GENETICS and EVOLUTION (BIOB 272, Spring 2017)

Location
- M/W/F 8:00-8:50
- NULH 101

Instructor
- Dr. Jeffrey Good, jeffrey.good@umontana.edu
- Interdisciplinary Sciences Building 308, 243-5771
- Office hours: ISB 308, MW, 10:30-12 or by appointment

Recitation Instructors
- Romain Boisseau romain1.boisseau@umontana.edu
- Zak Clare-Salzler zachary.clare-salzler@umconnect.umt.edu
- Nathanael Herrera nathanael.herrera@umontana.edu
- Emily Kopania emily.kopania@umontana.edu

Materials
- Class website on Moodle - https://moodle.umt.edu
- Nature Podcast: http://www.nature.com/nature/podcast/

Introduction
The first part of our course will briefly introduce the study of evolution and then focus on the basic principles of genetics. We will begin with the classic work of Mendel and then continue through the discoveries of modern genomics. The second part of the course deals with evolution. As the prominent geneticist Dobzhansky famously put it, “Nothing in biology makes sense except in the light of evolution.” The study of evolution is therefore all-inclusive, and draws upon many scientific disciplines - geology, chemistry, physics, mathematics, anthropology, botany, zoology, and computer science - in order to develop a comprehensive understanding of the development of life on Earth.

These two topics - genetics and evolution - are treated as a single integrated field of scientific inquiry. Genetic change is the basis of evolution. Our understanding of evolution, therefore, requires a basic understanding of genetics. The converse is true as well. The sequence of the entire human genome was published in 2001 (Venter et al., 2001, Science 291:1304-1351), ushering in the age of large-scale genomics with broad implications for the study of human health and disease. Since this time, the genome sciences have come to dominate the fields of genetics and evolution. Complete genome sequences have been generated for 1,000s of species from a broad diversity of life, including dozens of mammals. Current efforts are underway to sequence 1,000s of human genomes and over 10,000 genomes from a diverse collection of animals. The basic principles of genetics and evolution form the foundation of these exciting frontiers in biology.
Learning outcomes
This course will emphasize biological principles, scientific concepts, and the synthesis of information. Expected outcomes are:

1. To understand the fundamental mechanisms of transmission genetics and inheritance.
2. Learn and apply the principles of population genetics to understand microevolution.
3. Develop an understanding of how the principles of transmission genetics and population genetics relate to human evolution, health, and disease.
4. Understand the principles of quantitative genetics.
5. Develop a basic knowledge of the history of life on Earth.
6. Understand how microevolutionary phenomenon scale to macroevolutionary patterns.
7. Develop an understanding of how the principles of transmission genetics and population genetics relate to the origin and persistence of biological diversity.

Lectures
- MWF, 8:00 a.m., North Underground Lecture Hall 101 (NULH) 101
- Attendance at lectures is an important part of this course, and all students are expected to attend lectures regularly. Points will be included in your grade for participating in iClicker questions during lecture. Videos will also be used during some lectures; examples presented in these videos will sometimes be used as a basis for exam questions.

Discussion groups
The topic in these groups will vary from week to week, as shown on the discussion group schedule (see Moodle). Prior arrangements should be made with your teaching assistant if a discussion period will be missed. Your grade in the discussion group will be based on homework assignments, attendance, and participation in class discussions. Homework assignments will be made available on Monday mornings on the Moodle page. Your answers must be submitted on Moodle by the following Monday (5 pm). Answers to the homework assignments will be available on the course web page after the deadline, therefore late assignments will not be accepted.

Weekly podcasts
Genetics and evolution are dynamic fields of science and important discoveries are reported weekly in scientific journals. Nature, one of the leading scientific journals in the world, produces a weekly ~30 minute podcast that summarizes some of the most important current scientific advances. Students are expected to listen to this weekly podcast and be prepared to discuss any key findings the following week. Material from the podcasts will be discussed in lecture or in discussion groups and will sometimes be used as a basis for exam questions. The Nature podcast is available for streaming or download every TH and, when applicable, materials will be covered in lecture the following M or W.

Review sessions
There will be an evening review session scheduled at least two days prior to each exam. These sessions provide an additional opportunity to ask questions on the lectures, readings, and problems.
Miscellaneous information

- **Accommodations** - The University of Montana assures equal access to instruction through collaboration between students with disabilities, instructors, and Disability Services for Students. If you have a disability that adversely affects your academic performance, and you have not already registered with Disability Services, please contact Disability Services in Lommasson Center 154 or 406.243.2243. I will work with you and Disability Services to provide an appropriate modification.

- **Academic misconduct** will be reported and handled as described in the University of Montana Student Conduct Code. All students must practice academic honesty. Academic misconduct is subject to an academic penalty by the course instructor and/or a disciplinary sanction by the University. All students need to be familiar with the [Student Conduct Code](#).

- **Dropping course or changing grading status**: Students will not be able to change to an audit after the 15th day of instruction (Feb 10th; 5 p.m.). Dropping the course will not be allowed after the 45th day of instruction (April 3rd). Changing the grading status (to CR/NCR) is not automatically approved after the 30th day of instruction (March 3rd). Exceptions to these rules may be requested by petition, but the petition must be accompanied by documentation of extenuating circumstances. Requests to drop the course or change the grading status after these deadlines simply to benefit a student's grade point average will not be approved.

- **Student Behavior**: To maximize their likelihood of success, students should attend each lecture, and complete any assigned readings before class. When in class students are expected to behave in a manner that is respectful of others. All disruptive electronic devices must be turned off during lecture, during Discussion and Review sessions as well as during exams. If you prefer, you may use laptops or tablets to take notes during lecture – please be respectful of others when doing so.

Grading

Exams will be designed to encourage synthesis of subject matter and not to simply test your ability to recall details. Make-up exams in case of emergency or illness will only be administered if requests are made prior to the exam. You must contact Dr. Good at least one week before an exam if you need to make other arrangements to take an exam because you will be off campus due to other University activities (track, ROTC, etc.). Over 15% over your grade (100 points) will be based on attendance and participation in class and weekly discussion groups, additional extra credit will not be offered.

Grades will be based how many of **750 points** you earn over the course of the semester.

1. **Three mid-term exams** (100 points each; 300 points total)
2. **Discussion groups** (50 participation, 100 HW – 150 points total). Ten problem sets worth 10 points each will be assigned throughout the semester. The remaining 50 points will be based on attendance and participation in discussions. Please tell your TA before class if you are not able to attend a meeting; points will be subtracted from your score for each discussion meeting that you miss without informing the TA before the section meets.
3. **Three take home exam questions** (25 points each; 75 points total).
(4) iClicker points (50 points). These are strictly participation points.

(5) Comprehensive final exam (175 points). The Final Exam will be comprehensive and test material covered throughout the semester.

Final grades will be based on your total points as a percentage of the 650 total points possible.

Pluses (+) and minuses (−) will be used (A, A−, B+, B, B−, C+, C, C−, D+, D, and D−) in the assignment of letter grades will be determined by the distribution of total scores, following these guidelines:

- >90% of points (675): A- or better
- >80% of points (600): B- or better
- >70% of points (525): C- or better
- >60% of points (450): D- or better

These cutoffs may be adjusted downward (in favor of the student) to better reflect natural breaks in the class scores.