Spring 2-1-2017

BCH 482.01: Advanced Biochemistry II

J. Stephen Lodmell
University of Montana - Missoula, stephen.lodmell@umontana.edu

Follow this and additional works at: http://scholarworks.umt.edu/syllabi

Recommended Citation
http://scholarworks.umt.edu/syllabi/4696
BCH482 Advanced Biochemistry II
Spring 2017

Contact and basic information:
Instructor: Dr. Stephen Lodmell
Class time/place: MWF 10:00-10:50am in Forestry 106
Exams: 7-9pm on 3 Wednesday evenings: 2/22, 3/29, 4/26 in HS207
Optional open discussion session: Thursdays 5-6pm CHCB230
Office: CHCB 202 Office hours: 11-12 MWF and by appointment
Phone: 243-6393
email: stephen.lodmell@umontana.edu
Text: Garrett and Grisham Biochemistry, 3rd, 4th, or 5th ed.

Overview:
The second semester of Advanced Biochemistry builds on the foundation laid by BCH480. In the second semester, we will explore enzyme kinetics and mechanisms, then we will learn about all of the major metabolic pathways, i.e. the chains of reactions and processes and the mechanisms by which these reactions occur, that are conserved across the tree of life and study how they integrate in living systems.

Prerequisites:
BCH480 (or equivalent) and a good foundation in organic chemistry are the prerequisites for this course. Students with weak preparation in organic chemistry have a more difficult time with biochemistry than those with a solid background. It is easier to see the logic behind biochemistry if you understand the underlying principles. It is a good idea to review basic organic principles and reactions prior to embarking on the biochemical pathways.

Requirements:
The following components are general requirements for success in this course.
• Attend class. Listening, interacting, and asking questions are important for mastery of the material. In general, topics that are emphasized in class are also merit a greater proportion of the material covered on quizzes and exams.
• Read and study the textbook and supplemental materials. Unless otherwise specified, you are responsible for reading and understanding all of the material in covered chapters.
• You should work assigned problems at the end of each chapter of Garrett & Grisham. These problems will not be collected or graded, but they may resemble questions on upcoming quizzes or exams, so familiarity with them will be advantageous to you.
• Tests and quizzes: There will be a weekly quiz most Fridays, three midterm exams, and a comprehensive final exam. Exams and quizzes are closed-book and no calculators or other electronics are required or permitted. Each exam counts as 20% of your final grade (your lowest midterm score will be dropped). The average of your quizzes will count as 20% of your final grade. You may drop your two lowest quiz grades (including any missed quizzes), but makeup quizzes will not generally be given. The final exam is comprehensive and mandatory and counts as 20% of your final grade. Midterm exams will be held at 7pm on three Wednesday evenings during the semester, as noted below. The midterm exams are scheduled in the evening to allow students more time (two hours) to complete them.

1
• Writing assignment: There will be one major writing assignment that will constitute 20% of your final grade. This paper will be handed in as a first draft (not a rough draft!), and will be returned with comments and suggestions for revisions that should be incorporated in the final draft (See “Review a current research article” section below). This assignment will require research within the scientific literature. You will make use of online resources such as PubMed to find appropriate and relevant materials. Although there are many other online resources that are useful to varying degrees, you should use the primary research literature as your principal source of information. To substantiate arguments and points in your written assignments, you must use and cite the primary research articles that are directly relevant to your topic. Details of the writing assignment are below and will be discussed further in class.

Graduate credit:
If you are taking this course for graduate credit, you are required to do an extra increment of work. To satisfy this increment you will give an oral presentation to the class about your own research, emphasizing connections to material covered in class. Alternatively, you may present a lecture about a realm of research from the current literature that is relevant to the course content. Please see me to arrange the presentation.

Notes and Moodle:
Class notes and PowerPoint presentations will be posted on the course Moodle site. Remember that these notes are what I use as an outline for class preparation. They are not intended to be used as a substitute for coming to class or for studying the text; both of these activities are required for success in the course.

Accessibility, disabilities, and special accommodations:
The University of Montana assures equal access to instruction through collaboration between students with disabilities, instructors, and Disability Services for Students (DSS). If you think you may have a disability adversely affecting your academic performance, and you have not already registered with DSS, please contact DSS in Lommasson 154. I will work with you and DSS to provide an appropriate accommodation.

Learning outcomes for Advanced Biochemistry II

Upon completion of this course:

1. Students should be able to understand and articulate theoretical and practical aspects of enzyme kinetics, inhibition, mechanisms, and regulation. Students should recognize the common features as well as the distinctions between abiotic chemical catalysis and biological reactions.
2. Students should be able to understand and describe the components, general thermodynamics, and mechanisms of the main biological molecular motors, i.e. dyneins/kinesins, actin/myosins, F0F1ATP synthase, and bacterial flagellar motors.
3. Students should be able to understand and articulate general features of nutrient cycling in the biosphere and relate these to cellular anabolic and catabolic pathways.
4. Students should be able to understand the roles of different dietary fuel types, and be able to demonstrate the chemical roles of coenzymes and vitamins for common metabolic reactions.
5. Students should be able to diagram major metabolic pathways and have knowledge of key structures, chemistry, and regulation of the reactions in these pathways. These pathways include glycolysis, gluconeogenesis, the pentose phosphate pathway, glycogen metabolism, lipid metabolism, and selected examples of amino acid metabolism.
6. Students should have a global understanding of the regulation of metabolism at the organism level, including how hormones affect nutrient utilization in health and disease.
7. Students should have an understanding of major cellular signal transduction pathways in cells.
8. Students will gain experience in reading and reviewing the primary biochemical literature and will learn to improve their scientific expository writing skills. Special emphasis will be placed on understanding molecular mechanisms of action of antimicrobial drugs. As an upper division writing course, the student will be expected on his/her writing assignments to:
 · Identify and pursue sophisticated questions for academic inquiry
 · Find, evaluate, analyze, and synthesize information effectively from diverse sources
 · Manage multiple perspectives, as appropriate
 · Recognize the purposes and needs of discipline-specific audiences and adopt the academic voice necessary for the chosen discipline
 · Use multiple drafts, revision, and editing in conducting inquiry and preparing written work
 · Follow the conventions of citation, documentation, and formal presentation appropriate to that discipline
 · Develop competence in information technology and digital literacy

General University Policies
University policies on drops, adds, changes of grade option, or change to audit status will be strictly enforced in this course. These policies are described in the current UM catalog. Briefly:

Dropping Classes
Through the 15th instructional day, **ALL** classes are dropped in CyberBear.
From the 16th through the 45th instructional day, all classes must be dropped using Drop forms (instructor signature required, advisor signature required for undergraduates). **$10 fee applies.**
From the 46th to the last instructional day prior to finals week, classes must be dropped using the Drop form (instructor and Dean signatures required, advisor signature required for undergraduates). **$10 fee applies.**

Changing Grade Option
Through the 15th instructional day, all grade options are changed in CyberBear.
Changes to/from Audit **MUST** be completed by the 15th instructional day.
From the 16th instructional day to the last instructional day prior to finals week, all grade options must be changed using an Add/change form (instructor signature required, advisor signature required for undergraduates).

Variable Credit Change
Through the 15th instructional day, variable credits are changed in CyberBear.
From the 16th instructional day to the last instructional day prior to finals week, variable credits must be changed using an Add/change form (instructor signature required, advisor signature required for undergraduates).

Section Changes (changing section for SAME class only)
Through the 7th instructional day, section changes can be added one of three ways:
 1. Directly in CyberBear
 2. Registration override forms (instructor signature required)
 3. Electronic overrides
From the 8th instructional day to the last instructional day prior to finals week, all section changes must be added using an Add/change form (instructor signature required, advisor signature required for undergraduates). **$10 fee applies.**

Academic honesty
In working through homework and writing assignments, students are encouraged to work together to solve problems, to share information or resources, and to test each other’s understanding of the material. Those are all acceptable forms of collaboration. However, the written work that each student turns in must be his or her own. Only in this way can faculty judge individual understanding of concepts or information. A good rule of thumb for
students to follow is to work together up to the point of committing words to paper. At that stage, each student must work independently. A second key guideline is that once a student has written an out-of-class assignment, it must not be shown to another student in the course. Assignments from two or more students that have significant overlap, in the professional judgment of the faculty member, will be regarded as reflecting a violation of the expectation that students turn in independent assignments. Please note that direct copying of sentences from any published without proper citation is considered plagiarism. THIS INCLUDES THE INTERNET. Be sure to put the information in your own words and be aware that the instructor will check literary and Internet resources. Violations will be dealt with according to the Student Conduct Code.

All exams and quizzes are ‘closed book’, that is, you may not use any notes in print, audio, or electronic form. Please turn off cell phones, calculators, MP3 players and all other electronic devices prior to the start of exams and quizzes, and remove all items (books, coats, phones, notes, etc.) from your desktop while the quiz or exam is in process.

Instructions for the writing assignment:

Review a current research article:
First, choose one of the several recent primary research articles pertaining to the role(s) of human uncoupler protein 1 (UCP-1) in thermogenesis and in control of lipid metabolism that have been uploaded onto the course Moodle site. You will write a short paper (double spaced, 8-10 pages) centered around this article, stating the problem and relevant background information, the approach/methods, and the results/interpretations in your own words. Your audience is your peer group, i.e. a group that is generally knowledgeable about biology/biochemistry/chemistry, but who will be unfamiliar with the specifics of the area covered by your research article. Assume familiarity with basic techniques (e.g., electrophoresis and gene cloning/expression, etc.), but the paper should stand alone and be readable and understandable by someone who has not read this paper or related literature.

Your review of the article must be biochemically-oriented. This means that it must address structure and function of biomolecules, not just overall effects in cell culture or in an animal model. Note that to write this paper in the time frame stipulated in the syllabus, you will have to do some advanced independent learning of some subject matter that is in the textbook before we get to it in class. It’s a good idea to get an early start on this! There is further guidance on this assignment below and we will coordinate efforts with UM’s Writing Center to give you further help and instruction.

You must hand in a copy of the research article with your paper. Your paper will be graded and comments and suggestions provided based on both scientific content and appropriate English usage, style, and organization. You will use the comments provided to revise your paper and hand it in for a second assessment. 75% of the grade will come from the first draft, and 25% comes from the revised version.
Tips for writing a review of a research article:
Most important, consider (and be considerate of) your audience/reader. Who are they? What background are they likely to have? Think about what terms would need to be defined so that the reader has the tools (background and terminology) to understand what you are saying. Remember, you are writing for a scientifically literate reader, but not for someone who is an expert in the field or who has read the article you are talking about. Make the whole thing understandable to your audience.

Make the paper user-friendly by defining specialized terms and setting up the subject
Make the paper able to stand alone, so that someone without further outside reading could understand (almost) all of the points you make in the paper.

• Introduce the subject (use about one page). Frame the research in ‘big picture’ terms: Why is the subject important and interesting to study? Briefly state what approaches the authors used to address some aspect of the problem at hand.

• Go through the experimental data (use about four or five pages). Describe the actual experiments and data (you should go through the paper essentially figure by figure). What was each experiment designed to show? How was it done (uncommon experimental techniques require more description)? What was the outcome, and how did the data obtained shed light on the overall problem? For each assertion you make, make sure to support it with examples, data, or analogies. Do not leave points that you are trying to make unsubstantiated. A major objective of this assignment is to demonstrate the relationship between actual experimentation and overall conclusions and concepts. Heavy emphasis is placed on your description of the experiments at a level that your audience can understand them without having read the paper. The data taken from the experiments are subsequently pooled together to make overall conclusions in the next section.

• Conclusions (about 1 page). What did the experimental results tell us about the research problem at hand? What is the significance of these new results? You may also want to discuss whether the authors conclusions match your own in light of the experimental results presented. Remember that interpretation of experimental results can be subjective. If the authors’ interpretations of the data are different than your own, this is a good place to talk about it.

• Proofread your paper carefully! This serves two purposes:
 o You will locate and correct typographical errors and awkward sentence constructions.
 o As you are reading, you should ask yourself: "If I read this paper for the first time, without any additional outside reading, would I be able to understand it? Would I be convinced of points being made in the paper?" If there are places where this is unclear, you should rewrite to clarify and support as necessary.

 o You are encouraged to avail yourself to the services of the UM Writing Center! Given enough time, they can go through your paper help you with your writing in general. Since one of the purposes of this assignment is to practice and improve your writing, the more critical feedback you get, the better. Extra credit will be allocated to students who show evidence that their paper was first reviewed by the Writing Center. Do note that the Writing Center has limited staff and resources, so you will need to plan ahead to get an appointment with them. You cannot expect that they will be available to help you in the day or two before this assignment is due, so plan ahead!
Tentative class topics schedule:

Jan 23-Jan 27 Enzyme specificity and kinetics (Ch 13)
Jan 30- Feb 3 Enzyme mechanism (Ch 14)
Feb 6- Feb 10 Enzyme regulation (Ch 15)
Feb 15-Feb 17 Molecular Motors (Ch 16)
(Monday Feb 20- President’s Day- no class)
• **Feb 22 (Wednesday)- First midterm exam 7-9 pm Room HS207**

Feb 22- Feb 24 Overview of metabolism (Ch 17) **Homework: read assigned article for Friday**
Feb 24 (Friday) Guest: Dr. Gretchen McCaffrey, Writing Center: Scientific Writing Strategies

Feb 27- Mar 3 Glycolysis (Ch 18)
Mar 6- Mar 10 Gluconeogenesis, glycogen metabolism, PPP (Ch 22)
Mar 13- Mar 17 Tricarboxylic Acid cycle (Ch 19)

• **March 17 (Friday)- First draft of written assignment due**

Mar 20- Mar 24 No class- Spring break!
Mar 27- Mar 31 Electron Transport (Ch 20)

• **March 29 (Wednesday)- Second midterm exam 7-9pm Room HS207**

Apr 3 – Apr 7 Electron Transport and Photosynthesis (Ch 20-21)
Apr 10-Apr 14 Fatty Acid catabolism (Ch 23)
Apr 17 – Apr 21 Lipid biosynthesis, amino acid metabolism (Ch 24-25)

• **April 21 (Friday) Final draft of written assignment due**

Apr 24 – Apr 28 Metabolic integration (27)

• **Apr 26 (Wednesday) – Third midterm exam 7- 9pm Room HS207**

May 1 – May 5 Signal transduction (Ch 32)

• **Monday May 8 Final examination (cumulative) 10:10-12:00 in Forestry 106**
Spring 2016 Registration Deadlines

<table>
<thead>
<tr>
<th></th>
<th>Instructional Days</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a Course</td>
<td>Day 1 – 7</td>
<td>Day 8 – 14</td>
<td>Day 15 – 21</td>
<td>Day 22 – 28</td>
<td>Day 29 – 6/5/16</td>
</tr>
<tr>
<td>Cyb/In-Person</td>
<td>Registration change (paper or electronic) with instructor signature</td>
<td>Course Add/Change Form with advisor & instructor signature $50.00 fee</td>
<td>Course Add/Change Form with advisor & instructor signature $50.00 fee</td>
<td>Only to fix registration errors (see reg. counter)</td>
<td>Only to fix registration errors (see reg. counter)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drop a Course<sup>1</sup></th>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Not permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>(see reg. counter to drop all rally courses)</td>
<td>Registration change (paper or electronic) with instructor signature</td>
<td>Course Drop Form with advisor & instructor signature $50.00 fee</td>
<td>Course Drop Form with advisor & instructor signature $50.00 fee</td>
<td>Only to fix registration errors (see reg. counter)</td>
<td>Not permitted</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switch Sections</th>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Not permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration change (paper or electronic) with instructor signature</td>
<td>Course Add/Change Form with both instructors' signatures</td>
<td>Course Add/Change Form with both instructors' signatures</td>
<td>Course Add/Change Form with both instructors' signatures</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
</tbody>
</table>

Credit/No Credit Grading Option (change to or from)

<table>
<thead>
<tr>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Not permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Add/Change Form with advisor & instructor signature</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
</tbody>
</table>

Adjust Variable Credit Load (variable credit courses only)

<table>
<thead>
<tr>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Not permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Add/Change Form with advisor & instructor signature</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
</tbody>
</table>

Audit (charge to or from)

<table>
<thead>
<tr>
<th>Cyb/In-Person</th>
<th>Cyb/In-Person</th>
<th>Not permitted</th>
<th>Not permitted</th>
<th>Not permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>(See reg. counter if not allowed online)</td>
<td>Not permitted</td>
<td>Not permitted</td>
<td>Not permitted</td>
<td>Not permitted</td>
</tr>
</tbody>
</table>

¹ Starting February 15th, anyone not successfully registered for at least one credit or in re-registering after cancellation must re-register (see registration regulations)

¹ Advisor's signature required for Graduate & Post-Baccalaureate students

¹ Courses dropped after February 15th result in a "W", "WF", or "NU" on the student's transcript, do not generate a refund, and may affect financial aid eligibility. If courses are dropped, the Semester Withdrawal policy must be followed. See Business Services for Semester Withdrawal (see website).