1-2015

BIOM 251.01: Microbiology for the Health Sciences - Laboratory

James D. Driver
University of Montana - Missoula, jim.driver@mso.umt.edu

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation
Driver, James D., "BIOM 251.01: Microbiology for the Health Sciences - Laboratory" (2015). Syllabi. 3358.
https://scholarworks.umt.edu/syllabi/3358

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
BIOM 251 Microbiology for Health Sciences Laboratory

Section 01 – HS 404, MW 1-3pm Section 02 – HS404, MW 3-5pm
Section 03 – HS 404 MW 10am – 12pm Section 04 - HS 405 MW 10am – 12pm

Instructor: Dr. Jim Driver. Email - jim.driver@mso.umt.edu. Phone – 243-4669
Office: ISB 017, Electron Microscopy Lab. Office Hours: 10 – 11am Tuesdays or by aptmt.

Teaching Assistants:
Lauren Foltz. Email: lauren.foltz@umconnect.umt.edu
Britney Cheff. Email: Britney.cheff@umconnect.umt.edu

Required items:
1. Course Pack available at UM Bookstore
2. Bound “composition type” lab notebook
3. Fine-tipped permanent marker
4. Lab coat – worn when performing lab work in lab class.

Course Objectives:
To learn techniques for cultivating microorganisms of interest from the environment.
To learn how to characterize and identify unknown microorganisms.

Grades:
A (100-90%) B (89-80%) C (79-70%) D (69-60%) F (<60%) (+/- grading not used)

Grades based on:
Lab Notebook (collected twice during the semester). This will be a journal of everything you do in the laboratory during this class. It should contain enough information so that another student could replicate your experiment and also enough information for that student to understand the results you obtained, positive or negative. The lab notebook will be written in ink. Mistakes can be crossed out. The lab write-up for each exercise should contain the objectives for that lab (introduction), materials you used, the methods you used to perform the lab, the results you obtained, and a short discussion of any problems or negative results and the reasons behind them. The questions in the Discussion section of each lab should be answered also at the end of your write-up. Completeness, not neatness is best. But please make it legible. Include any illustrations that could add to the results.

Each lab write-up will be worth 30 points. Total; 8 labs x 30 points = 240 points

Quizzes. Three short quizzes will be given before class on February 11th (Quiz #1), February 18th (Quiz#2), and March 4th (Quiz#3). Each quiz will be worth 10 points each. (30 points total)

Bacterial isolate paper. This will be a research-paper format report describing the isolation, characterization and identification of your Bacterial Isolate from Lab 6. You will use some of the
techniques learned in the first part of the course to isolate in pure culture an unknown organism from a mixed culture provided to the class. You will then characterize it based on use of the previous tests and some new tests run during Labs 7 and 8. You will then attempt to identify you isolate using the key on page 29 of the course pack and one other source. Details on the required format for the paper are listed in Lab 6 of the course pack. This final paper will be worth 100 points (not the 30 points listed in Lab 6) to allow for more flexibility for grading.

Week 1 (1/26, 1/28)
1/26 – Introduction. Overview of course and requirements
1/28 - Lab safety, tools and techniques.

Week 2 (2/2, 2/4)
2/2 – Exercise 1. Use of microscope, streak plates for unknowns.
2/4 – Exercise 1 (cont.). Observe unknowns from streak plates, characterize.

Week 3 (2/9, 2/11)

Week 4 (2/18 only)
2/16 – Presidents day, no lab.
2/18 – Lab Quiz #2 at beginning of lab. Lab Notebooks (#1) turned in at end of class

Week 5. (2/23, 2/25)
2/25 – Exercise 6 (continued). Isolate and preserve Bacterial Isolate as pure culture

Week 6. (3/2, 3/4)
3/2 – Exercise 7. Aerobic, micro-aerophilic, and aerobie growth

Week 7. (3/9, 3/11)
3/9 – Characterization of Bacterial Isolate by catalase/oxidase/starch hydrolysis
3/11 – Characterization of Bacterial Isolate by carbohydrate fermentation.
3/11 - Finish Bacterial Isolate characterization/identification.

3/16 – Bacterial isolate paper due. Lab notebooks due.