Resist method collagraph| an advantage in the translation

Nik Carpenter
The University of Montana

Let us know how access to this document benefits you.

Follow this and additional works at: https://scholarworks.umt.edu/etd

Recommended Citation
Carpenter, Nik, "Resist method collagraph| an advantage in the translation" (1971). Graduate Student Theses, Dissertations, & Professional Papers. 3412.
https://scholarworks.umt.edu/etd/3412

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
RESIST METHOD COLLAGRAPh: AN ADVANTAGE
IN THE TRANSLATION

by

Nik Carpenter

B.F.A., The School of The Art Institute of Chicago, 1969

Presented in partial fulfillment of the requirements for the degree of

Master of Fine Arts

UNIVERSITY OF MONTANA

1971

Approved by

[Signatures]

Chairman, Board of Examiners

Dean, Graduate School

Date
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Plate: A Discovery</td>
<td>1</td>
</tr>
<tr>
<td>The Tests</td>
<td>3</td>
</tr>
<tr>
<td>Resist Method Prints</td>
<td>5</td>
</tr>
<tr>
<td>The Advantages</td>
<td>14</td>
</tr>
</tbody>
</table>
RESIST METHOD COLLAGRAPHi: AN ADVANTAGE IN THE TRANSLATION

Constructing a plate for the collagraph print is very similar to constructing a collage, forasmuch as various materials such as paper, cloth, leather, leaves, etc. are composed then attached to a cardboard, wood, masonite or plastic surface. For easier inking and wiping, and to allow for durability when printing, the surface can be impregnated with lacquer, shellac, enamel, etc. Since there is not a particular or conventional procedure for constructing the collagraph plate, the series of steps taken to complete the plate for printing vary with each printmaker. Some prefer to work violently and impetuously, while others work slowly and patiently. The approach is necessarily dependent upon the printmaker's temperament.

The advocacy of divergence in approach and process must be predominant in the making of a work of fine art. With the wide range of processes possible in preparing the collagraph plate, embodied with an attitude of encouragement, and guidance, the artist can carry out his investigation in the direction which excites him the most.

I have been fortunate in that I have had both guidance and encouragement while working these past
months: I was able to carry out my investigation which led to the discovery of the resist method collagraph.

While preparing a collagraph plate on the reverse, textured side of a masonite panel, I accidently, i.e. unexpectedly, discovered the process which I later called the resist method collagraph. I had drawn a sketch with white, chalkboard chalk on the textured masonite surface. When the protective coating of lacquer was applied, there was a particular area where the chalk remained exposed and could not be covered, although I applied several coats of lacquer to it.

The powder-like quality of the chalk caused the protective coating of lacquer to "bead" and roll off. I prepared another plate using another piece of chalk and I achieved the same results, but with a degree of control. The lacquer was being resisted by the chalk. I consulted the directions on the lacquer can: "PREPARE SURFACE: Remove loose rust and paint, scale, oil, grease, etc."

The fact that any medium composed of wax, grease, oil, or dust (as in the case of chalk) will repel lacquer, constituted the basis for the resist method collagraph.
Through a series of tests I discovered other sealers or protective coatings, which if sprayed or brushed over wax, grease, or oil base media, would be repelled. Acrylic medium, Elmer's glue (a water soluble, polymer base glue), or Lepage's glue were used as protective coatings in the series of tests.

Although the preparation of the second masonite panel, using the chalk for the drawing, could be considered a test, it was conducted out of curiosity rather than intent. The series of experiments, or tests, which I conducted in my studio were necessary in order to find the combination of materials that would give the desired results.

Test One

Markings made with chalk on the pebbled surface of heavy cardboard, and sprayed or painted with lacquer, enamel, or waterbase glue gave the following result: the powdery quality of the chalk would not remain on the surface when a protective coating was applied. This was a result of the surface not being textural enough, and the chalk being too easily removed.
Test Two

Wax-base crayon markings on the pebbled cardboard were given the same protective coatings as in test one. Although the markings remained, the coatings tended to close up or cover over the markings, causing the printed image to lack intensity, that is, the image was too faint.

Test Three

Wax-base crayon markings on textured masonite surfaces were given the protective coatings as in tests one and two. The lacquer coating required eight separate applications before the areas not marked on were filled in and smooth. The glue required five applications. Both the lacquer and glue were unsatisfactory because of the number of applications. The enamel had to be applied twice, but the image was sealed in and consequently faint, and in areas, completely lost.

Test Four

The same procedure used in tests one
through three was used in this test. The surface was a thin, even layer of carborundum on cardboard. The markings were made with a wax-base crayon. The results, based on line quality and gradation from dark to light, were the most encouraging yet. The drawback was the expense of the carborundum. I felt there might be a less costly, and more easily obtainable material.

Test Five

This was the same as test four except that crushed walnut shell was used instead of carborundum. The texture of the surface was very coarse and yielded the same results as the textured masonite in test three.

Test Six

Tushe markings on a cloth surface yielded a more positive result. The cloth material, eight ounce awning canvas, was glued to two masonite panels. Each surface was marked with tushe and then given a coating of either lacquer or water-base glue. The lacquered panel required several application, while the glue coated surface
required two applications. The results of the tushe and glue on canvas were most successful. The quality of the line was loose, i.e., organic in nature, and there was a range of grays (maximum of four), plus black and white.

Test Seven

The range of grays was limited in test six because of the coarseness of the canvas. In the seventh test I used a piece of discarded pillow case and proceeded as in test six. A wider range of grays was possible, and the number of lacquer coatings was decreased. The number of glue coatings still remained at two. I prefer the glue; it is less expensive than the lacquer, requires fewer applications, and finally, it can be cleaned from the brush with water. Later I discovered that one, quick, thin coat of lacquer sprayed over the glue was necessary to prevent the damp paper from sticking to the plate during printing.

Test Eight

This test was to be my final one in the series. I used unbleached muslin adhered
to stiff cardboard for the surface. Upon that surface I made markings with an oil-base stick and coated the entire surface with two applications of water-base glue. When the glue was dry, I removed the oil-base markings with turpentine and a small vegetable brush. When the surface was clean and dry, I sprayed it with a quick, thin coat of lacquer. The muslin surface, oil-base crayon, and water-base glue produced the best results. The surface allows a range of grays and covers easily with the oil-base crayon and water-base glue. The crayon is easily removed with a solvent and a minimum of scrubbing.

After the protective coatings dry, the wax, grease, or oil drawing is removed with a scrub brush and solvent such as kerosene, oleum, turpentine, paint thinner, etc. The plate can then be inked, wiped, and printed in the same manner as for intaglio printing.
Resist Method Prints

The following prints were constructed with muslin or percale glued to masonite, then drawn on with various resists. In each case the protective coating of glue was given a second, light coat of lacquer to prevent the damp paper from sticking during printing.

Plate I. Oil resist on muslin
Plate II. Wax crayon resist on muslin
Plate III. Hot wax resist on muslin
Plate IV. Hot wax and wax crayon resist on percale
Plate V. Wax crayon resist and spray lacquer on percale coated with thin, diluted coat of modeling paste. Two plates were used for the color
There are several advantages that the resist method collagraph plate offers to the artist. First, it is light in weight and can be easily taken into the drawing studio or outside to be worked upon. If corrections are to be made while working out an image, the plate can be cleared with turpentine and a small brush. Also, the plate is inexpensive to make, requiring cardboard, muslin (or percale), glue, lacquer and a wax-grease crayon.

Finally, the resist method collagraph has the potential to allow a freedom in making an image. Often the image from a collagraph print lacks the same spontaneous quality that can be present in a drawing on paper. When the artist attempts to translate the same qualities to the plate, the nature of the medium or process may hinder a complete or satisfactory interpretation. The resist method collagraph plate can be used as a ground for a "first hand rendering" using materials that require a minimum of technical skills for their use.

The resist method, while derived from the collagraph, changes the nature of the collagraph. The qualities of draftsmanship found in pencil drawings are more approachable with the resist method.