Fall 2015

GEO 595.01: Topics in Numerical Methods for Geosciences

Rebecca O. Bendick Kier

University of Montana - Missoula, r.bendick@umontana.edu

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation
https://scholarworks.umt.edu/syllabi/3749

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
The purpose of this course is to introduce students to a range of advanced and new methods for geosciences research. Each method will be developed to provide students with sufficient familiarity to evaluate applications of the method, read literature critically, and find additional supplementary materials for further study. Emphasis will be on conceptual understanding and experimental design rather than detailed implementation.

Each topic will be covered with the same structure. In the first week, class will include basic content introducing the method and discussion of one or more publications employing it. In the second week, one or more students will present on the topic’s potential application to their own research, and then the group will work as a research team to design a detailed implementation.

Grades will be based on three components: 33% general participation in class discussions, 33% on discussion presentation and leadership, and 33% on a final paper building on the moderated discussion of application of one method to the student’s own research.

The topics and order listed below may be changed by the consensus of the class.

September 2: final topic selection, course expectations, discussion of class structure
September 9 and 16: Frequentist and spatial statistics
September 23 and 30: Bayesian statistics
October 7 and 14: Signal processing
October 21 and 28: ODE and PDE solvers
November 4 and 11: Stability analysis
November 18 and December 2: Big data algorithms
December 9: final presentations