9-2003

GEOL 207.01: Geological Hazards and Disasters

Donald W. Hyndman

University of Montana - Missoula

A modern structural-steel skyscraper collapses in an earthquake while a nearby old building survives. Why?

A town on a nearly flat area well away from a volcano that hasn’t erupted in historic time is incinerated when the volcano erupts, even though only ash erupted. Why?

Coastal houses on a long-overgrown barrier island bar standing 10-feet above sea level are submerged, then washed away in a hurricane. Why?

A town on the floodplain behind a protective levee is severely flooded even though the levee doesn’t fail. Why?

A group of houses on a hillside that has been there for thousands of years collapses in a landslide. Why?

In this course we will examine geological hazards and often disasters, the processes that control them, how they can be predicted and avoided, and how we can minimize their occurrence and effects. More and more we live in locations that are clearly hazardous. Sometimes the hazards are obvious, sometimes more subtle. Seeing the results of disasters, we wonder how people could be so ignorant as to put themselves in such hazardous positions. In many cases disasters cannot be prevented; in other cases our attempts at preventing or minimizing a problem creates greater hazards or disasters for others.

Topics and tentative dates:

M, W, Jan. 27, 29

Earth equilibrium, uniformitarianism versus catastrophism, Chaos/complexity/criticality theory, hazard and risk analysis, tectonic and climate controls, global warming, societal reactions, population pressures, Probability, frequency,
cycles, recurrence intervals; magnitude of the event; causes; the role of overlapping unrelated events.

M, W, Feb. 3, 5, M, W, Feb 10, 12, M, W, Feb. 17[UM Holiday], 19

Earthquakes [Abbott, p. 52–56, 81]

Types of waves, magnitude scales [61–65, 70–90]

Frequency, site response, building design to prevent collapse.

Case histories in different tectonic environments [56–61, 89–121, 128–131]

M, W, Feb. 24, 26, M, W, Mar. 3 [1st Midterm], 5, M, Mar 10

Volcanoes [Abbott, p.134–143]

Different magmas, explosivity; types of eruptions and their hazards, including lava flows, air–fall ash, ash flows, mudflows, poisonous gases [143–153]

Case histories of volcanoes and their eruptions in different tectonic environments [130–131, 155–178]

Monitoring and prediction of eruptions: short term, long term.

W, Mar 12, M, W, Mar 17, 19

Landslides: movement types, factors controlling downslope movement, soil strength, friction, water, clays [Abbott, p. 180–212]

Rockfalls, debris avalanches, debris flows, mudflows, translational slides, rotational slumps, liquefaction and soil flow, expansive soils and soil creep

========= Mar. 24–28: Spring Break ==============

M, Mar. 31, W, Apr. 2

Climate and Weather related to Hazards:

El Niño/La Niña [Abbott, 228–231]

Weather, temperature and pressure differences, trade and westerly winds, adiabatic cooling, cold and warm fronts, **cyclonic circulation** [237–260]

M, W, Apr. 7, 9

Waves, beaches, coastal erosion: wave characteristics, summer and winter beaches, wave refraction and longshore drift; sand supply and cliff erosion;
groins, jetties, and breakwaters; examples. [275–286]

W, Apr. 16, M, W, Apr. 21, 23
Hurricanes and other cyclones: categories, storm surges [262–274]
Hurricane case histories

M, W, Apr. 28, 30, M, W, May 5, 7
River floods: Stream behavior, equilibrium, natural channel response, flood control, channelization, dams, urbanization, hydrographs, flood frequency, Case histories, giant floods [Abbott, p. 289–312]

Course Grade based on: 2 midterms worth 25% each
Final exam worth 50%