Instream flow and water regime of selected riparian habitats in west-central Montana

Stephanie K. Mulica
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd
Let us know how access to this document benefits you.

Recommended Citation
Mulica, Stephanie K., "Instream flow and water regime of selected riparian habitats in west-central Montana" (2002). Graduate Student Theses, Dissertations, & Professional Papers. 4651. https://scholarworks.umt.edu/etd/4651

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
INSTREAM FLOW AND WATER REGIME OF SELECTED RIPARIAN HABITATS
IN WEST-CENTRAL MONTANA

by

Stephanie K. Mulica
B. Sc. Northern Arizona University
presented in partial fulfillment of the requirements for the degree of
Master of Science
The University of Montana

December 2002

Approved by:

[Signature]
Chairperson

[Signature]
Dean, Graduate School

Jan 7, 2003
Date
Instream Flow and Water Regime of Selected Riparian Habitats in West-Central Montana

Director: Donald Potts

Groundwater and surface water extraction and diversion for agricultural and human use has become common practice in the arid and semi-arid western United States. Surface water and groundwater are often not effectively managed during these processes, and few laws exist to protect riparian vegetation in the case of depletion of instream flows and the riparian water table. This study examined ten riparian habitats in west-central Montana to attempt to quantify the hydrologic characteristics required by these habitats, including instream flow, depth to the water table, water table change and the interaction of surface water with groundwater. The study period occurred in the middle of a period of extreme drought in Montana. Hydrologic observations made during the study may represent the baseline requirements of these riparian habitats. Graphical comparisons between topography and the water table, hydrographs of stream height versus water table elevation and instream stage duration curves were utilized to attempt to quantify the riparian hydrologic regime. Results of this study were not able to conclusively confirm patterns in hydrologic regime of the selected riparian habitats. The period of below average stream flow and water table elevation, or the need to study additional variables in conjunction with several more seasons of observation may be necessary to quantify the specific hydrologic requirements of Montana’s riparian communities.
ACKNOWLEDGEMENTS

This study was funded by the Rocky Mountain Research Station and was made possible by the knowledge and technical assistance of Dr. Donald Potts, Dr. Robert Pfister and Dr. Bill Woessner. I owe special thanks to Peter Steinberg for his assistance in the field and knowledge of botany, and to Allison Staub and Josh Lauer for their valuable help collecting data in the variable weather of Kings Hill Pass. My deepest gratitude is owed to my friends and family for their strong support. To Josh Lauer, thank you for your love, support and for the occasional gentle push in the right direction.
TABLE OF CONTENTS

1.0 INTRODUCTION/LITERATURE REVIEW ... 1
 1.1 INUNDATION/DURATION .. 2
 1.2 GROUNDWATER ELEVATION CHANGE ... 3
 1.3 INSTREAM FLOW ... 4
 1.4 GROUNDWATER/SURFACE WATER INTERACTION 6

2.0 STUDY AREA .. 8
 2.1 PHYSIOGRAPHY .. 8
 2.2 TOPOGRAPHY .. 9
 2.3 CLIMATE .. 9
 2.4 LAND USE .. 10
 2.5 GEOLOGY .. 10
 2.6 HYDROGEOLOGY ... 11
 2.7 QUATERNARY ALLUVIUM ... 11
 2.8 TERTIARY ALLUVIUM .. 12
 2.9 SIGNIFICANT BEDROCK FORMATIONS ... 12
 2.10 SPRINGS ... 13
 2.11 GROUNDWATER QUANTITY .. 14
 2.12 GROUNDWATER AND SURFACE WATER QUALITY 15

3.0 METHODS .. 16
 3.1 FIELD METHODS .. 16
 3.2 OFFICE METHODS ... 18
 3.3 DESCRIPTIONS OF TRANSECT SITES ... 21

4.0 RESULTS .. 25
 4.1 DESCRIPTIONS OF WATER REGIME OF TRANSECT SITES 25
 4.2 DESCRIPTIONS OF RIPARIAN HABITAT ENVIRONMENTS 39
 4.3 INUNDATION/DURATION ... 56
 4.4 DEPTH TO GROUNDWATER .. 60

5.0 DISCUSSION AND CONCLUSION ... 65
 5.1 INTERACTION OF INSTREAM FLOW, GROUNDWATER AND RIPARIAN HABITAT
 DISTRIBUTION .. 65
 5.2 INUNDATION DURATION AND RIPARIAN HABITAT DISTRIBUTION 66
 5.3 WATER TABLE DYNAMICS AND RIPARIAN HABITAT DISTRIBUTION 67
 5.4 RECOMMENDATIONS FOR FURTHER RESEARCH 68

6.0 REFERENCES CITED .. 70
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Flow Duration Curves depicting the percentage of time a certain discharge was met historically and during the study period (1999-2001).</td>
</tr>
<tr>
<td>2-1</td>
<td>Study Area Location Map.</td>
</tr>
<tr>
<td>3-1</td>
<td>Transect Site Detail Map.</td>
</tr>
<tr>
<td>4-1a</td>
<td>Water table regime of Upper Smith River, Transect L1.</td>
</tr>
<tr>
<td>4-1b</td>
<td>Hydrograph and Water Table Elevations of the Upper Smith River at Transect L1.</td>
</tr>
<tr>
<td>4-2a</td>
<td>Water table regime of Camp Baker, Smith River at Transect L3.</td>
</tr>
<tr>
<td>4-2b</td>
<td>Hydrograph and Water Table Elevations of Camp Baker, Smith River at Transect L3.</td>
</tr>
<tr>
<td>4-3a</td>
<td>Water table regime of Bair Headquarters, Musselshell River at Transect L9.</td>
</tr>
<tr>
<td>4-3b</td>
<td>Hydrograph and Water Table Elevations of Bair Headquarters, Musselshell River at Transect L9.</td>
</tr>
<tr>
<td>4-4a</td>
<td>Water table regime of Copper Creek at Transect M2.</td>
</tr>
<tr>
<td>4-4b</td>
<td>Hydrograph and Water Table Elevations of Copper Creek at Transect M2.</td>
</tr>
<tr>
<td>4-5a</td>
<td>Water table regime of Lion Creek at Transect M4.</td>
</tr>
<tr>
<td>4-5b</td>
<td>Hydrograph and Water Table Elevations of Lion Creek at Transect M4.</td>
</tr>
<tr>
<td>4-6a</td>
<td>Water table regime of the Sheep Creek Road Wet Meadow at Transect M4.</td>
</tr>
<tr>
<td>4-6b</td>
<td>Water Table Elevations of the Sheep Creek Wet Meadow at Transect M6.</td>
</tr>
<tr>
<td>4-7a</td>
<td>Water table regime of Tenderfoot Creek, Onion Park at Transect H1.</td>
</tr>
<tr>
<td>4-7b</td>
<td>Water Table Elevations of Tenderfoot Creek, Onion Park at Transect H1.</td>
</tr>
<tr>
<td>4-8</td>
<td>Groundwater Regime of the CARROS habitat type, CARROS phase.</td>
</tr>
<tr>
<td>4-9</td>
<td>Groundwater Regime of the CARROS habitat type, DESCES phase.</td>
</tr>
<tr>
<td>4-10</td>
<td>Groundwater Regime of the CARSCO habitat type.</td>
</tr>
<tr>
<td>4-11</td>
<td>Groundwater Regime of the DESCES habitat type.</td>
</tr>
<tr>
<td>4-12</td>
<td>Groundwater Regime of the ELEPAL habitat type.</td>
</tr>
<tr>
<td>4-13</td>
<td>Groundwater Regime of the PICENG/EQUARV habitat type.</td>
</tr>
<tr>
<td>4-14</td>
<td>Groundwater Regime of the POPTRE/CALCAN habitat type.</td>
</tr>
<tr>
<td>4-15</td>
<td>Groundwater Regime of the POTFRU/DESCES habitat type.</td>
</tr>
<tr>
<td>4-16</td>
<td>Groundwater Regime of the SALDRU/CARROS habitat type.</td>
</tr>
<tr>
<td>4-17</td>
<td>Groundwater Regime of the SALLUT/CALCAN habitat type.</td>
</tr>
<tr>
<td>4-18</td>
<td>Frequency of depth to saturation of the forest riparian habitat types.</td>
</tr>
<tr>
<td>4-19</td>
<td>Frequency of depth to saturation of the willow and shrub riparian habitat types.</td>
</tr>
<tr>
<td>4-20</td>
<td>Frequency of depth to saturation of the sedge and non-sedge riparian habitat types.</td>
</tr>
<tr>
<td>4-21</td>
<td>Inundation duration of riparian habitats that had water at or above the ground surface during the study.</td>
</tr>
</tbody>
</table>
Figure 4-22. Duration of saturation within the root zone (<30 cm) of selected riparian habitats.59
Figure 4-23. Range of depth to groundwater of selected riparian habitats. ...61
Figure 4-24. Stage Duration Curves for Selected Riparian Habitat Types...63

LIST OF TABLES

Table 1-1. Riparian habitat/community types of the White Sulphur Springs area, central Montana..................20
Table 4-1. Riparian habitat types selected for comparison...39

LIST OF APPENDICES

Appendix A. Riparian Vegetation Spreadsheet ..75
Appendix B. Cross-sections of Study Transects ..76
1.0 INTRODUCTION/LITERATURE REVIEW

Groundwater and surface water extraction and diversion for agricultural and human use has become common practice in the arid and semi-arid western United States. Surface water and groundwater are often not effectively managed during these processes, and few laws exist to protect riparian vegetation in the case of depletion of instream flows and the riparian water table. “Instream flow” is defined as waters that are “retained in their natural setting” rather than diverted for human uses (Gordon et al., 1999).

In general, riparian vegetation represents approximately 1 percent of the total land area, but provides greater biological density and diversity than upland vegetation (Hanson et al., 1995; Knopf et al., 1988). Riparian vegetation plays a critical role in the health of the stream ecosystem, providing fish habitat, water storage and aquifer recharge, filtering of sediments and wastes, bank building and stabilization, flow energy dissipation and primary biotic production (Ehrhart and Hansen, 1998; Rood et al., 1998). There is evidence to support the theory, however, that high flows and inundation duration are critical to the development and maintenance of riparian vegetation habitats, and that small changes in discharge and water availability greatly affect the abundance of riparian vegetation (Auble et al., 1994; Rood and Mahoney, 1990; Rood et al., 1994; Rood et al., 1998; Stromberg and Patten, 1992; 1996; Stromberg et al., 1996; Smith et al., 1991; Henszey et al., 1991; Shafroth et al., 2000). The establishment of management guidelines for adequate riparian water supply is only possible following the documentation of specific community hydrologic requirements for establishment, development and survival (Stromberg et al., 1996). An essential aspect of understanding riparian habitat requirements is the “direct observation of surface flooding or seasonal water tables” (Carter et al., 1994; Soden, 1999). Chapin et al. (2002) submitted that periodic high flows with a return interval of 3 to 7 years are essential to maintaining riparian communities; however, their study did not consider the daily flows and water table changes that riparian communities experience routinely. Additionally, the study can only apply to the topographically lowest portions of the riparian area.
Several studies have explored specific environmental relationships of riparian communities of Montana (Brichta, 1987; Chadde et al., 1988; Soden, 1999). The purpose of this study was to help define the characteristics of the riparian water regime with both qualitative and quantitative instream flow and groundwater information. The water regime of a riparian community is defined by the inundation duration associated with the community, dynamics of water table change, stream flow and the interaction of groundwater and surface water (Walker and Wehrhahn, 1970; Dionigi et al., 1985; Shafroth et al., 2000).

The objectives of this study were to:
1. determine the interaction of instream flow in reference reaches with groundwater in surrounding riparian areas;
2. gain an understanding of flow and inundation duration on reference reaches and how they influence riparian vegetation distribution in surrounding riparian areas; and
3. define the dynamics of water table change in riparian habitats examined in this study.

1.1 INUNDATION/DURATION

The driving force behind the development and sustainability of riparian areas is the “recurrent, sustained saturation of the upper part of the substrate” (Doss, 1995; Soden, 1999). Inundation duration is also a predictor of vegetation distribution due to the varying degrees of tolerance riparian species have to saturation in the soil. Soil “inundation” is defined as a water table that is at or above the ground surface. The 1987 Army Corps of Engineers Wetland Delineation Manual states that for the water table to significantly affect wetland vegetation, soil “saturation” must occur within 30 cm of the ground surface, or the plant root zone (USACE, 1987). Saturated soils diffuse oxygen approximately four orders of magnitude slower than in air; therefore, riparian areas experiencing regularly high groundwater tables and extended inundation duration sustain riparian species tolerant of frequently saturated soils (Dionigi et al., 1985; Auble et al., 1994; Shafroth et al., 2000). Additionally, soil saturation greatly influences soil
temperature, organic decomposition and soil chemistry (Brichta, 1987). In semi-arid and arid areas of the western United States, water availability to riparian plant roots becomes a limiting factor in their distribution (Brichta, 1987; Stromberg, 1993; Auble et al., 1994; Scott et al., 1996). Several studies of the riparian *Populus* species indicate that a decrease in inundation duration on alluvial bars and stream banks limits cottonwood establishment, growth and survival (Stromberg and Patten, 1996; Rood et al., 1994). In a wet meadow riparian environment, soils maintain a relatively constant high-water table in the absence of a stream channel to convey water flow. Henszey et al. (1991) found that artificially elevated water tables in moist to wet meadows caused a shift to riparian plants tolerant of anaerobic soils. In Montana, Soden (1999) determined that the herbaceous riparian types had a smaller ecological amplitude of water table height than woody or tree types, and that in general all wetland types in Montana correlated highly with depth to water less than 15 cm from the ground surface.

1.2 GROUNDWATER ELEVATION CHANGE

By definition, all riparian soils have a high water content relative to their upland counterparts for at least a portion of the year (Cowardin et al., 1979). The greatest water contributor to riparian soils is groundwater (Kozlowski, 1968). Many riparian plants rely on the water table, capillary fringe and vadose zone for most of the year (Shafroth et al., 2000). Fluctuations in riparian water tables are affected in part by changes in stream flow and evapotranspiration by riparian plants (Shafroth et al., 2000). Water table declines can lead to reduced riparian plant establishment, growth and survivorship (Auble et al., 1999). The ratio of the water table maximum and minimum, or the amount of change in the water table experienced by a riparian community during the growing season, is an important factor in influencing the distribution and growth of riparian habitats in an area (Shafroth et al., 2000). The ratio of water table maximum and minimum has strong influence over the root architecture of riparian plants: riparian plant roots organize themselves laterally according to the water tables they historically experience (Shafroth et al., 2000). Inevitably, an increase in the ratio from historic norms will have significant
impacts on water availability to riparian plants, and thus on plant growth and survivorship.

Henszey et al. (1991) found that biomass for wet meadow sedges and other emergent vegetation was highest when the water table fluctuated naturally, allowing soils to receive oxygen for part of the growing season.

1.3 INSTREAM FLOW

Manipulating instream flow for water supply, hydropower production or flood control results in reduction of peak flow, shift in timing of peak flow and total annual flow volume (Gordon et al., 1992). Many studies have documented the effects these changes to instream flow have on the riparian species *Populus*. Effects of changes to instream flow range from the extreme, namely the loss of riparian ecosystems, to the subtle, such as physiological mutations or population level changes indicative of lower stress conditions (Kozłowski, 1968; Taub. 1987). Stromberg and Patten (1992) found that instream flow minima and maxima need to be maintained at managed streams to support establishment of *Populus* seedlings and reduce drought-caused mortality. Auble and Scott (1998) determined that disturbance due to flood volumes is necessary to ensure *Populus* recruitment. Additionally, pronounced peak flows for a portion of the growing season are necessary to remove algal layers and litter from riparian surfaces. Harris and Marshall (1963) found that recalcitrant algal mats in emergent riparian areas often retarded seedling establishment and growth. However, a primary influence of instream flow on riparian community health is its connection to the riparian water table.

This study occurred over a period of moderate to extreme drought in central Montana. The study period arguably may have occurred over a time that defines the lowest groundwater and stream flow conditions the riparian communities in the study area have experienced. Figure 1-1 is a flow duration graph of typical historic stream discharge and discharge over the study period for the Smith and Musselshell Rivers, the two major drainages of the study area. The graph includes the full period of record for the Smith
River gauging station and the last 10 years of record of the Musselshell River gauging station.

Figure 1-1. Flow Duration Curves depicting the percentage of time a certain discharge was met historically and during the study period on the Smith and Musselshell Rivers (1999-2001).

Figure 1-1 demonstrates that the discharge in both rivers was significantly reduced from recorded historic levels during the study period. Both the base level of the rivers and the highest flows were greatly depressed during the study period. Peak flows occurred earlier and at much lower discharges during the study period than in past years (Figure 1-2).
1.4 GROUNDWATER/SURFACE WATER INTERACTION

The interaction between groundwater and surface water has important implications for riparian habitat suitability (Kondolf et al., 1987; Castro and Hornberger, 1991; Henszey et al., 1991; Stromberg and Patten, 1990; Auble et al., 1994; Stromberg et al., 1996; Toner and Keddy, 1997). At times of seasonal low in the baseflow of the stream, the active exchange zone between the groundwater and surface water can extend to several meters from the stream channel (Castro and Hornberger, 1991). The baseflow of a stream is often directly linked with the local aquifer (Castro and Hornberger, 1991), therefore the effects of groundwater change are directly linked with the effects of instream flow variation. Riparian plants receive most of their moisture from groundwater-wet soils (Kozlowski, 1968; Shafroth et al., 2000). It follows that riparian health is directly linked to the response of groundwater to changes in stream flow. According to Tabacci et al. (1998), groundwater availability in the riparian zone is essential to successful riparian seedling establishment. Furthermore, the interaction between groundwater dynamics and stream discharge appears to highly influence most stages of vegetation development.
(Tabacci et al., 1998). As previously discussed, fluctuations in water tables exert strong influences on distribution and survival of riparian species. Therefore, the linking of changes in instream flows to water table changes has important implications for riparian habitat suitability.
2.0 STUDY AREA

2.1 PHYSIOGRAPHY

The study area is located in the vicinity of White Sulphur Springs, Montana (Figure 2-1). White Sulphur Springs is located at the junction of Montana Routes 12 and 89 in west-central Montana. The study area is contained in the Lewis and Clark National Forest within the area bordered by Tenderfoot Creek in the north, the Smith River in the west-southwest and the Little Belt Mountains and Musselshell River to the east-southeast. White Sulphur Springs lies in a wide and deep intermontane basin, which is typical of basins east of the Continental divide (Kendy and Tresch, 1996). The basin trends to the north-northwest between the Big Belt Mountains to the west and the Little Belt Mountains to the east and north. Known as the Rocky Mountain Front, the area represents the border between the Rocky Mountains to the west and the Great Plains to the east. The principle streams draining the valley are the northward flowing Smith River in the western portion and the eastward flowing Musselshell River in the southeastern portion of the study area. Public lands in the White Sulphur Springs area are included in the Lewis and Clark National Forest and the Tenderfoot Creek Experimental Forest.

Figure 2-1. Study Area Location Map
2.2 TOPOGRAPHY

The area is characterized by mountains and rolling foothills of the Little Belt Mountains and river canyons. Elevation ranges from 4,200 feet at the Smith River to 7,800 feet at King’s Hill Pass on MT Route 89 (Farnes et al., 1995). A relatively flat valley bottom characterizes the southern portion of the study area. As one moves northward, the terrain becomes steeper and more variable. Both the Smith River and Tenderfoot Creek have created deep canyons in the northern portion of the study area. A modified karst topography is associated with the limestone terrain in the Smith River canyon (Groff, 1965). In the higher elevation locations, mountain parks and wet meadows alternate with densely wooded rounded peaks. The western portion of the study area slopes west into the Smith River, which forms the western boundary. The eastern portion of the study area slopes southeast into the east-southeast boundary, the Musselshell River.

2.3 CLIMATE

The continental climate of the study area is typical of mid-elevation intermontane basins of Montana east of the Continental Divide, with dry summers; cool, moist springs; and cold winters (Braico and Botz, 1974; Kendy and Tresch, 1996). Average precipitation in the study area is extremely variable. In the semi-arid rolling hills and plains average precipitation is 10-15 inches per year; average precipitation in the highest elevation areas in Tenderfoot Creek Experimental Forest is 35 inches per year (Braico and Botz, 1974; Farnes et al., 1995). The greatest precipitation usually occurs in May to early June (Phelps, 1966). Average temperature in the study area is highly variable due to a large elevational gradient. Temperatures in summer months average approximately 65°F, with extremes of 90°F to 100+°F commonly occurring. Temperatures in winter months average approximately 30°F, with extremes up to -40°F (Blumer, 1969; Farnes et al., 1995; Phelps, 1966).
2.4 LAND USE

The town of White Sulphur Springs has approximately 1,000 permanent residents. The White Sulphur Springs area is principally managed as agricultural land for ranching of cattle and sheep and farming for wheat, clover and alfalfa. Extensive land in the Lewis and Clark National Forest and Tenderfoot Creek Experimental Forest is used recreationally year-round. Groundwater and surface water resources are therefore used for stock, domestic, municipal and irrigation purposes (Braico and Botz, 1974).

2.5 GEOLOGY

The study area lies in the valley between the Big Belt Uplift, the Little Belt Uplift and the Castle Mountain Dome. The valley also represents the convergence of three regional structural features: the central Montana arch, which is formed by four regional uplift zones; and the Disturbed Belt, a southeast-trending zone of imbricate thrust faulting (Groff, 1965). Therefore, the stratigraphic units in the area have been extensively folded and faulted in most areas.

Strata in the White Sulphur Springs area range from Archean to Tertiary in age (Dahl, 1969; Groff, 1965; McClernan, 1969; Phelps, 1966). The total thickness of these units is approximately 26,000 feet in western Meagher County (Groff, 1965).

The valley is filled with alluvium and colluvium deposits of Tertiary and Quaternary age (for the purposes of this report only the term alluvium will be used). Grains in these deposits range from boulder-size to clay (Dahl, 1969; McClernan, 1969; Phelps, 1966).
2.6 HYDROGEOLOGY

Groundwater in the study area is principally recharged by fractures in the regional bedrock system, snow melt from higher elevation areas in Tenderfoot Creek Experimental Forest, the Little Belt Mountains and the Big Belt Mountains, infiltration from tributary streams and by infiltration of surplus irrigation water (Kendy and Tresch, 1996). The principle aquifers in the White Sulphur Springs area are the Tertiary and Quaternary alluvium fill deposits, with small amounts of groundwater coming from the bedrock system (Braico and Botz, 1974; Groff, 1965). Nearly all of the rock units can yield water under the right conditions (Groff, 1965). Several fault and karst springs exist in the area, including geothermic springs associated with the Madison Limestone.

2.6 QUATERNARY ALLUVIUM

The quaternary-aged alluvium resting on the top of the valley floor creates an unconsolidated aquifer of moderate quality (Braico and Botz, 1974). This aquifer consists of unconsolidated gravel, sand, silt and clay deposited by area streams and rivers and by erosion of surrounding strata. Thickness ranges from zero to sixty feet (Groff, 1965). If the water table does not decline below the bottom of the Quaternary alluvium this layer will yield small to large amounts of water, depending on the thickness (Groff, 1965). In the study area, thick permeable gravel deposits occur in the valley of the North Fork of the Smith River and from there into some of the main valley floor. Only two miles west of White Sulphur Springs, a large borrow pit shows plentiful permeable gravel (Groff, 1965). One shallow town well finished in recent alluvium yielded an estimated 4,500 gpm in 1962 (Groff, 1965).
2.7 TERTIARY ALLUVIUM

A moderate supply of groundwater for the White Sulphur Springs area comes from the Tertiary alluvium of the Smith River valley (Braico and Botz, 1974; Groff, 1965). This aquifer can be considered unconfined unless overlaid by much-finer grained recent alluvial deposits (Kendy and Tresch, 1996). Tertiary alluvial deposits in the study area consist of unconsolidated to semi-consolidated sediments of variable grain size, and can range from one to 1,000 feet in thickness (Braico and Botz, 1974; Groff, 1965). This alluvial deposit contains lake sediments, stream sediments, volcanic ash, volcanic tuff, and detritus from local strata (Braico and Botz, 1974). The Tertiary alluvium also commonly contains relic sand and gravel stream channels that yield high amounts of groundwater if penetrated. Typically, the Tertiary alluvium has water-yielding characteristics of “great variation, generally very small yields, except from sand and gravel channels, where the yield may be moderate to large,” (Groff, 1965). Several domestic wells have been completed in this alluvial layer in the town and surrounding area. A deep well in White Sulphur Springs penetrated 1,000 feet of Tertiary sediments (Groff, 1965). Groff (1965) hypothesizes that Tertiary sediments in the valley center are at least twice the thickness of that penetrated by the deep well in the town. Reservoir storage should be very large. However, due to the unconsolidated to semi-consolidated nature of these deposits, unless a well is completed in a buried stream channel water yield from this aquifer is only considered to be fair to poor (Braico and Botz, 1974).

2.9 SIGNIFICANT BEDROCK FORMATIONS

In the presence of significant faulting, nearly all of the units found in the study area could yield water. According to Groff (1965), the bedrock units that have significant water-yielding characteristics are the Sunburst Sandstone of the Kootenai Formation, the Amsden Limestone and the Madison Limestone. The Belt Formation also has the ability to transmit water in jointed or fractured zones.
A unit of particular importance is the Mississippian Madison Limestone, which transmits regional flow in the study area. Several springs in the White Sulphur Springs area are associated with this unit. This limestone dissolves to form caves, caverns and solution tunnels associated with karst topography in the Smith River canyon area and in the subsurface. High yields of water are possible from penetration of a cavern system or a deep fault system. However, limestone terrains may not have a good source of local water supply due to rapid deep drainage (Groff, 1965).

2.10 SPRINGS

Two fault springs located in the study area and described by Groff (1965) are a result of the relationship between thrust faulting and the Madison Limestone. Trinity Spring is suspected to originate from nearby Fourmile Creek, where it drains into a cavernous portion of Madison Limestone. It then accesses the surface via a fault zone and discharges "remarkably pure", cold water at over 2,500 gpm. This water was reported to have very low Total Dissolved Solids (TDS) and element content (Groff, 1965), which is consistent with its local flow system. Catlin Springs rises from the Madison Limestone and discharges in several locations for a combined flow of 600 gpm. This spring also has low TDS and element content (Groff, 1965).

The town of White Sulphur Springs derives its name from the geothermic spring of the same name. The White Sulphur Spring heats a local bank and is used for a hot spring resort in the town (Grove and Dunn, 1980; Groff, 1965). Water rises to the surface in a deep fissure or fault in Precambrian shale (Groff, 1965). Hot water from the same deep source is tapped by an 875 foot deep well for the First National Bank of White Sulphur
Springs, completed in 1980 (Grove and Dunn, 1980). The water from White Sulphur Spring is hot (117°F), very high in sodium, sulfate, bicarbonate and chloride, and has a relatively high TDS (Groff, 1965). This indicates that the water circulates in a deep regional system before emerging in the area of White Sulphur Springs.

2.11 GROUNDWATER QUANTITY

According to a sample of 100 wells in Township 9N, Range 6E (town of White Sulphur Springs), depth to water ranges from 3 feet to 80 feet (GWIC, 2000). The completion depths for this sample range from as shallow as 10 feet deep to as deep as 330 feet (GWIC, 2000). Detailed lithologic information was not provided for most of these wells. However, well yields are consistently between 10 and 50 gpm in the local wells.

The First National Bank of White Sulphur Springs is heated by 79 gpm of geothermic water from an 875 feet deep well finished in the Greyson Shale (Grove and Dunn, 1980).

There are several wells in the study area that have recorded yields of over 1,000 gpm. Two wells of 230 feet deep and 250 feet deep have water yields of 1,200 gpm and 1,850 gpm, respectively. Both of these wells are finished in Tertiary alluvium, presumably in buried stream channels that are capable of high yields in the otherwise fair to poor Tertiary aquifer (Groff, 1965; GWIC, 2000).
No study of changes in the local water table has been completed. However, according to many local ranchers the water table has significantly declined in the last ten years (DuPea personal communication, 2000). They cite the need to install more and more pivot irrigation systems with deeper and deeper wells as evidence that the rise in crop and grazing acreage has decreased the water table in the White Sulphur Springs area. Furthermore, ranchers that were once able to utilize flood irrigation on their land, which drains water directly from a water source and onto their fields, now have had to resort to well/pivot systems that draw water from depth (DuPea personal communication, 2000).

2.12 GROUNDWATER AND SURFACE WATER QUALITY

Potential sources of groundwater pollution in the study area are agricultural land management practices and septic/sewer effluent from White Sulphur Springs. Water quality in the Tenderfoot Creek Experimental forest is generally high, owing to its relatively remote location. Surface water quality is monitored regularly, and little to no long-term adverse affects have been recorded due to timber harvest in this location (Farnes et al., 1995). No groundwater contamination has been reported from the lagoon sewage treatment system that services White Sulphur Springs; however, the effluent is discharged into the South Fork of the Smith River and Lone Willow Creek, raising possible surface water quality concerns (Braico and Botz, 1974).
3.0 METHODS

Field work was conducted in 2000 from mid-May to mid-October, in order to capture the greatest variation in stream flow and water table elevation. Unfortunately, due to early melt of the snowpack in 2000 peak runoff occurred relatively early on May 4, 2000. Well installation had not occurred at this time and the rising limb of the hydrograph for the study streams was not captured. Additional stream flow and water table data was collected in May 2001 to capture pre-run off hydrologic conditions. Eighteen permanent stream transects were installed at relative high, medium and low elevations in the Tenderfoot Creek, Smith River and Musselshell watersheds (Figure 3-1). Low elevation transects included the elevations of 1,280 m. to 1,500 m. Medium elevation transects ranged from 1,677 m. to 1,750 m. in elevation. High elevation transects included the elevations of 2,207 m. to 2,220 m.

3.1 FIELD METHODS

3.1.1 Transect Selection

Transects were selected on the basis of shallowly sloped flood plains, well defined wetland habitat types and the absence of land management that would impede plant development (e.g. livestock grazing), and were installed in river, stream and wet meadow habitats. These reaches include: 1) evidence of natural features involved in the development and maintenance of the flood plain, channel, bars, vegetation etc. and 2)
evidence of several different vegetation habitats as one moves laterally away from the
channel (Harrelson et al., 1994). Transects in wet meadows were established to include
the best range of features to accurately portray the character of the meadow. The
transects run perpendicular to the stream channel and end at the ecotone with upland
vegetation. The length and elevation of each transect was recorded, and the cross-
sectional profile of each transect was measured with a laser surveying level.

3.1.2 Surface water and groundwater observation

Water table and stream height measurements were made at approximately two-week
intervals during the 2000 field season. Water table elevations were gauged by marked
metal measuring tape in 1.5-meter long, 13-millimeter diameter slotted PVC pipes that
were installed at the ecotones of different wetland habitat communities. Stream height
was measured with marked metal measuring tape at a permanent staff on each transect.

3.1.3 Vegetation classification

To classify and record plant type and coverage in existing plant communities on each
transect, vegetation plots were constructed at each habitat ecotone. Plots were usually 5
meters by 10 meters, for a total sample area of 50 m². Plot size was modified for long
stringer communities to maintain a constant plot size of 50 m². Forest communities were
sampled using a 375 m² circular plot (Hansen et al., 1995). Each plot was located on the
up-transect side of the ecotone to capture only the plants in each succeeding habitat. In
some cases, 50 m² plots were placed at the beginning of the habitat and at the end of the habitat in cases where large areas separated each ecotone. This ensured capture of any community changes across the large area. Each tree, shrub, forb, grass, sedge and rush plant type was recorded, and its canopy cover ocularly estimated. Any plants that were not identified in the field were collected and stored for later identification (Hansen et al., 1995).

Wells were located on the inside edge of each plot furthest from the stream channel. In some cases, wells were installed within an ecotone due to a misidentification of the ecotone boundaries before riparian plants had fully developed leaf/fruit structures.

3.2 OFFICE METHODS

To meet the objectives of this study, analysis of hydrologic and soil variables was not conducted for riparian community types. The qualifier “community type” indicates a seral or disclimax community with generally wide ecological amplitudes and plant associations (Hanson et al., 1995). Riparian “habitat types”, representing a defined physical environment and plant association, were analyzed for hydrologic and soil variables (Hanson et al., 1995).

Out of 22 riparian habitats mapped in this study, the 10 most frequently occurring habitats over the three elevational zones were selected for further description and analysis. The selection was also made to represent the habitats with the greatest number
of hydrologic observations (n>14) and to encompass the six riparian types: coniferous forest, deciduous forest, willow shrub, non-willow shrub, sedge and non-sedge types (Table 4-1).

Graphs of water table vs. stream height over the study period were prepared for each transect. Graphs correlating water table change vs. stream height change over time in the wettest and driest plot were prepared for each habitat/community type. Box plots of applicable variables vs. habitat type were compiled using SPSS 10.0 statistical analysis software. Stage Duration Curves were compiled for each selected riparian habitat type.

Plant type and canopy coverage was classified into wetland habitat types according to Hansen et al. (1995) (Table 1). Each plant's Wetland Status was recorded according to Reed (1988) (Appendix A).
<table>
<thead>
<tr>
<th>Riparian Type</th>
<th>Habitat (h.t.) Type/Community (c.t.) Type</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coniferous</td>
<td>Abies lasiocarpa/Streptopus amplexifolius h.t., Streptopus amplexifolius phase</td>
<td>ABILAS/STRAMP h.t., STRAMP phase</td>
</tr>
<tr>
<td></td>
<td>Picea engelmannii/Calamagrostis canadensis c.t.</td>
<td>PICENG/CALCAN c.t.</td>
</tr>
<tr>
<td></td>
<td>Picea engelmannii/Equisetum arvense h.t.</td>
<td>PICENG/EQUARV h.t.</td>
</tr>
<tr>
<td>Deciduous</td>
<td>Populus tremuloides/Calamagrostis canadensis h.t.</td>
<td>POPTRE/CALCAN h.t.</td>
</tr>
<tr>
<td></td>
<td>Populus tremuloides/Cornus stolonifera h.t.</td>
<td>POPTRE/CORSTO h.t.</td>
</tr>
<tr>
<td></td>
<td>Populus tremuloides/Poa pratensis c.t.</td>
<td>POPTRE/POAPRA c.t.</td>
</tr>
<tr>
<td></td>
<td>Populus trichocarpa/Cornus stolonifera c.t.</td>
<td>POPTRI/CORSTO c.t.</td>
</tr>
<tr>
<td></td>
<td>Populus trichocarpa/Symphoricarpos occidentalis c.t.</td>
<td>POPTRI/SYMOCC c.t.</td>
</tr>
<tr>
<td></td>
<td>Pseudotsuga menziesii/Cornus stolonifera h.t.</td>
<td>PSEMEN/CORSTO h.t.</td>
</tr>
<tr>
<td></td>
<td>Salix drummondiana c.t.</td>
<td>SALDRU c.t.</td>
</tr>
<tr>
<td></td>
<td>Salix drummondiana/Calamagrostis canadensis h.t.</td>
<td>SALDRU/CALCAN h.t.</td>
</tr>
<tr>
<td></td>
<td>Salix drummondiana/Carex rostrata h.t.</td>
<td>SALDRU/CARROS h.t.</td>
</tr>
<tr>
<td></td>
<td>Salix exigua c.t.</td>
<td>SALEXI c.t.</td>
</tr>
<tr>
<td></td>
<td>Salix lutea c.t.</td>
<td>SALLUT c.t.</td>
</tr>
<tr>
<td></td>
<td>Salix lutea/Calamagrostis canadensis h.t.</td>
<td>SALLUT/CALCAN h.t.</td>
</tr>
<tr>
<td></td>
<td>Salix lutea/Carex rostrata h.t.</td>
<td>SALLUT/CARROS h.t.</td>
</tr>
<tr>
<td></td>
<td>Cornus stolonifera c.t.</td>
<td>CORSTO c.t.</td>
</tr>
<tr>
<td></td>
<td>Potentilla fruticosa/Deschampsia cespitosa h.t.</td>
<td>POTFRU/DESCES h.t.</td>
</tr>
<tr>
<td></td>
<td>Rosa woodsii c.t.</td>
<td>ROSWOO c.t.</td>
</tr>
<tr>
<td>Sedge Types</td>
<td>Carex aquatilis h.t., Deschampsia cespitosa phase</td>
<td>CARAQU h.t., DESCES phase</td>
</tr>
<tr>
<td></td>
<td>Carex lasiocarpa h.t.</td>
<td>CARLAS h.t.</td>
</tr>
<tr>
<td></td>
<td>Carex rostrata h.t., Carex aquatilis phase</td>
<td>CARROS h.t., CARAQU phase</td>
</tr>
<tr>
<td></td>
<td>Carex rostrata h.t., Carex rostrata phase</td>
<td>CARROS h.t., CARROS phase</td>
</tr>
<tr>
<td></td>
<td>Carex rostrata h.t., Deschampsia cespitosa phase</td>
<td>CARROS h.t., DESCES phase</td>
</tr>
<tr>
<td></td>
<td>Carex scopulorum h.t.</td>
<td>CARSCO h.t.</td>
</tr>
<tr>
<td></td>
<td>Calamagrostis canadensis h.t.</td>
<td>CALCAN h.t.</td>
</tr>
<tr>
<td></td>
<td>Deschampsia cespitosa h.t.</td>
<td>DESCES h.t.</td>
</tr>
<tr>
<td></td>
<td>Eleocharis palustris h.t.</td>
<td>ELEPAL h.t.</td>
</tr>
<tr>
<td></td>
<td>Scirpus pungens h.t.</td>
<td>SCIPUN h.t.</td>
</tr>
<tr>
<td></td>
<td>Senecio triangularis h.t.</td>
<td>SENTRI h.t.</td>
</tr>
</tbody>
</table>

Table 1-1. Riparian habitat/community types of the White Sulphur Springs area, central Montana (from Hanson et al. 1995).
3.3 DESCRIPTIONS OF TRANSECT SITES

Meagher County, Montana

[Map of Meagher County, Montana with study sites marked]

- Tenderfoot Creek, Onion Park
- Sheep Creek Road Wet Meadow
- Camp Baker, Smith River
- Upper Smith River
- White Sulphur Springs
- Lion Creek
- Copper Creek
- Bair Headquarters, Musselshell River

Figure 3-1. Transect Site Detail Map
3.3.1 Onion Park, Tenderfoot Creek Experimental Forest

Onion Park, Tenderfoot Creek Experimental Forest, is located in Township 13N, Range 7E, Section 4 in the Kings Hill Ranger District of Lewis and Clark National Forest. Onion Park contains the highest elevation transects of the study. Four transects range in elevation from 2,207 m. to 2,220 m. (7,240 ft. to 7,283 ft.). Onion Park is a moderately high elevation mountain environment that includes wet meadows, ephemeral streams and small, high gradient perennial streams. Tenderfoot Creek has its headwaters in Onion Park. The transect site is located in an area that is free of stream diversion or groundwater withdrawal.

3.3.2 Sheep Creek Road Wet Meadow

The Sheep Creek Road wet meadow is located approximately 5 miles west of Highway 89 on Sheep Creek Road. The wet meadow is in Township 11N, Range 6E, Section 27 in the Kings Hill Ranger District of Lewis and Clark National Forest. The Sheep Creek Road wet meadow contains moderate elevation transects. Two transects are located at an elevation of 1,750 m. The Sheep Creek Road wet meadow is a moderate elevation wet meadow with no perennial stream channel. There is no significant groundwater withdrawal in the area.
3.3.3 Lion Creek

Lion Creek is a moderate elevation perennial stream located in Township 10N, Range 9E, Section 27 in the Kings Hill Ranger District, Lewis and Clark National Forest. Two transects are located on Lion Creek at an elevation of 1,738 m. The transect environment includes alluvial terrace and gravel bar environments. The transect site is located in an area that is free of stream diversion or groundwater withdrawal.

3.3.4 Copper Creek

Copper Creek is a moderate elevation perennial stream located in Township 10N, Range 9E, Section 16 in the Kings Hill Ranger District, Lewis and Clark National Forest. One transect is located on Copper Creek at an elevation of 1,677 m. The transect environment is an alluvial terrace with a gentle slope. Copper Creek is influenced by small amounts of water diversion for irrigation.

3.3.5 Bair Headquarters, Musselshell River

The Musselshell River is a medium size, low gradient meandering river. Four transects are located on alluvial floodplain environments at an elevation of 1,372 m. The transects are located in Township 8N, Range 11E, Section 35 on private land just north of Martinsdale, Montana. The Musselshell River is strongly influenced by water diversion and groundwater withdrawal for irrigation.
3.3.6 Camp Baker, Smith River

The Smith River is a medium size, low to medium gradient river. Three transects are located on a meandering stretch of the Smith just before it enters the Smith River Canyon at 1,280 m. in elevation. The transects are located in Township 12N, Range 4E, Section 13 on Montana Fish, Wildlife and Parks land. The transects are located in an alluvial floodplain environment. The Smith River is strongly influenced by water diversion and groundwater withdrawal for irrigation.

3.3.7 Upper Smith River

Two transects are located on a meandering stretch of the Smith River upstream of Camp Baker. The transects are located in Township 9N, Range 5E, Section 36 on State of Montana land. The transects are located in an alluvial floodplain environment. The Smith River is strongly influenced by water diversion and groundwater withdrawal for irrigation.
4.0 RESULTS

4.1 DESCRIPTIONS OF WATER REGIME OF TRANSECT SITES

The study transect sites are located in relative low, moderate and high elevations in the Smith and Musselshell watersheds (Figure 3-1). Representative transects were selected in each transect site and described below. Graphs of the water table of selected transects (Figures 4-1a through 4-7a) depict the bankfull height at the transect, range and magnitude of water table elevations in comparison to the transect topography over the study period. Depiction of groundwater elevation, stream stage over time is included in hydrographs of selected transects (Figures 4-1b through 4-7b). The stream stage was gauged at a surveyed point and is presented relative to a surveyed datum point.

4.1.1 Upper Smith River – Transect L1.

![Figure 4-1a. Water table regime of Upper Smith River, Transect L1](image-url)
The Upper Smith River is located in a relative low elevation zone of the study area. Groundwater more closely mirrors stream changes in wells closest to the channel. The range of groundwater elevations observed in wells further from the stream channel was greater than that observed in wells closer to the stream (Figure 4-1a). The elevation range of stream-side wells was less variable and reflected the rate and magnitude of change of river stage (Figure 4-1b). In general, water table elevations increased with distance from the stream from meter marker 20 to the end, indicating that this is a recharge stretch of the Smith River. From meter marker 0 to 20 the water table appears relatively flat, but inadequate length of the riparian zone on that bank does not provide
adequate information (Figure 4-1a). Bankfull stage was not met on this transect during the study period.

The CARROS h.t., DESCES phase was observed in the wettest portion of the transect. The depth to water did not exceed 50 cm during the field season and was near or at the ground surface for the entire field season where this habitat met the stream. The SALEXI c.t. occurred on the driest portions of Transect L1, where depth to water did not occur less than approximately 50 cm from the ground surface and occurred as deep as approximately 150 cm below the ground surface (bgs) (Figure 4-1a).

4.1.2 Camp Baker, Smith River – Transect L3

![Figure 4-2a. Water table regime of Camp Baker, Smith River at Transect L3.](image-url)
The Camp Baker transects are located downstream of the Upper Smith River transects in a similar environment. Groundwater increased into June and then decreased sharply during the growing season. At the end of the summer groundwater again began to rise, corresponding with a decrease in stream flow (Figure 4-2b). The range of groundwater elevations observed in wells further from the stream channel was similar to the range observed in wells closer to the stream (Figures 4-2a and 4-2b). Groundwater elevations measured in all wells demonstrated a slightly smaller rate and magnitude of change than the associated stream height (Figures 4-2a and 4-2b). The water table was relatively flat during the spring and early summer. The water table was higher than the surface water, indicating a recharge condition in this stretch of the Smith River (Figures 4-2a and 4-2b). Bankfull stage was not met during the study period on this transect.
The ELEPAL h.t. was observed in the wettest portion of the transect. The water table in this habitat was within 20 cm of the ground surface for the entire study period. The SALEXI c.t. occurred on the driest portions of Transect L3, where depth to water did not occur less than approximately 75 cm from the ground surface and occurred as deep as approximately 100 cm bgs (Figure 4-2a).

4.1.3 Bair Headquarters, Musselshell River – Transect L9

Figure 4-3a. Water table regime of Bair Headquarters, Musselshell River at Transect L9.
Figure 4-3b. Hydrograph and Water Table Elevations of Bair Headquarters, Musselshell River at Transect L9. The stream-side well is located at meter marker 11.7 and the distanced well is located at meter marker 0.3 (Figure 4-3a).

The Musselshell River is located in a relative low elevation zone of the study area. The water table is lower than the stream height throughout the study period, reflecting a discharge stretch of the river (Figure 4-3b). According to Figure 4-3b, groundwater in the stream-side well more closely mirrors changes in the stream stage during the summer. During the winter months, both the stream-side well and distanced well more closely reflect changes in rate and magnitude of stream stage; however, groundwater furthest from the stream did not have as large of a decrease during the winter months as did groundwater closer to the stream. The elevation of the water table in the winter was higher than the water table closest to the stream but still lower than the stream height. Bankfull stage was not met on this transect during the study period.
The SALEXI c.t. was observed on the wettest portion of the transect. The depth to water in this habitat ranged from 50 cm to 75 cm during the field season. The POPTRI/CORSTO c.t. occurred on the driest portion of Transect L9, where depth to water did not occur less than approximately 75 cm from the ground surface (Figure 4-3a).

4.1.4 Copper Creek – Transect M2

![Diagram of Copper Creek Transect M2 with water table regime](image)

Figure 4-4a. Water table regime of Copper Creek at Transect M2.
Transect M2 is located in a medium elevation zone of the study area. The range of groundwater elevations in wells closer to the stream was less than that in wells further from the stream (Figure 4-4a). The wells on this transect did not appear to have a strong connection with the stream; however, the water table did follow the timing of change in the stream but had greater magnitudes of change (Figure 4-4b). The stream reflects a recharge condition in the winter and spring, i.e. the stream was gaining water from groundwater and a discharge condition in the summer/fall, i.e. the stream was contributing water to the groundwater system (Figure 4-4b). The stream stage was relatively stable in comparison to the water table. Bankfull stage was not met on this transect during the study period.
The CARROS h.t., CARAQU phase occurred on the wettest portion of the transect. Depth to water in this habitat ranged from approximately 25 cm bgs to 60 cm bgs. The POTFRU/DESCES h.t. occurred on the driest portions of the transect. Depth to water ranged from 25 cm bgs to 100 cm bgs (Figure 4-4a).

4.1.5 Lion Creek – Transect M4

![Figure 4-5a. Water table regime of Lion Creek at Transect M4.](image)
Transect M4 is located in a medium elevation zone of the study area. Groundwater measured in wells on the right side of the channel has a smaller range of elevations than groundwater in wells on the left side of the channel (Figure 4-4a). In general, groundwater elevations decrease from the left to right of the transect, across the channel, indicating that this is a flow-through reach of Lion Creek. Groundwater in the distanced well remained relatively stable through the study period. Bankfull stage was not met during the study period.

The SALLUT/CALCAN h.t. is on the wettest portion of transect M4 (Figure 4-5a). Depth to water ranged from 3 cm to 16 cm bgs. The PICENG/EQUARV h.t. is on the driest portion of the transect. Groundwater did not occur closer than approximately 75 cm from the ground surface (Figure 4-5a).
4.1.6 Sheep Creek Road Wet Meadow – Transect M6

Figure 4-6a. Water table regime of the Sheep Creek Road Wet Meadow at Transect M6.

Figure 4-6b. Water Table Elevations of the Sheep Creek Wet Meadow at Transect M6. The topographic low well is located at meter marker 30 and the topographic high well is located at meter marker 5.5 (Figure 4-6a).
Transect M6 is located on a wet meadow in a medium elevation zone of the study area. The ground was fully saturated on the entire transect from May until the end of June, although there was no fully defined stream channel (Figure 4-6a). There was no observation of flowing water on the lowest part of the transect. The range of groundwater elevations was variable across the transect, but in general the range increased with distance from the lowest elevation on the transect (Figure 4-6a and 4-6b).

The POPTRE/CALCAN h.t. and SALLUT/CARROS h.t. occupied the wettest portions of transect M6 (Figure 4-6a). The range of groundwater elevations was variable across the habitats. Water in POPTRE/CALCAN ranged from 8 cm above the ground surface to approximately 75 cm below the ground surface. Water in SALLUT/CARROS ranged from 4 cm above the ground surface to approximately 25 cm below the ground surface. The POPTRE/POAPRA c.t. occupied the driest portion of the transect. Groundwater did not occur within 50 cm of the ground surface in the POPTRE/POAPRA c.t. (Figure 4-6a)
4.1.7 Tenderfoot Creek, TCEF – Transect H1

Figure 4-7a. Water table regime of Tenderfoot Creek, Onion Park at Transect H1.

Figure 4-7b. Water Table Elevations of Tenderfoot Creek, Onion Park at Transect H1. The stream-side well is located at meter marker 19.6 and the distanced well is located at meter marker 1.6. (Figure 4-7a).

The ground was fully saturated on the entire transect from June until the end of July, even on the highest end of the transect (Figure 4-7a). The range of groundwater elevations
was variable across the transect, but in general the range increased with distance from the stream channel. The elevation of the water table increased with distance from the stream channel, indicating a recharge portion of Tenderfoot Creek. The instream stage and water table of the stream-side well was nearly constant through the study period. Bankfull stage was not met on this transect during the study period.

All of the habitats on Transect H1 had the water table at the surface or within 5 cm of the surface for June and July. Depth to water in the SALLUT/CARROS h.t. did not exceed approximately 25 cm bgs during the study period. Depth to water in the SALDRU/CALCAN h.t. did not exceed approximately 50 cm during the study period. The largest range in groundwater was observed in the PICENG/CALCAN c.t., where depth to water reached approximately 75 cm bgs during the study period (Figure 4-7a).
4.2 DESCRIPTIONS OF RIPARIAN HABITAT ENVIRONMENTS

Out of 22 riparian habitats mapped in this study, the 10 most frequently occurring habitats over the three elevational zones were selected for further description and analysis. The selection was also made to represent the habitats with the greatest number of hydrologic observations (n>14) and to encompass the six riparian types: coniferous forest, deciduous forest, willow shrub, non-willow shrub, sedge and non-sedge types (Table 4-1).

<table>
<thead>
<tr>
<th>Riparian Type</th>
<th>Habitat Type (h.t.)</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coniferous Forest Types</td>
<td>Picea engelmannii/Equisetum arvense h.t.</td>
<td>PICENG/EQUARV h.t.</td>
</tr>
<tr>
<td>Deciduous Forest Types</td>
<td>Populus tremuloides/Calamagrostis canadensis h.t.</td>
<td>POPTRE/CALCAN h.t.</td>
</tr>
<tr>
<td>Willow Shrub Types</td>
<td>Salix drummondiana/Carex rostrata h.t.</td>
<td>SALDRU/CARROS h.t.</td>
</tr>
<tr>
<td></td>
<td>Salix lutea/Calamagrostis canadensis h.t.</td>
<td>SALLUT/CALCAN h.t.</td>
</tr>
<tr>
<td></td>
<td>Potentilla fruticosa/Deschampsia cespitosa h.t.</td>
<td>POTFRU/DESCES h.t.</td>
</tr>
<tr>
<td>Sedge Types</td>
<td>Carex rostrata h.t., Carex rostrata phase</td>
<td>CARROS h.t., CARROS phase</td>
</tr>
<tr>
<td></td>
<td>Carex rostrata h.t., Deschampsia cespitosa phase</td>
<td>CARROS h.t., DESCES phase</td>
</tr>
<tr>
<td></td>
<td>Carex scopulorum h.t.</td>
<td>CARSCO h.t.</td>
</tr>
<tr>
<td></td>
<td>Eleocharis palustris h.t.</td>
<td>ELEPAL h.t.</td>
</tr>
<tr>
<td>Non-Sedge Types</td>
<td>Deschampsia cespitosa h.t.</td>
<td>DESCES h.t.</td>
</tr>
</tbody>
</table>

Table 4-1. Riparian habitat types selected for comparison.
4.2.1 CARROS h.t., CARROS phase

![Groundwater Regime of the CARROS habitat type, CARROS phase.](image)

This habitat was represented by two plots in the study area. Both plots occurred on the Smith River floodplain: one at Camp Baker and one on the Upper Smith River. Elevations of the plots ranged from 1,280 m. to 1,500 m.

Groundwater in both the wettest and driest plots stayed beneath the average root zone for nearly the entire study period. Groundwater in both plots was relatively stable over the study period and did not have a wide range in either plot (Figure 4-8).

Surface soils of the CARROS h.t., CARROS phase were relatively fine-grained. There were no soils greater than 2 mm in diameter. Of the remaining samples, 50.7% to 76%
was silt and clay. Redoximorphic features were observed from 6 cm to 55 cm bgs.

Gleying occurred within 39 cm on the wettest plot and not within 55 cm on the dry plot.

Brichita (1987), Chadde et al. (1988) and Hanson et al. (1995) described the habitat as occurring at low to subalpine elevations on wetter riparian environments. Hanson et al. (1995) described the CARROS h.t. as one of the wettest riparian habitats and occurring adjacent to low gradient streams in valley bottoms or associated with perennial seeps. Plots occurred on sites that were wet during the entire spring and dry by mid-June.

4.2.2 CARROS h.t., DESCES phase

Figure 4-9. Groundwater Regime of the CARROS habitat type, DESCES phase.
This habitat was represented by four plots in the study area. Plots occurred on the Smith River floodplain and on the Sheep Creek Road wet meadow. Elevations of the plots ranged from 1,500 m. to 1,750 m.

Groundwater in both the wettest and driest plots stayed beneath the average root zone for nearly the entire study period. Groundwater in the driest plot was relatively stable over the study period, and generally followed a decreasing trend. Groundwater in both the wettest and driest plot was relatively stable over the study period (Figure 4-8).

Surface soils of the CARROS h.t., DESCES phase varied greatly across the plots. Coarse soils greater than 2 mm ranged from 0% to 8%. Of the remaining sample, fine silt and clay accounted for 26% to 82%. Redoximorphic features occurred from 0 to 6 cm bgs. Gleying occurred from 6 cm to 63 cm bgs.

Chadde et al. (1988) and Hanson et al. (1995) described the DESCES phase of the CARROS h.t. as the driest of the CARROS association, occurring at higher elevations. Brichta (1987) described the habitat as occurring from 2,030 to 2,210 m. on saturated flood plains and on the center of glacial depression. Water tables of this habitat in the Brichta study were within 20 cm of the ground surface for much of the summer and did not drop below 50 cm bgs.
4.2.3 CARSCO h.t.

This habitat was represented by three plots in the study area. All of the plots occurred on an unnamed stream in the Onion Park area of TCEF at an elevation of 2,220 m.

Groundwater was present within the average root zone in the first third of the growing season in both the wettest and driest plots. Groundwater fluctuated widely in both the wettest and driest plots; the water table ranged from less than 15 cm from the ground surface to greater than 90 cm bgs (Figure 4-10).

Surface soils of the CARSCO h.t. were relatively poorly sorted with a moderately high coarse fraction. Coarse soils greater than 2 mm ranged from 0.3% to 8%. Of the remaining sample, fine silt and clay accounted for 82% to 91.3%. Redoximorphic
features were observed as occurring from 0 to 23 bgs. Gleying was observed at 15 cm in one plot and not within 14 cm and 23 cm on the other two plots.

Hanson et al. (1995) described the CARSCO h.t. as occurring from 1,983 to 2,532 m. on cold, moist, mountain meadows or basins and seeps.

4.2.4 DESCES h.t.

![DESCES H.T.](image)

Figure 4-11. Groundwater Regime of the DESCES habitat type.

This habitat was represented by five plots in the study area. The plots were located in the Onion Park area of TCEF and the Sheep Creek Road wet meadow. Elevations of the plots ranged from 1,750 m to 2,220 m.
Groundwater data was available for only four of the five plots in the study area. Depth to water between the wettest and driest plots had a large range. Groundwater in the wettest plot (wet meadow) was above the ground surface for the first three weeks of the study period, and stayed relatively high throughout the study period. Groundwater in the driest plot had a very large magnitude of change; the water table was within 10 cm of the ground surface in the beginning of the growing season and dropped very quickly by the end of July. Groundwater in the driest plot dropped below the extent of the well by the end of July and did not occur in the well again in the study period (Figure 4-11).

Surface soils of the DESCES h.t. were moderately sorted and uniform across the plots. Coarse soils greater than 2 mm ranged from 1% to 2%. Of the remaining sample, fine silt and clay accounted for 78% to 98%. Gleying occurred from 6 cm to 40 cm in three of the five plots. The remaining two plots did not have gleying within 42 cm, but did exhibit redoximorphic features starting at the ground surface.

Hanson et al. (1995) describe this habitat as occurring at mid to high elevations of 1,533 to 3,079 m. The habitat occurs on a variety of environments; commonly those that are flooded by snow melt.
4.2.5 ELEPAL h.t.

Figure 4-12. Groundwater Regime of the ELEPAL habitat type.

The ELEPAL habitat type was represented by two plots in the study area. Both of the plots were located at Camp Baker on the Smith River at an elevation of 1.280 m.

Groundwater in both plots was within 20 cm of the ground surface during the entire study period. Groundwater elevation and rate and magnitude of change was nearly identical in both plots. (Figure 4-12). In both plots, fine soils appeared to slow recharge into the well upon installation.
Surface soils of the ELEPAL h.t. were extremely variable. Coarse soils greater than 2 mm ranged from 0% to 83%. Of the remaining samples, fine silt and clay accounted for 45.3% to 84%. Gleying was not observed in either plot; however, soils could not be collected in these plots beyond 15 cm in depth. Redoximorphic features were observed from the surface to 15 cm bgs on both plots.

Chadde et al. (1988) described this habitat as occurring in limited areas from an elevation of 1,810 to 2,070 m.; the habitat was observed on pond edges and glacial basins. Hanson et al. (1995) describes the ELEPAL habitat as occurring at a wide range of elevations of 671 to 2,477 m. Sites supporting this habitat included stream, river and lake margins and those prone to seasonal flooding.
This habitat was represented by five plots in the study area. The plots were located on an unnamed stream in the Onion Park area of TCEF and on Lion Creek. Elevations ranged from 1,738 m to 2,207 m.

Groundwater information was only available for four of the five plots in the habitat. The water table was not available within the average root zone during most of the growing season in both the wettest and driest plots. Groundwater in the driest plot was stable during the study period (Figure 4-13). There was a large range in water table elevations represented by the wettest and driest plots.
Surface soils of the PICENG/EQUARV h.t. were relatively coarse but uniform across the plots. Coarse soils greater than 2 mm ranged from 5% to 20%. Of the remaining samples, fine silt and clay accounted for 64% to 74.7%. Redoximorphic features were observed in one plot beginning at 6 cm; two plots had redoximorphic features from 66 cm bgs. Gleying was observed ranging from 26 cm to 39 cm bgs in two of the plots; in the remaining three plots gleying was not observed within 37 cm of the ground surface.

Brichta (1987) described the PICENG/EQUARV h.t. as occurring adjacent to active streams at elevations from 2,000 to 2,255 m. Water tables in the habitat were moist only in June; in all but one plot the water table was below 1 meter bgs during the summer. Hanson et al. (1995) described the habitat as having a wider elevation range; 878 to 2,257 m. The habitat occurred on areas with poor drainage, e.g. wet meadows, seeps and low gradient streams.
4.2.6 POPTRE/CALCAN h.t.

Figure 4-14. Groundwater Regime of the POPTRE/CALCAN habitat type.

This habitat was represented by four plots in the study area. All of the plots were located on the Sheep Creek Road wet meadow at an elevation of 1,750 m.

Groundwater in both the wettest and driest plot had a large range during the study period. Groundwater in the wettest plot was less than 10 cm from the ground surface during the first and last month of the study period and dropped as low as half a meter over the study period. Groundwater in the driest plot ranged as high as 9 cm above the ground surface and as low as 61 cm below the ground surface during the study period (Figure 4-14). The water table was available in the average root zone for most of the growing season.

Surface soils of the POPTRE/CALCAN h.t. were relatively coarse and variable across the plots. Coarse soils greater than 2 mm ranged from 0% to 22%. Of the remaining
samples, fine silt and clay accounted for 54.6% to 82.7%. Redoximorphic features were observed throughout the soil column sampled. Gleying was observed ranging from 21 cm to 38 cm bgs in three of the plots; in the remaining plot gleying was not observed within 85 cm of the ground surface.

Hanson et al. (1995) described the POPTRE/CALCAN h.t. as typically occurring adjacent to streams and rivers on alluvial terraces. Surface soils had a high coarse fragment that provided high aeration and rapid water movement.

4.2.7 POTFRU/DESCES h.t.

Figure 4-15. Groundwater Regime of the POTFRU/DESCES habitat type.
This habitat was represented by six plots in the study area. The plots were located on the upper Smith River floodplain and on Copper Creek. Elevations of the plots ranged from 1,500 m to 1,680 m.

Groundwater in the wettest plot was at or just below the average root zone for the entire study period. Groundwater in the driest plot was observed within the extent of the well four times during the study period. at minimal levels (Figure 4-15).

Surface soils of the POTFRU/DESCES h.t. were moderately sorted and uniform across the plots. Coarse soils greater than 2 mm ranged from 0.2% to 2%. Of the remaining sample, fine silt and clay accounted for 70% to 90.6%. Gleying or other redoximorphic features did not occur within 80 cm of the ground surface in any plots.

Brichta (1987), Chadde et al. (1988) and Hanson et al. (1995) described this habitat as occurring on slightly higher, drier ground surrounding glacial depressions, along slow streams and on gentle slopes surrounding streams. Water tables fluctuate widely throughout the summer and commonly drop to greater than 1 meter by late summer.
This habitat was represented by four plots in the study area. All of the plots were located on an unnamed stream in the Onion Park area of TCEF.

Depth to water was highly variable across the SALDRU/CARROS habitat. Groundwater in the wettest plot was relatively stable over the entire study period and stayed within 6 cm of the ground surface. The water table was only within the average root zone for a small portion of the growing season (Figure 4-16).

Surface soils of the SALDRU/CARROS h.t. were relatively fine and uniform across the plots. Coarse soils greater than 2 mm ranged from 0% to 1%. Of the remaining samples,
fine silt and clay accounted for 72% to 86%. Gleying was not observed in any of the plots within 20 cm; however, redoximorphic features were observed from the ground surface throughout the sampled soil column.

Hanson et al. (1995) described this habitat type as occurring next to ponds or marshes, seeps, springs and adjacent to mountain streams from 707 to 2,378 m. Surface soils and water tables can vary substantially.

4.2.10 SALLUT/CALCAN h.t.

Figure 4-17. Groundwater Regime of the SALLUT/CALCAN habitat type.

This SALLUT/CALCAN habitat type was represented by three plots in the study area. All of the plots occurred on Lion Creek at an elevation of 1,740 m.
Groundwater was within 15 cm of the ground surface on the wettest plot for the entire growing season and varied very little over the study period. Groundwater on the driest plot remained within the average root zone until approximately the end of July and then dropped gradually but stayed within 6 cm of the root zone (Figure 4-17).

Surface soils of the SALLUT/CALCAN h.t. were relatively coarse and variable across the plots. Coarse soils greater than 2 mm ranged from 0.2% to 37%. Of the remaining samples, fine silt and clay accounted for 58.7% to 75.3%. Gleying was observed in two of the three plots at a range of 9 cm to 10 cm bgs.

Hanson et al. (1995) described this community type as typically occurring on stream and river edges, seeps and moist alluvial terraces from 1,116 to 1,341 m. Water tables in this community fluctuate widely through the summer but are seasonally high.
4.3 INUNDATION/DURATION

Figures 4-18 through 4-20 depict the percentage of time a certain depth to saturation in the selected riparian habitats occurred. This frequency analysis demonstrates the percentage of time a certain depth to saturation was met or exceeded in the habitat during the study period.

Figure 4-18. Frequency of depth to saturation of the forest riparian habitat types.
Figure 4-19. Frequency of depth to saturation of the willow and shrub riparian habitat types.

Figure 4-20. Frequency of depth to saturation of the sedge and non-sedge riparian habitat types.
The forest and sedge/non-sedge riparian types included habitats that were inundated (water at or above the ground surface) for at least part of the study period. Of the forest types, the POPTRE/CALCAN h.t. experienced saturation within the root zone (30 cm) (USACE, 1987) approximately 70% of the study period. The sedge/non-sedge types were very variable; the CARROS/CARROS type was the driest sedge/non-sedge habitat. The DESCES type experienced the greatest range of depths to saturation; 65% of the time depth to saturation was at or less than approximately 63 cm but nearly 20% of the study period the habitat was inundated with water. The ELEPAL type had saturation in the root zone the entire study period (Figures 4-18 and 4-20).

Although the willow types were the only type to not include an inundated habitat, they were also the habitats that most consistently had water within their root zones. SALLUT/CALCAN and SALDRU/ÇARROS had saturation within the root zone the entire study period and 80% of the time, respectively. The exception was the POTFRU/DESCES type, which experienced water within the root zone less than 5% of the time and usually experienced a water table that was greater than 50 cm in depth (Figure 4-19).

Figure 4-21 depicts the range of duration of inundation for the riparian habitats that experienced water inundation during the study period. Figure 4-22 depicts the range of duration of saturation within the root zone (<30 cm) for the selected riparian habitats.
Figure 4-21. Inundation duration of riparian habitats that had water at or above the ground surface during the study.

Figure 4-22. Duration of saturation within the root zone (<30 cm) of selected riparian habitats.
Three of the riparian habitats experienced inundation during the study period (Figure 4-21). The willow/shrub riparian type did not have any habitats that were flooded during the study period. The DESCES habitat type had the largest range of days of seasonal inundation. Up to 28 days of inundation was observed on the DESCES habitat type. The POPTRE/CALCAN habitat type was inundated for up to 14 days and the ELEPAL habitat was inundated for up to 7 days.

All of the selected riparian habitats experienced saturated conditions within the average root zone (<30 cm) during some part of the study period (Figure 4-22). The sedge type was the most variable; the days of saturation at 30 cm or less ranged from 0 to 145 days for the entire type. The ELEPAL habitat had the longest duration of root saturation; the soil was saturated to at least 30 cm during the entire study period. The POTFRU/DESCES habitat had the least amount of days of a saturated root zone; only one plot was saturated to at least 30 cm and for only 7 days.

4.4 DEPTH TO GROUNDWATER

The depth to groundwater data was tied to the inundation frequency and duration data. Figure 4-23 displays the range of depth to groundwater values for the selected riparian habitats.
Water table elevations on the study transects ranged from at or above the ground surface to greater than 150 cm bgs. The ELEPAL habitat type had the highest water table and smallest range of values of the selected riparian habitats. The POTFRU/DESCES habitat type showed the greatest depth to groundwater and had a relatively large range of values. The sedge types showed the greatest variability of depth to water. Both of the willow types were in the upper 1/3 of the distribution. In general, a wider range of depth to water values within a habitat correlated with deeper groundwater environments.
The sedge types had a wide range of depth to water observations, but all of the sedge types had water tables within 70 cm of the ground surface. The mean depth to water for the sedge types ranged from 10 cm to 51 cm bgs.

The deciduous and conifer forest types had a wide range of mean depth to water. The PICENG/CALCAN h.t. had the narrowest range and smallest values of depth to water observations. Mean depth to water of the forest types ranged from 23 cm to 50 cm.

4.5 INSTREAM FLOW

Flow duration curves depict the probability that a certain discharge is met or exceeded over a period of record. These curves allow analysis of flood magnitude and frequency and duration of stream height/discharge over a given period of time. Over a significant period of record, such as a decade, flow duration curves demonstrate areal and temporal variations of daily discharge, peak flows, and flood frequency for a given reach. In the absence of gauged discharge data, stream stage can be substituted for discharge as a way of analyzing the percentage of time a given stream stage is met or exceeded on a transect. In the case of this study, stage (height) duration curves (SDCs) were used to demonstrate the percentage of time given stages of stream height were met or exceeded associated with the selected riparian habitat types. Stage duration curves created for riparian habitat types of this study reflect only the stream conditions experienced by the selected habitat types from May – October 2000 and observations collected in May 2001. Figure 4-24 compares the stage duration curves of eight of the ten selected habitat types. Two of the
habitats (POPTRE/CALCAN and CARROS, DESCES phase) were found only in wet meadow environments with no stream channel.

The SDCs displayed above reflect the results of a relatively small sample of stage values. A larger data set of stage values, i.e. a period of record of many seasons, would create a "smoothed" distribution curve.

The SDCs for the selected riparian habitats reflect a wide range of stream conditions associated with the habitats. In general, there was no defined "peak stage" reflected in the SDCs for any of these habitats during the study period; however, it may be a result of late installation of the staff gauges on the transects. The ELEPAL and CARROS, CARROS phase habitats experienced the most variability in stream stage over the study period. The SALLUT/CALCAN and PICENG/EQUARV habitats had the most
consistent stage values over the study period. In general, the selected riparian habitats did not experience a wide range of stream stage observations, demonstrated by relatively "flat" curves.
5.0 DISCUSSION AND CONCLUSION

The purpose of this study was to help define the characteristics of the riparian water regime with both qualitative and quantitative instream flow and groundwater information. The objectives were to:

1. determine the interaction of instream flow in reference reaches with groundwater in surrounding riparian areas;
2. gain an understanding of flow and inundation duration on reference reaches and how they influence riparian vegetation distribution in surrounding riparian areas; and
3. define the dynamics of water table change in riparian habitats examined in this study.

5.1 INTERACTION OF INSTREAM FLOW, GROUNDWATER AND RIPARIAN HABITAT DISTRIBUTION

This study found itself in a unique position during the 1999-2000 water year. An extremely low water condition forced the riparian environment to experience the base conditions on the habitats they occupied. Peak flows occurred earlier and were smaller than plants in the riparian zone had endured in past years. It is commonly thought that periodic overbank flooding and high flows are essential to providing seedling establishment, sediment deposition and inundated conditions in riparian areas. During the drought conditions of this study, overbank flooding did not occur, or even
achievement of bankfull stage on any reach. Inundated conditions occurred on several riparian habitats; however, it occurred in areas where groundwater was discharging to the surface but was not a result of high flows. The most common situation observed in the study area was that of recharge conditions, where groundwater is discharging to the stream.

Groundwater in the study had less of a connection with surface water as one increased through the elevational zones. The gradient of the elevation of surface water and the water table became more pronounced in moderate and high elevation transect sites.

5.2 INUNDATION DURATION AND RIPARIAN HABITAT DISTRIBUTION

Further investigation of the relationship between elevation and habitats that experienced inundated conditions revealed moderate evidence that elevation played a large part in where inundated conditions; and thus plants tolerant of those conditions; would occur. Eight of the twenty-two riparian habitats observed in this study experienced inundated conditions during this study. All of these habitats occurred in wet meadow or medium to high gradient streams of moderate to high elevations, or elevations ranging from 1,667 m. to 2,220 m. With the exception of POTFRU/DESCES, every selected riparian habitat type exhibited redoximorphic features at or just below the ground surface. The redoximorphic features are indicative of a fluctuating water table that in this case, remains at or near the ground surface for long enough to cause anerobic conditions.
(Faulkner and Patrick 1992). Soil texture did not appear to have a significant role on riparian distribution on the study transects.

5.3 WATER TABLE DYNAMICS AND RIPARIAN HABITAT DISTRIBUTION

Values of water table elevation varied greatly across the selected riparian habitats. In general, the willow types had the smallest range of depth to water values.

Based on the hydrologic data collected during the study period, the ELEPAL, DESCES, POPTRE/CALCAN, SALLUT/CALCAN and SALDRU/CARROS habitat types had the highest water tables, longest duration of a high water table and narrowest ranges of depth to water. There was no definitive pattern of hydrologic regime for the riparian habitats that could be defined as a result of this study.

Riparian species tend to respond as individuals rather than as plant associations to environmental change (Auble et al., 1994). One may make the argument that shifts in the more sensitive herbaceous layer may occur towards riparian species with wider ecological amplitudes for depth to water and saturation duration.
5.4 RECOMMENDATIONS FOR FURTHER RESEARCH

The water regime of a riparian community is defined by the inundation duration associated with the community, dynamics of water table change, stream flow and the interaction of groundwater and surface water (Walker and Wehrhahn 1970, Dionigi et al., 1985, Shafroth et al., 2000).

In general, the most important difficulty in addressing the objectives with data collected in this study was the lack of subsequent seasons of data. As essential as the drought year was to establishing hydrologic minimums, subsequent seasons of data are necessary to establish an average hydrologic regime for these riparian habitats. Additionally, the hydrologic variables alone may not be the only force driving riparian distribution patterns. There are many more variables that could be examined to adequately characterize the environment of the riparian habitats in this study; e.g. stream order, valley bottom configuration, chemical characteristics etc.

Because this study occurred in a year of record low water table elevation and stream flow, riparian plants were subjected to conditions that may well represent the minimum frequency and duration of hydrologic conditions for habitat sustainability. Further observation of these communities on established transects sites will allow researchers and managers to see the implications of drought conditions on riparian habitats, especially the more responsive herbaceous layer.
Continued investigation of specific hydrologic requirements of Montana's riparian habitats is essential to ensure a balance between the water needs of land managers and the need to sustain the riparian zone. Without a sound database of the hydrologic requirements of Montana's riparian habitats, further loss of riparian areas and the benefits they provide could occur as a result of misguided land management decisions.
6.0 REFERENCES CITED

Appendix A. Riparian Vegetation Spreadsheet
Appendix B. Cross-sections of Study Transects
L1
Upper Smith River

Elevation (m)

Distance (m)

grade
groundwater
surface water
L2
Upper Smith River

Elevation (m)

Distance (m)

grade
groundwater
surface water

POTRU/DESCES H.T.
CARROS H.T., DESCES phase
WATER

102.00
101.00
100.00
99.00

— grade
▲ surface water
-1 4 9 14 19 24 29 34
L6
Camp Baker, Smith River

Elevation (m)

Distance (m)

- grade
- groundwater
- surface water

PSEMEN/CORSTO H.T.
CORSTO H.T.
CARLES H.T.
WATER

-1

100.00
99.00
98.00
97.00
96.00

102.00
101.00
100.00
99.00
98.00
97.00
96.00

0 2 4 6 8 10 12 14 16 18
L7
Bair Headquarters, Musselshell River

Elevation (m)

Distance (m)

grade
groundwater
surface water
Elevation (m)

L8
Bair Headquarters, Musselshell River

Distance (m)

0 5 10 15 20 25 30

Elevation (m)

98.00 98.50 99.00 99.50 100.00 100.50 101.00 101.50

grade

groundwater

surface water

SALLUT C.T.

SALEXI C.T.

WATER
L9
Bair Headquarters, Musselshell River

Elevation (m)

Distance (m)

- grade
- groundwater
- surface water
Distance (m):

Elevation (m):

PICENG/EQUARV H.T.

SALLUT/CALCAN H.T.

WATER

SALLUT/CALCAN H.T.

UNCLASSIFIED

Lion Creek
M5
Sheep Creek Road Wet Meadow

Elevation (m)

Distance (m)

POPTRE/POAPRA C.T.

CARROS H.T., DESCES phase

DESCES H.T.

POPTRE/CALCAN H.T.

POPTRE/CORSTO H.T.

grade

groundwater
M6
Sheep Creek Road Wet Meadow

Elevation (m)

Distance (m)

POPTRE/POAPRA C.T.
CARAQU H.T., DESCES phase
DESCES H.T.
POPTRE/CALCAN H.T.
SALLUT/CARROS H.T.
POPTRE/CORSTO H.T.
POPTRE/POAPRA C.T.

- grade
- groundwater