Spring 1-2016

CSCI 113.01: Programming with C++

Thomas P. Gallagher

University of Montana - Missoula, thomas.gallagher@umontana.edu
CSCI 113 Programming with C++
Credits: 3
Term: Spring 2016
Prerequisites: M 90 Introductory Algebra
Syllabus Last Revised: January 2016
Class Meetings: MTRF 11-12 HB04
Final Exam Meeting: Friday, May 13 10:10

Faculty Contact:
Tom Gallagher - Thomas.Gallagher@umontana.edu Phone: 406.243.7814
Office Hours: TBD Office Location: Griz House 8
(NE Building on COT East Campus)

Course Description:
Object oriented programming using C++. Implementation of structured programming concepts along with construction of classes to create data types for defining objects

Course Overview:
C is one of the most widely used programming languages. It was first developed by Dennis Ritchie in the late 1960s at AT&T Bell Labs. C is a procedural language widely utilized in programming hardware devices. C++ was first developed by Bjarne Stroustrup in 1979. C++ can be thought of as an enhanced version of C. C++ adds the use of classes in forming an object-oriented paradigm for programming. C++ was initially called C with Classes, but was renamed C++ in 1983. We will study the object-oriented principles of encapsulation, data abstraction, inheritance and polymorphism found as implemented in the C++ language.

There are numerous C++ compilers and integrated development environments available to programmers for nearly all computing platforms. In this class, we’ve chosen the Eclipse IDE as our development tool and the GNU C/C++ Compiler.

We’ll also discuss the C language as a hardware programming tool. The Raspberry Pi (Linux OS) will be used as a platform for hardware-oriented programming.

Course Outcomes:
Upon completing this course, a student will be able to:
• Design and implement programs using C++;
• Explain and be able to use data types, variables, constants, assignment statements, and arithmetic and Boolean expressions in writing programs;
• Explain and be able to use fundamental programming constructs such as sequencing, decisions and iteration;
• Explain and be able to use fundamental object oriented principles such as classes, objects, methods, encapsulation, data hiding, inheritance and polymorphism;
• Explain and be able to use arrays and structures;
• Explain and be able to use exception handling

Required Textbook:

*** Note: a newer edition of the textbook is available. We are using the older as a cost saving measure to students. I encourage you find a used copy for use in this class.

Software (compiler & IDE)
MinGW (Minimalism GNU for Windows) C/C++
http://sourceforge.net/projects/mingw/files/

Notepad ++
Full Install: https://notepad-plus-plus.org/
Portable App: http://portableapps.com/apps/development/notepadpp_portable
Other Materials
SD Card (prefer 8GB or greater)

Raspberry Pi Computing System. These will be provided for a series of classroom labs. They are an interesting development platform as they are a complete computing system at a retail price under $40.
http://www.amazon.com/Raspberry-Pi-Model-Project-Board/dp/B00T2U7R7I/

Assessment
Grades will be weighted and graded as follows:

<table>
<thead>
<tr>
<th>Assessment Area Weighting</th>
<th>Grading Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming Assignments</td>
<td>90-100%</td>
</tr>
<tr>
<td>Unit Quizzes</td>
<td>80-89%</td>
</tr>
<tr>
<td>Homework and Participation</td>
<td>70-79%</td>
</tr>
<tr>
<td>Final Project</td>
<td>60-69%</td>
</tr>
</tbody>
</table>

Academic Integrity:
All students must practice academic honesty. Academic misconduct is subject to an academic penalty by the course instructor and /or a disciplinary sanction by The University. All students need to be familiar with the Student Conduct Code. The Code is available for review online at:
http://www.umt.edu/vpsa/policies/student_conduct.php

Using the Web to research materials and concepts is an integral part of learning in the twenty-first century. Studying with other students is a productive method of learning. A certain amount of collaborating on concepts with other students and using resources found on the Internet in an assignment is recommended. Copy and paste is not acceptable. It is expected that each student will input his/her assignment into the computer, and each student must be able to explain any assignment turned in. Collaboration on exams is strictly forbidden.

Collaboration on homework assignments is encouraged. Collaboration on programming assignments is prohibited.

Dropping and Adding Courses or Changing Sections, Grading or Credit Status
University Policy for dropping courses or requesting grading/credit status changes can be found in the catalog: http://www.umt.edu/registrar/students/dropadd.php Students should become familiar with all academic policies

Disability Accommodations:
Eligible students with disabilities will receive appropriate accommodations in this course when requested in a timely way. Please contact me if you will be requesting an accommodation. Please be prepared to provide a letter from your DSS Coordinator. For more information, visit the Disability Services website at http://www.umt.edu/dss or call/text 406.243.2243.

Late Assignment Policy:
All quizzes and programming assignment are to be completed on the assigned date and time. Late assignments will be accepted without appropriate justification and only at the discretion of the instructor. Rescheduling of a quiz will be approved at the discretion of the instructor and only in extraordinary situations.

Learning Management System:
It is the responsibility of the student to access and familiarize herself/himself with the Learning Management System (LMS) for the course (Moodle). Access & training is available through UMOnline http://moodle.umt.edu

Changes to Syllabi:
Note: Instructor reserves the right to modify syllabi and assignments as needed based on faculty, student, and/or environmental circumstances. If changes are made to the syllabus, amended copies will be dated and made available to the class.