represents the total seedling count at time ¢. In (3.1.4) and (3.1.5), the
function ¥, (¢) represents the size of the infected forest as a function of time. We also introduce
V,(t), the size of the uninfected forest as a function of time. They are obtained via integration

over all tree ages in the forest and take the form,

Vilt) = /0 " Ult, a)Bu(a)da, (3.1.10)

Vio(t) = /Oam W (t,a)B,(a)da. (.1.11)

In equations (3.1.10) and (3.1.11), B,(a) and B,,(a), are continuous functions, suitably defined to
represent the amount of resources an infected or uninfected tree of age a, respectively, consumes.
The quantity ¥,,(¢), since it can be interpreted as the physical space taken by a tree in the site,
also characterizes the total amount of disease present in the forest at time 7. Because a seedling

consumes virtually no resources in the forest, we let

B,(0) = B,,(0) = 0. (3.1.12)

Let us introduce the function V/(¢):



V(t)=Vu(t) +Vu(2). (3.1.13)

The function ¥V (¢) is directly proportional to the total resources consumed by the trees in the
forest site at time ¢. This quantity may be associated either with canopy size, or tree height, or

total tree basal area. At time ¢ = 0, the resources consumed by the forest are defined as

/ U(0,a)B a’a—/ ®(a)B,(a)da=V?, (3.1.14)

/ w(0,a)B da—/ ¥(a)By(a)da=V>. (3.1.15)

To model the seedling population, we use a logistic equation with time dependent seedling

carrying capacity K(V(1)):

ds(r) S(¢)
G =0 (1 -z eI

The parameter ¢ is the seedling reestablishment rate and initial conditions for (3.1.16) are

S(0) = U(0,0) = ®(0) = §° (3.1.17)

The seedling carrying capacity K(¥(¢)) is represented by

KV (1)) = max(Spin, Smax — AV (1)), (3.1.18)

with initial value,

K(V(0)) =max(Smin,Smax — AV (0))
(3.1.19)
=K.

The maximum seedling carrying capacity of the forest occurs when there are no adult trees in

the forest:

K(0) = Spax. (3.1.20)

The value 0 < S,y € Smax, represents a minimum number of seedlings in the forest site at any
time ¢ (background seedling "noise”). From (3.1.18) we determine a critical value of the forest

volume exists for which



V(t) — Smax ;\" Smin ~ Sr;"ax.

When the forest reaches this particular volume, the seedling carrying capacity of the forest K =

(3.1.21)

Sqin- Recall, that we have assumed, that even in a forest site completely filled with adult trees,
a few seedlings will be able to grow. The value S,,4 1s the maximum seedling count that could
survive on a site with no adult trees. The parameter A (measured in units of trees per unit volume)
reflects the extent of competition between seedlings and adult trees for available space. An
increase in A coincides with a forest where adult trees successfully compete for a larger portion
of the remaining resources. This will decrease the seedling count at time ¢. A forest with total
volume greater than the critical volume (3.1.21) will have the seedling carrying capacity equal to
Smin- This situation arises when a forest becomes saturated with adult trees. Seedling count will
be reduced to this minimum value until the forest volume returns to a state with the volume that
is below the critical forest volume. When this occurs seedling count will slowly increase filling
the open space with trees. The slow reestablishment of seedlings from this minimum state occurs
because seedlings are more vulnerable when they are few in numbers, where a large percentage
are easily killed by animals, wind or heavy rain. As there numbers increase the ability for new

seedlings to sprout is affected more by competition with adult trees for resources.

3.2 Rescaled model

In this section we define units of nonrescaled variables from the previous section, introduce
rescaled variables and derive a new form of equations (3.1.4) - (3.1.21). Primary quantities used
are time (T) with units in years, length (L) with units in feet, and trees (M). We define units of

unrescaled variables as follows.

f[l=T [d=T, (3.2.1)

U)=MT"',  [W]=MT", (3.2.2)

W=7"" M=7" (32.3)
V]=W]=W]=L" [BJ)=[Bu=LM" (3.2.4)
S]=M, [@=MT"". [¥]=MT"' [K]=M, (3.2.5)



Bl =L72T7 1, c]=7"", A = ML™?, (3.2.6)

In the formulations above we have chosen L? as a measure of forest volume as it relates to tree

basal area. Rescaling is performed using characteristic time and age:

0 =, o= ua. (3.2.7)

Remaining variables are rescaled as follows.

(39
= A

w000 = — (o) = — (328)
5(6) = iﬁ—?‘> Smin = S22, (32.9)

bu(c) = BB@ o bulw)= B;£%> , (3:2.10)
wle) = tSU o= q;S() , G211
v(6)) = G max (spmin, 1 = M (8)). (3:2.13)

Sma.x

The quantity B, represents the maximum resources used by a tree in the forest site and is
equal to the maximum value of the functions B,(a) and B,,(a) for a € [0,amay]. Substituting
(3.2.7) - (3.2.13) into equations (3.1.4) - (3.1.21) and introducing the parameters p and 1, where

p has units [p] = 7~! and 1 is dimensionless:

p= BSmameax, n= ABmax, (3.2.14)
we arrive at the rescaled set of equations

ou(6,0) du(6,0) P
=- — =V 0.0). 3215
ot o = M8~ ow(Ou(e.) (3.2.15)

ow(8,0) ow(8,a) Y p

=—- ~ v (0)u(6,0). 3.2.16
30 + o #w(e,a)—}—#v (0)u(6,0) ( )

10



with rescaled initial conditions:

/O”a”‘” u(8, )3 (0)dox = u(6,0) = 5(6)),

u(0,0) = ¢(ar),
w(6,0) =0,
w(0,0) = (00,

The total forest volume is rescaled:

where,

with initial values,

The seedling carrying capacity becomes

k(V(e)) = max(smm, 1 —T]V(e)),

with initial value that satisfies

k(v(0)) = max(spmin, 1 —M(0)) = &°,

where £° is the initial seedling carrying capacity, and

k(0) = 1.

(3.2.17)
(3.2.18)
(3.2.19)

(3.2.20)

(3.221)

(3.2.22)

(3.2.23)

(3.2.24)

(3.2.25)

(3.2.26)

(3.2.27)

(3.2.28)

(3.2.29)

Here k(0) is the maximum seedling carrying capacity of the forest rescaled to unity, and 0 <

Smin <€ 1 is the rescaled minimum seedling count. The rescaled critical forest volume is,

11



(3.2.30)

The rescaled seedling equation (3.1.16) with substitution from (3.2.27) and using (3.2.21) be-

comes,

_9, B s(9)
s~ <1 max(sm,-,,,l—n(vu(e)+vw<e>>)>‘ (23D

with initial conditions

5(0) = u(0,0) = ¢(0) = 5%, (3.2.32)

The non-dimensionalized statement of the problem consists of equations (3.2.15), (3.2.16),
(3.2.22), (3.2.23) and (3.2.31), with conditions (3.2.17)-(3.2.20), (3.2.25), (3.2.26), and (3.2.32).

We now introduce a numerical method to approximate the solution.

3.3 [Examples of the IPDE system

In this section we present results of numerical computations (based on the algorithm introduced

in the Appendix A4.1) for two particular examples of the IPDE model.

3.3.1 Example 1 (linear resource consumption, low initial forest volume
and tree count, with few infected trees)

In this example we consider a forest site with linear resource consumption, low initial forest
volume and tree count. There are infected trees in this site. Figures 3.3.1-3.3.6 show the behavior
of the site, while a discussion of the results follows at the end of this section. We list the

parameters and initial values below, and along the right hand side of each Figure.

12



Domain:
8¢ (0,7] (time)
a € [0,7] (age)
Initial Values:
u(0,0) = 0.05exp (—3a) (initial uninfected trees)
w(0,0) = 0.05aexp (—4a) (initial infected trees)

s(0) =u(0,0) (initial seedling count)
Resource Consumption:
by(o) =0.1c (size of uninfected trees of age o)
by(a) = .050 (size of infected trees of age o)
Parameters:
n=.05 (constant proportional to death rate of uninfected trees)
vy=".1 (constant proportional to death rate of infected trees)
p=10 (pathogen virulence)
n=10 (competition between seedlings and adult trees)
c=1 (constant proportional to seedling reestablishment)

Plot of trees of all ages Cs
u(0.a)=y(a)
=0 05e™
w(0.a)=¢(a)
=0 05ae”™*°
$(0)=u(0,0)

resource
consumption
b (@)=0 1a
bw(u)=0 05a

I,
e
s i
sl i
el i

"',"’””'{";{’Zﬁ::'{”:ﬂ:”"",%ﬁ’:i p=10

I 'H

parameters

total trees

age(a)

time(8)

Figure 3.3.1: This plot shows the evolution of the total trees age distribution on the
forest site. The site has very few infected trees at initial instant of time. The system

tends to a steady state.

13



o o
o ®
1 1

o
-~
il

total infected trees

0.2

ICs
u(0,¢)=ylax)
=0 0507%
w(0.a)=¢{a}
=0 05ue™*°
5{0)=u{0.0)

Plot of iInfected lrees of all ages

rasource
consumplion

stable infected 5, ()=0.1a
forest b, (a)=0 05a
parameters
u=005
0.1

p=10

n=10

a=1

age{a)

time(8)

Figure 3.3.2: This plot shows the evolution of the infected trees age distribution. The
parameters are the same as Figure in 3.3.1.

Plot of the initial distribution of trees

0.1

0.091

008

™ T T T

T T
— trees(numerical)
= = infecled trees(numencal)

initial distribution of i
young infected trees

2 25 3 35

Figure 3.3.3: This plot shows the initial distribution of trees. Notice that there is only a
small number of young trees that are infected at the initial instant of time.
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total forest volume
g o o 4 o 4 g o
o o o o o o o o 1od
N w o w o0 ~ @ (1<) -

o
o
a2

Figure 3.3.4: This plot shows the evolution of the total volume of trees.

Plot of the volume of the forest canopy

T T T

T

T T
= lotal volume(numerical}

= = total infected volume(numencal)

ICs

Tu.a)=y(a)
=0.05¢73¢
Wo.a)=e(a)
=0.050e™®
TIs(0)=u(0.0)

Jresource
consumption
_bu(u)=0. 1a
b (a)=0.05a
w

-parameters
u=0.05
Jy=01

p=10
m=10

o=1

time(8)

are the same as Figure in 3.3.1.

0.9

0.8

tree count
=3 o =3 =]
'S o [ ~

o
w

Plot of the number of trees and seedlings

The parameters

02

0.1

T T T

T

-

I T

— total trees (numencal)

—~ = lotal infecled rees(numencal)
-_lotal seedlings (numernical)

ICs

Loy

| =0.05e7

w(0,a)=0(ax)
=0.05ae*®
5(0)=u(0,0)

Fesource
consumption

u(cz)=0.1 o
b, ()=0.050

-parameters
p=0.05
=01

p=10
n=10

lo=1

time (8)

Figure 3.3.5: This plot shows the evolution of the total number of trees and seedlings.

The parameters are the same as Figure in 3.3.1.
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Plot of the seedling carrying capacity

1 T T I
L— seedling carrying capacity (numerical)
ook i Cs
p0.a)=v(a)
= -3a
08 0.05¢
w(0.a)=¢(a)
20050074
0.7 T5(0)=(0.0)
z
o
206 esource
3 iconsumption
2 =
E’ o5k _bu(u)-o.m
3 b, (@)=0 05a
=
<
3 0.4 —parameters
] =0 05
03f 4r=0.1
p=10
0.2t =10
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Figure 3.3.6: This plot shows the evolution of the seedling carrying capacity. The
parameters are the same as Figure in 3.3.1.

The Example 1 site, whose behavior is shown in Figures 3.3.1-3.3.6, responds quickly to the
large open space in the forest. At initial instant of time a small amplitude distribution of young
infected trees is present on the site. Both uninfected and infected trees exhibit linear resource
consumption, b,(a) = .1o and b, (o) = .050, respectively. In this case the pathogen virulence
is p = 10. The death rate constants of infected and uninfected trees are, y = .1 and u = .05,
respectively. Though they are few in numbers at the initial time, the infected trees are successful
at spreading their disease to other uninfected trees. The site evolves to a steady state, where a
substantial part of the forest distribution is now infected with disease. This particular example
will be revisited in Chapter 4 for further analysis.

Our next example will show the effect of increasing the values of parameters p and 1 on be-
havior of the system. This particular change will correspond to a highly infectious pathogen.
Competition between seedlings and adult trees for resources will also be much higher. By in-
creasing the competitiveness between trees and seedlings, we are describing a forest site where

seedlings have a very difficult time sprouting even though there may be available space.

3.3.2 Example 2 (linear resource consumption, low initial forest volume
and tree count, with few infected trees)

In this example we consider a forest site with linear resource consumption, low initial forest

volume and tree count. Parameters and initial values are the same as in Example 1 except for
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p =40 and i = 80. Figures 3.3.7-3.3.12 show the behavior of the site while a discussion of the

results follows at the end of this section.

Domain:
0 € [0,15] (time)
o€ 0,7 (age)

Initial Values:
u(0,a) = 0.05exp (—3a) (initial uninfected trees)
w(0,0a) = 0.050cexp (—40c) (initial infected trees)
s(0) = u(0,0) (initial seedling count)
Resource Consumption:

bu(a)=0.1o (size of uninfected trees of age o)
by(a) = .050 (size of infected trees of age o)
Parameters:
u=.05 (constant proportional to death rate of uninfected trees)
vy=.1 (constant proportional to death rate of infected trees)
p=40 (pathogen virulence)
n =280 (competition between seedlings and adult trees)
c=1 (constant proportional to seedling reestablishment)

The Example 2 site, where behavior is shown in Figures 3.3.7-3.3.12, is quite different com-
pared to the site from Example 1. At the initial instant of time there is again a very small ampli-
tude distribution of young infected trees in the site. However, in this case the pathogen virulence
and competition for resources between trees and seedlings rates are significantly higher, p = 40
and 1 = 80, respectively. The infected trees are successful at spreading their disease to other
uninfected trees, but in a much different way than before. As new seedlings are sprouted and
the forest begins to age, the forest site quickly becomes saturated with adult trees. This results
in a minimum carrying capacity S,,;, for the seedlings. The time interval corresponding to such
1s depicted in Figure 3.3.12; it is the interval between the points 4 and B. Point B depicts the

moment when the critical forest volume is reached, and the seedling count begins to increase.
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Figure 3.3.7: This plot shows the evolution of the total trees age distribution on the
forest site. The site, as Example 1, has very few infected trees at initial instant of time.
The system exhibits oscillatory behavior.
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Figure 3.3.8: This plot shows the evolution of the infected trees. The parameters are the
same as Figure in 3.3.7.
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Plot of the initial distnbution of trees
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Figure 3.3.9: This plot shows the initial distribution of trees. There are only a small
number of young trees that are infected.

Plot of the volume of the forest canopy
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Figure 3.3.10: This plot shows the evolution of the total volume of trees. The
parameters are the same as Figure in 3.3.7.
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Plot of the number of trees and seedlings
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Figure 3.3.11: This plot shows the evolution of the total number of trees and seedlings.
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The parameters are the same as Figure in 3.3.7.

Plot of the seedling carrying capacity
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Figure 3.3.12: This plot shows the evolution of the seedling carrying capacity. The
parameters are the same as Figure in 3.3.7.

Since we use a very small minimum seedling carrying capacity, Sm;, = le — 008, the seedling
count will increase very slowly. The slow reestablishment of seedlings from sy, may occur

because of the vulnerability of seedlings when they are few in numbers and is clearly shown by
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reference to the point B in Figures 3.3.12 and 3.3.11. Notice also on Figure 3.3.11, the timing
of the oscillations, between the infected forest and the total tree count. The difference in phase
shift of these two oscillations may be related to the incubation or latent period of the disease.
The greater the phase shift the slower the disease spreads throughout the forest. This site has
developed a well defined oscillating pattern, for both uninfected and infected trees, as well as for
seedlings.

As can be seen from these two examples our system shows both steady state and oscillatory
behavior. We will next derive a system of ordinary differential equations that represent our model
under certain assumptions. We will be interested in further exploring the effect of introducing

an infectious agent on a forest site and the response of that site.
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Chapter 4

Ordinary Differential Equations model

In this section, under certain conditions, we derive a set of first order ordinary differential
equations that represent the model. The equations will describe the total volume of uninfected
and infected trees in the forest, the total number of uninfected and infected trees, as well as,
seedlings. This new formulation will be defined in the re-scaled time domain 6 € [0.47] =

[0,77).

4.1 Ordinary Differential Equations (ODE) formulation

Multiplying (3.2.15) and (3.2.16) by b, () and b,,(@), respectively, and integrating over o from

0 to paax, we obtain,

Hamax Ju(0,0) Hamas Ju(0,01) _
/0 b o) o+ /0 =% b, (0o =

i ) . @.1.1)
- / (8,00) b ()t — v, (8) / (6,00) o (01)do,
0 U 0
’ ae s . (4.12)
! w(0,0)b ( )dOH‘—Vw( )/ u(0,a) by, (01)do.
HJO 0

Since in (4.1.1) and (4.1.2), b,(a) and b, () are functions of o only, we can take the % out
of the integral. We can also notice that the second term on the LHS of the above equations can

be written as,

/wm 9u(8.0) by(a)do = — /Wm u(e‘a)db”(a)doz
0 0

Ja (4.1.3)



Hamax H8max dbw
/ MWOL), g = _/ (6.0 (@) 1,
0 0 do
A= e 4.1.4)

+ (w(6,a)by ()

a=0
As the forest ages some of the trees die, leaving fewer and fewer older trees. The number
of older trees remaining at some maximum age is, thus, very small. Let us use the following

approximations:

u(e7,uamax) ~0, (4.1.5)

w(0, tamay) = 0. (4.1.6)

From these and (3.2.24) it follows that the last terms on the RHS of both (4.1.3) and (4.1.4)
will vanish. The functions ,(a) and b, () can have many different forms (see examples in
Figure 4.1.1), depending on the species of tree and type of disease. This figure shows three
types of resource consumption vs tree age. Linear growth, occurring when trees increase the
use of resources linearly with age throughout their life. Early growth, when a species of tree
exhibits higher rate of increase consumption at a relative early age with rate saturation at older
age. Max-growth corresponds to a species of tree that tends to use less resources after it has
reached some maximum. For our model we will consider a linear growth, where the change in

the amount of resources a tree consumes is constant as it ages:

dby(e)
o = K (4.1.7)
dby (o)
=K (4.1.8)

We can easily solve these equations, with conditions (3.2.24), where b,(0) = 0, and 5,,(0) = 0:

bu(a) = x,0, (4.1.9)

by (0) = Ky QL. (4.1.10)

The relation between the consumption of resources between uninfected and infected trees is

b(0) = —2by,(a). 4.1.11)

U
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Plot of tree size vs. age
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Figure 4.1.1: This figure shows three types of resource consumption vs tree age. Linear
growth, occurring when trees increase the use of resources linearly with age throughout
their life span. Early growth, when a species of tree exhibits higher rate of increase
consumption at a relative early age with rate saturation at older age. Max-growth
corresponds to a species of tree that tends to use less resources after it has reached some
maximum.

Let us introduce the new time dependent variables for the total number of uninfected and in-

fected trees in the forest, #(8) and w(8), respectively:

HQmax
(6) =/ u(6, 0)dat, (4.1.12)
0
HOmax
#(8) :/ (8, o) do. (4.1.13)
0
Corresponding initial values are
MO max H8max -0
ﬁ(O):/ u(O,oc)a’a:/ d(oydo =1, (4.1.14)
0 0
HOmax Hamax -0
w(0) =/ w(O,oc)a’ocz/ y(o)do=w". (4.1.15)
0 0

Using these new variables and previously obtained relations from (3.2.22), (3.2.23) and (4.1.11),
we can simplify (4.1.1) and (4.1.2) to obtain equations that involve the time rate of change of the

volume of uninfected and infected trees:
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dv,(6 -
Vdé ) =K, 4(0) —v,(0) — %VW(G)VH(G), (4.1.16)
B b
e Ky (0) — ﬂvw(e) + v Vi (8) vy (8). (4.1.17)

A similar process can be used to derive equations for the total number of healthy and infected
trees in the forest, #(0) and w(0). Integrating the equations (3.2.15) and (3.2.16), with respect

to o, we obtain,

di(0) - p ~
5 = s(0) —u(6) — ;vw(e)u(e)‘ (4.1.18)
aw(®) v p -

The seedling equation is,

ds(0) o, B 5(8)
a9 u (9) (1 max(Smin, | —N(vu(6) + vw(e)))> ' (4.1.20)

We now have a coupled set of five ODE’s that describes the dynamics of a forest with both un-

infected and infected trees. Initial conditions for this set are (3.2.25), (3.2.26), (3.2.32), (4.1.14)
and (4.1.15).
4.1.1 A forest without disease

From (4.1.16), (4.1.17), (4.1.18), and (4.1.19), (4.1.20) we can easily obtain a model with no

disease 1n the forest:

dvd“ée) = 1, d1(8) — vu(8), 4.121)
di(0) . ;
S = s(6)— (), 4.1.22)

with seedling equation,
d 0
s0) _ 9 ) (1_ 5(9) ) (4.1.23)
e u (max(Smin, 1 —Mvu(0)))
and rescaled initial conditions (3.2.25), (3.2.32), and (4.1.14).

4.2 Steady states and stability analysis

In this section we investigate system of equations (4.1.16), (4.1.17), (4.1.18), (4.1.19) and
(4.1.20) for the purpose of identification of steady states.
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4.2.1 Steady States

We obtain the steady states of these equations by setting the LHS to zero:

- *(14—*/;\/:,)
u = VUT, (4.2.1)
w=v’ <L &) (4.2.2)
HKw UKy
ok ~ % p *
O=s"—a"(1+=v),), (4.2.3)
u
0= Y Byrie, (4.2.4)
H )z
s*=1-n(v;+v,,). (4.2.5)

In equation (4.2.5) we have dropped the max operator because seedling count is always positive
and s, 1s simply a special case of 1 — (v} +v},). As well, we do not need to consider the case
s* = 0, since this is below the minimum carrying capacity of the forest. Substitution of (4.2.1),

(4.2.2) and (4.2.5) into (4.2.3) and (4.2.4) gives the relations,

(1+/—1V:)2
0=1-n;+vi) = | —2"—], 4.2.6)
U
* 145y},
0= JTyr (L P} Py 4.2.7)
u HKy UKy H Ky

We can see that one steady state occurs when v,,(8) = 0. We will refer to this steady state as

SSirivial- By virtue of (4.2.1), (4.2.5), and (4.2.6) we find the trivial steady state to be

x Ky
Vu = KN+’
* —
vw - .
“x
SStrivial — u Tl (4.2.8)
Wt =0,
* 1
§ KN+l

Additional steady state (non-trivial) can be found by analyzing (4.2.6) and (4.2.7) rewritten in

the form:

(1 =nvy,)xy
*_ ft) = wKu 42.9)
Yy fl(vw) Kun_'_(l_*_%v;))Z (
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(1)

v; =f2(va) = %P
Ku 4

(1+1+8v)

(4.2.10)

Plot of functions 11 and 12 (trivial steady state)
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Figure 4.2.2: Equations (4.2.9) and (4.2.10) are graphed on two plots above for different
parameter values. The parameter values for the upper plot are

p=10;4=.05;y=1;m = 10;k, = .1;x, = .05. For the lower plot we have changed
only one parameter: y = .1;. This set of parameters coincides with Example 3 of Section
5.3.3. Note that the curves in the upper plot do not intersect (we only consider positive
valued dependent variables), hence there exists only the trivial steady state (4.2.8).
Notice the function f;(v},) intersects the v}, axis at » = 1/ and the function f;(v},)
asymptotically approaches the v}, axis. The lower plot shows the case where a
non-trivial steady state exists, corresponding to the intersection of £ and f>.

From (4.2.9) and (4.2.10), we obtain the general condition for existence of a steady state with a

non-trivial v, and w*:

¥y\2
. ()
£i(0) = > i = A0, (4210)
KM+ 1 K_,,;(l + #)
which we can simplify to the inequality,

kb (1)
4 4 (4.2.12)

KN+ 1 1+%

We will refer to this additional steady state as SS,onrivia- If this steady state exists then v, and

v,, satisfy the inequalities,















Plot of the voiume of the forest canopy
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Figure 5.3.11: This plot shows an example of a forest site with a larger volume and the
same number of trees as Example 1. This pertains to a mid-aged forest with few young
trees. There is no disease in this forest site. As the forest evolves, stable oscillations
occur.
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Figure 5.3.12: This plot shows the evolution of the total number of adult trees and
seedlings. The parameters are the same as in Figure 5.3.11.
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Projection of the phase space on the plane of variables: total forest velume and seedling count
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Figure 5.3.13: This plot shows the projection of the phase space on the plane of
variables: volume of the forest and the seedling count. The parameters are the same as

in Figure 5.3.11.
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Figure 5.3.14: This plot shows the projection of the phase space on the plane of
variables: total number of trees on the site forest and the seedling count. The parameters
are the same as in Figure 5.3.11.

58



Projection of the phase space on the plane of variables: total volume and total tree count
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Figure 5.3.15: This plot shows the projection of the phase space on the plane of
variables: total number of trees and the volume of trees on the site. The parameters are
the same as in Figure 5.3.11.
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Figure 5.3.16: This plot shows the evolution of the carrying capacity. The parameters
are the same as Figure 5.3.11.
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Projection of the phase space on the plane of variables: the total volume and total tree count
T

T
0.016
A
00141+
0.012f
2 o0t}
32
[=}
z parameters
[}
o 0.008- “£=0.1
=01
0.006} Jr=02
unstable fimit p=0
cycle -
0004} Ji=0
=1
stable imit cycle °
=5
0.002 I =0.1
v
k,=0.05
0 s . ) .
0 0.05 0.1 0.15 0.2 0.25

total tree count

Figure 5.3.17: This plot shows the projection of the phase space on the planc of
variables: total number of trees and the volume of trees in the site. Several trajectories
are shown that differ by initial values of the total volume of trees. These trajectories
reflect the stability of the two limit cycles and steady state. The parameters are the same
as in Figure 5.3.11.

As shown in the Figures 5.3.11- 5.3.16, this forest has evolved to a state of oscillations. At
the initial instant of time this forest site is saturated with trees. Seedlings will remain at s,,;,
until the critical volume is reached, 8 ~ 1.5. On Figure 5.3.13, the maximum forest volume
attained by the trajectory is the critical volume, % = .0125. We use the same small seedling
carrying capacity of s,,;, = le — 008, as in our PDE model of Section 3.3. Though the trajectory
has tended to a stable limit cycle, the steady state (4.2.32) exists, as can be seen by inequality
(4.2.12):

N
KN+ 1 1+z’
052 (1)

1x80+1 141
0 < 1.33,

This steady state is stable by the inequality (4.2.35):
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with eigenvalues for the trivial solution:

eigenvalues of J(SS(gy4)) = [—10.83,-0.586 +2.823i,—0.586 — 2.8231].
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Figure 5.3.18: This plot shows the three dimensional phase space of variables: total
number of trees, the total volume of trees in the site and the seedling count. The
trajectories shown are the same as those in Figure 5.3.17.

The outside trajectory, starting at point A, tends to the stable limit cycle, whereas, the trajectory
starting at point C tends to the steady state. Notice, the initial point B, which is located just
outside the dashed circle and tends to the stable limit cycle. This implies the existence of an
unstable limit cycle which is depicted by the dashed line.

In our next example we will show the effect of disease on a site that is in a state of oscillation.
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5.3.5 Example 5 (large initial forest volume and medium tree count with
introduction of infected trees, high pathogen virulence)

In this example we consider a forest site with the same initial volume and tree count at initial
instant of time as in Example 4. At time 6 = 4 an infectious agent is introduce in the forest. The
parameters and initial values are listed below, and along the right hand side of each Figure.

Domain:
0 € [0,20] (time)
Initial Values:
v, (0) = 0.03 (initial uninfected volume)
vw(0)=10.0 (initial infected volume)
i(0)=0.2 (initial uninfected total trees)
w(0) =0.0 (initial infected total trees)
s(0)=1E-8 (initial seedling count)
Resource Consumption:
K, =0.1 (rate of increase in size of uninfected tree)
Ky = .05 (rate of increase in size of infected tree)
Parameters:
u="_1 (constant proportional to death rate of uninfected trees)
vy=.2 (constant proportional to death rate of infected trees)
p=20,60 (pathogen virulence)
n =280 (competition between seedlings and adult trees)
c= (constant proportional to seedling reestablishment)

As shown in the Figures 5.3.19- 5.3.24, the oscillatory behavior of the ODE model of Figures
5.3.11- 5.3.16 can be disrupted by introducing an infectious disease to a portion of the forest
site. At time 8 = A, 20% the forest site is infected with a highly infectious disease, p = 60.
Recall the parameter p governs the virulence of the pathogen. With the diseased portion now
infecting other trees in the site, the evolution of the forest has been altered. We are able to break
the cyclic pattern of the forest site.
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Plot of the volume of the forest canopy
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Figure 5.3.19: This plot shows the oscillatory evolution of our previous example. The
site has a large initial uninfected forest volume and small forest tree count with no
infected trees at time 8 = 0. At time 0 = A a highly infectious pathogen is introduced,
p = 60, in the site, where 20% of the forest becomes infected. This particular
perturbation changes the cyclic pattern of the forest. Notice the stable limit cycle after
the pathogen is introduced has become a positive attractor (stable focus).

After the disease is introduced, and because the inequality (4.2.12) is satisfied, the stable forest
will have a segment of infected trees that remain. This steady state is obtained by equations
(4.2.14) -(4.2.18), where we find,

Ve =0.00212,

Vi =0.00549
SS(Ex.5) hasd ﬁ* = 0091

w* =0.15

s¥ =0.391.

As we have seen before the trivial steady state has become unstable.
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Plot of the number of trees and seedlings
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Figure 5.3.20: This plot shows the evolution of the total number of adult trees and
seedlings. The parameters are the same as Figure 5.3.19.

Projection of the phase space on the plane of vanables: total forest volume and seedling count
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Figure 5.3.21: This plot shows the projection of the phase space on the plane of

variables: volume of the forest and the seedling count. The parameters are the same as

in Figure 5.3

.19.
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Projection of the phase space on the plane of vanabtes: total number of trees and total seedling count
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Figure 5.3.22: This plot shows the projection of the phase space on the plane of

variables: total number of trees on the site forest and the seedling count. The parameters

are the same as in Figure 5.3.19.

Projection of the phase space on the plane of varables: total volume and lotal tree count
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Figure 5.3.23: This plot shows the projection of the phase space on the plane of

variables: total number of trees and the volume of trees in the site. The parameters are

the same as in Figure 5.3.19.
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Plot of the seedling carrying capacity
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Figure 5.3.24: This plot shows the evolution of the carrying capacity. The parameters
are the same as in Figure 5.3.19.

We will now show this same site where the pathogen virulence is slightly lower.

5.3.6 Example 6 (large initial forest volume and medium tree count with
introduction of infected trees, decreased pathogen virulence)

In this example we consider a forest site with the same initial volume and tree count at initial
instant of time as in Example 4. At time 6 = 4 an infectious agent is introduce in the forest. The
parameters and initial values are listed below, and along the right hand side of each Figure.

Domain:
8 € [0,30] (time)

Initial Values:
v,(0) =0.03  (initial uninfected volume)
vie(0) =0.0 (initial infected volume)
4(0)=0.2 (initial uninfected total trees)
w(0) =10.0 (initial infected total trees)
5(0) = 1E —8 (initial seedling count)

66



Resource Consumption:

K, =0.1 (rate of increase in size of uninfected tree)
Kw = .05 (rate of increase in size of infected tree)
Parameters:
p=_1 (constant proportional to death rate of uninfected trees)
Y=.2 (constant proportional to death rate of infected trees)
p=0,40 (pathogen virulence)
n = 80 (competition between seedlings and adult trees)
o=1 (constant proportional to seedling reestablishment)

Plot of the volume of the farest canopy

005 T T T T T
—= total volume{numencal)
~ = total infected volume (numencal)
0045+ 4
ICs
004tk ﬂv“(0)=0 0105
vw(0)=0
0.035r -u(0)=0 2278
w(0)=0
oscillations in infected
o 003F forest volume +5(0)=0 2315
E
2
2 00251 “parameters
=
=01
.?o:' prmary oscilations secondary oscillations E
002 =01
=02
0.015 p=40
m=80
0.01 =1
=5
0005 w701
Ix,=0.05

A time (8)

Figure 5.3.25: This plot shows an example with the same initial forest distribution as
Figures 5.3.19-5.3.24. At time 6 = 4 an infectious pathogen with a slightly less
virulence, p = 40, than that represented in Example 5 is introduced in the site, where
20% of the forest becomes infected. Notice the forest site responses by lowering the
forest tree count and volume, followed by an increase in the amplitude of the subsequent
seedling count peaks. The trajectory soon settles into a limit cycle as before, but with an
increase in amplitude.
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Plot of the number of trees and seedliings
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Figure 5.3.26: This is a plot of the total trees and seedings on the site. The parameters
are the same as in Figure 5.3.25.

Projection of the phase space on the plane of vanables: total forest volume and seedling count
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Figure 5.3.27: This plot shows the projection of the phase space on the plane of
variables: volume of the forest and the seedling count. The parameters are the same as
in Figure 5.3.25.
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Projection of the phase space on the plane of variables' total number of trees and lotai seedhing count
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Figure 5.3.28: This plot shows the projection of the phase space on the plane of
variables: total number of trees on the site forest and the seedling count. The parameters

are the same as in Figure 5.3.25.

Projection of the phase space on the plane of variables. total volume and total tree count
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Figure 5.3.29: This plot shows the projection of the phase space on the plane of
variables: total number of trees and the volume of trees in the site. The parameters are
the same as in Figure 5.3.25.
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Plot of the seedling carrying capacily
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Figure 5.3.30: This plot shows the evolution of the carrying capacity. The parameters
are the same as in Figure 5.3.25.

As shown in the Figures 5.3.25- 5.3.30, the oscillatory behavior of the ODE model of Figures
5.3.11- 5.3.16 can be disrupted by introducing an infectious disease to a portion of the forest
site. At time 68 = A, 20% the forest site is infected with an infectious disease, p = 40, half as
infectious as Example 5. With the diseased portion infecting other trees in the site but with a
lesser virulence, the evolution of the forest has only slightly been altered. We are not able to
break the cyclic pattern of the forest site. The oscillations remain, but with a larger amplitude.
Notice the forest has a portion of infected trees that remains with an oscillatory pattern. The
stable steady state for the trivial trajectory remains unstable, therefore an unstable limit cycle

does not exist in this site.
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Chapter 6

Conclusion

The introduction of disease into a forest site has been modeled to show that the effect is not
completely destructive to the forest system. Factors that were shown to affect the behavior of the
forest system were, mortality of infected trees caused by the type of disease, pathogen virulence
and competition for resources between adult trees and seedlings.

When the rate coefficients for mortality of uninfected and infected trees has the same order of
magnitude, the forest system tended to a steady state with infected trecs. Whereas, trees on a
forest site infected by a highly necrotic disease died out of the system, leaving no diseased trees
in the forest. When competition for resources between adult trees and seedlings was high, the
forest site showed oscillatory behavior. These oscillations, in both forest volume and tree count,
were shown to be altered by pathogen virulence. When the infectious agent had a relatively low
virulence the amplitude of oscillation increased, while a higher virulence broke the oscillatory
behavior and the system tended to a steady state.

Although diseased trees are generally considered to be undesirable, from this model the intro-
duction of an infectious agent in the forest system can be an effective tool to control over-growth

or saturation of a forest site and can contribute to the successful rehabilitation of forest systems.
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Appendix A

Numerical schemes

A.1 Numerical scheme for solving the IPDE model

The method of finite differences is used to produce an approximation for the boundary value
problem consisting of a set of integro-partial differential equations (we write them out once again

for convenience).

Jdu(8,0)  Ju(B,o) P,
5 + e —u(0,0) p w(0)u(6.,0), (A.1.1)
w(0.0) | WO _ Y g5yt Lo (0)u(a), (A.12)

09 oo, U U

where,

Vu(e):/O#amu(e,oc)bu(a)a’a, (A.1.3)
v (0) = /O P (8, 0y () dar, (A.14)
ds() o ~ 5(8) ) ALs
ae ;S(e) <1 max (Smin, | —M(vu(8) +vw(8))) ( )

Conditions are (3.2.17)-(3.2.20), (3.2.25), (3.2.26), and (3.2.32). We use N equal time steps

A6 across the domain [0,7*] and M equal time steps Ac. across the domain [0, uamax]:

*

6n=n% for n=0,1,2---N (A.1.6)

Hamax o0 m=0.1,2---M (A.17)

Oy = m






