WLDG 245.01: Metal Fabrication Design and Construction

Mark T. Raymond
University of Montana - Missoula, mark.raymond@mso.umt.edu

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation
Raymond, Mark T., "WLDG 245.01: Metal Fabrication Design and Contraction" (2015). Syllabi. 3073.
https://scholarworks.umt.edu/syllabi/3073
COURSE NUMBER AND TITLE: WLDG 245 Metal Fabrication Design and Construction

DATE REVISED: 2015

SEMESTER CREDITS: 4

FACULTY: Mark Raymond
E-Mail: mark.raymond@mso.umt.edu
Phone: 406-243-7647
Office: West Campus Welding lab
Office Hours: 12:00noon to 1:00p.m. or by appointment

RELATIONSHIP TO PROGRAM(S):
A course that may be considered the capstone of the Welding Technology program and AAS degree. Students use skills and knowledge gained in all previous courses and apply that information here through application and comprehensive problem solving.

COURSE DESCRIPTION:
Students combine all knowledge and skills developed in the welding program to design and draw a full set of plans (blueprints) and to build an instructor-approved project using extensive welding, metal fabrication equipment, machining processes and automation. High quality performance, consistent with business and industry required.

STUDENT PERFORMANCE OUTCOMES:
Occupational Performance Objectives
Upon completion of this course, the student will be able to:

1. Use technical terminology as it relates to welding based upon American Welding Society terms and definitions.
2. Demonstrate machine set-up for the successful welding of aluminum, stainless steel, carbon steel.
3. Demonstrate machine tool set-up/operation...press brake, optical tracer torch, lathe, milling machine, CNC mill, CNC lathe, and CNC plasma table, various welding machines, for the successful forming, machining & welding of metals.
4. Demonstrate the ability to plan, design and construct a project to industry standards. For graphic design and documentation, Autocad will be used.
5. Demonstrate fillet and groove welding to American Welding Society standards.
6. Complete written exams given covering metal fabrication with accumulative scores of 70% or better.
STUDENT PERFORMANCE ASSESSMENT METHODS AND GRADING PROCEDURES:

Grading Scale:
- 93 - 100 A
- 82 - 92 B
- 70 - 81 C
- 60 - 69 D
- 0 - 59 F

NOTE: Courses must be passed with a ‘C minus (C-)’ or greater to count toward degree/certificate requirements.

Grading Breakdown:
- Fabricated Project(s) 40%
- Fabrication drawings using AUTOCAD 15%
- Written exams 10%
- Quizzes 10%
- Lincoln Arc Welding Contest submission 20%
- Professionalism 5%

Fabricated project(s): The student will design and fabricate an approved project. It will be evaluated based upon design, execution of that design, general fabrication, welding, workmanship, etc.

Fabrication drawings using AUTOCAD: The student’s work is graded by 1)meeting required timelines presented in class, and 2) degree of excellence in the finished work as presented in class. Refer to the document “Required Elements for Fabrication II Drawings”.

Written tests: these tests are derived from reading assignments given in class (homework), notes from class lectures, video presentations, etc.

Quizzes are composed of student name/date and three questions. Name and date are worth 25%. Each question is worth 25%. To receive credit for questions they must be written out and correctly answered. Quizzes may be given at any time during the course scheduled meeting time.

Lincoln Arc Welding Contest: A national contest in pursuit of excellence in design, execution and communication of ideas of an arc welded fabricated project.

Professionalism is defined as a combination of one’s attitude, motivation, participation, organization and work area cleanliness.

ATTENDANCE POLICY:
Attendance is not taken, although you are required to be in attendance to successfully complete the course.

OTHER POLICIES:
1. Safety is required to be practiced at all times. Disregarding safety practices, endangering yourself or others may result in your being denied access to the lab areas.
2. Eye protection is mandatory at all times in the lab area.
3. Cell phones are not allowed in the class or lab area.
REQUIRED TEXTBOOKS:
Welding Principles and Practices, 3rd Edition; Sacks and Bohnart.

SUGGESTED REFERENCE MATERIALS:
The Welding Journal, monthly periodical published by the American Welding Society
AWS Welding Handbook, 8th edition, Volume 1-4
The Procedure Handbook of Arc Welding, 13th Ed.; Author: The Lincoln Electric Company;
Publisher: The Lincoln Electric Company

NOTE: The above reference materials are located at the College of Technology Library East
Campus, 909 South Avenue West, Missoula, MT.

REQUIRED SUPPLIES:
1. Welding helmet
2. Lightweight welding gloves (GTAW)
3. SMA welding gloves
4. Eye protection
5. Pliers with wire cutting capabilities
6. Wire hand brush
7. Chipping hammer
8. Coveralls or equivalent
9. Lock for locker
10. 4 ½” or 5” hand held right angle grinder required
11. Minimum of $100.00 for materials for fabrication project

ACADEMIC INTEGRITY: All students must practice academic honesty. Academic misconduct
is subject to an academic penalty by the course instructor and/or a disciplinary sanction by the
University. All students need to be familiar with the Student Conduct Code. The Code is
available for review online at http://www.umt.edu/SA/VPSA/index.cfm/page/1321.

DISABILITY ACCOMMODATION: Eligible students with disabilities will receive appropriate
accommodations in this course when requested in a timely way. Please contact me after class
or in my office. Please be prepared to provide a letter from your DSS Coordinator. For more
information, visit the Disability Services website at http://www.umt.edu/dss/ or call 406.243.2243
(Voice/Text).

NOTE: Faculty reserves the right to modify syllabi and assignments as needed based on
faculty, student, and/or environmental circumstances.

COURSE OUTLINE:
1. Computer Aided Drafting / Design
2. Part processing, quality assessment
3. Layout, fit-up, assembly concepts
4. Processing / welding cost evaluation
5. Practical problem solving through student fabrication projects
6. Documentation of Fabrication (Lincoln Arc Welding Awards Contest)