University of Montana

ScholarWorks at University of Montana

University of Montana Course Syllabi

Open Educational Resources (OER)

Spring 2-1-2017

BIOM 415.01: Microbiology Diversity

William Holben University of Montana - Missoula

Matthew Church University of Montana, Missoula, matt.church@umontana.edu

Follow this and additional works at: https://scholarworks.umt.edu/syllabi Let us know how access to this document benefits you.

Recommended Citation

Holben, William and Church, Matthew, "BIOM 415.01: Microbiology Diversity" (2017). *University of Montana Course Syllabi*. 4704. https://scholarworks.umt.edu/syllabi/4704

This Syllabus is brought to you for free and open access by the Open Educational Resources (OER) at ScholarWorks at University of Montana. It has been accepted for inclusion in University of Montana Course Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

BIOM 415: Microbial Diversity, Ecology, and Evolution % Spring 2017 %

When: Tuesday and Thursday 9:30-10:50 AM Where: HS108

3 credits

Course prerequisites: BIOB 260, 272, BIOM 360-361, or by consent of instructors

Instructors:

Matthew Church, Flathead Lake Biological Station, (406) 982-3301; <u>matt.church@umontana.edu</u>; Office hours on campus (HS 416A): Tuesday and Thursday 11:00-12:30 by appointment William Holben, Health Sciences 503b, (406) 243-6365; <u>bill.holben@mso.umt.edu</u>; Office hours Tuesday and Thursday 3:00 – 4:30 or by appointment.

Course Overview:

Microbial Diversity, Ecology, and Evolution (BIOM 415) is one of several required courses for undergraduate Microbiology majors in the Division of Biological Sciences at the University of Montana. The course meets twice each week (T/Th) from 9:30-10:50 AM in the Social Sciences classroom 254. The course covers fundamental concepts in microbial ecology and evolution, including emphasis on globally important processes mediated by microbial consortia. Although tiny, microorganisms are ubiquitous on Earth, collectively forming one of the largest pools of living biomass on the planet. Microbes include diverse members of all three domains of life (bacteria, archaea, and single-celled eukaryotes) as well as viruses. Although largely unseen, these organisms maintain the habitability of the planet. The study of microbial ecology has been revolutionized in recent years by the application of genomic and molecularbased technologies which are providing new insights into the diversity, evolution, and metabolic capabilities of these organisms. This course seeks to highlight the excitement and importance of contemporary research in microbial ecology. Material covered in lectures includes description of the biogeographical distributions of microorganisms; methodologies for quantifying microbial diversity, biomass, growth, and metabolism; major processes and bioelemental cycling mediated by microbes; environmental controls on the growth and mortality of microorganisms; and advances in microbiome research.

There is no required textbook for this course; however, instructors will assign reading from the primary literature. Students are expected to be familiar with material in these assigned readings. For background information and review of concepts, the following textbooks are recommended:

• Madigan et al. (2011) Brock Biology of Microorganisms, 13th ed. (Pearson)

- Atlas, R.M., and R. Bartha. 1998. Microbial Ecology: Fundamentals and ! Applications. 4th ed. (Addison-Wesley) !
- Barton LL & Northup DE (2011) Microbial Ecology (Wiley-Blackwell).
- Kirchman DL (2008) Microbial Ecology of the Oceans (Wiley).
- Madsen EL (2008) Environmental Microbiology from genomes to ! biogeochemistry (Blackwell).
- Rochelle PA (2001) Environmental molecular microbiology: protocols and ! applications.

Student Learning Outcomes:

1) Students should gain understanding of major concepts in microbial ecology, including processes controlling distributions of microbial biomass, rates of metabolism, and mechanisms regulating diversity.

2) Students should be able to define the major forms of microbial life and describe forms of microbial metabolism.

3) Students should know how microbial biomass, activity, and diversity are quantified, including knowledge of assumptions underlying measurements of these properties.

4) Students should be able to define major microbially-mediated processes catalyzing carbon and nitrogen cycling.

5) Students will understand contemporary techniques used to analyze microbial communities and community function.

Grading:

Grading for the course will be based on four criteria:

1) Regular attendance and participation (10%) !

2) Performance on mid-term and final in-class exams (35% each) !

3) Written summaries and questions for student-led paper discussions (20%) !

<u>Required Assignments:</u> %

Written summaries of papers and in-class discussions: Each week there will be one paper assigned from the primary literature as required reading. Students are expected ! to have read these required papers prior to attending class that day. Each student is also ! required to submit a brief written summary of the paper that includes 2-3 questions ! related to the ideas, results, or methodologies described in the paper. We will spend ! time during the class period discussing these required papers and use the questions in these paper summaries as the basis for these classroom discussions. The written ! summaries should be ~1 page total and are due in class the day of the paper is assigned. !

"Ask your questions" sessions: These class periods will be used to promote discussion among students and instructors, while also trying to answer questions related to !

microbial ecology. Students are expected to come to class prepared with 2 written questions; we will randomly select from among these questions (questions will be anonymous) to guide in-class discussions.

Exams:

Mid-term Exam - March 9, 2017 Final Exam - May 9, 2017

Remote Lectures:

Approximately half of the lectures for the course will be conducted remotely, using PolyCom, Sykpe, or equivalent. Students are expected to attend all lectures and in-class discussions. The use of remote technology enables dialogue between students and instructors; however, every effort will be made to have face-to-face classroom lectures/discussions weekly.

Absences:

Students are expected to attend all classes and actively participate in discussions and ask questions. Unexcused absences will impact the grade you receive in the course.

Disabilities:

Any student who feels s/he may need an accommodation based on the impact of a disability is invited to contact the course instructors privately. The University of Montana assures equal access to instruction through collaboration between students with disabilities, instructors, and Disability Services for Students. If you have a disability that adversely affects your academic performance, and you have not already registered with Disability Services, please contact Disability Services in Lommasson Center 154 or 406.243.2243. The instructors will work with you and Disability Services to provide an appropriate modification.

BIOM 415 Course Schedule (Jan. 24-May 4, 2017)
Classes meet 9:30-10:50 AM in SS254

Date	Торіс	Lecturer	Required Reading
Tuesday Jan. 24	Introduction to the course and the evolution of life on Earth	Church	
Thursday Jan. 26	Microbial energetics and nutrition	Church	Paper summary due for: Falkowski et al. (2008) The microbial engines that drive Earth's biogeochemical cycles. <i>Science</i> 320: 1034-1039
Tuesday Jan. 31	Metabolic diversity	Church	
Thursday Feb. 2	The microbial tree of life	Church	Paper summary due for: Pace et al. (2012). Phylogeny and beyond: Scientific, historical, and conceptual significance of the first tree of life. <i>PNAS</i> 109: 1011-1018
Tuesday Feb. 7	Methods of characterizing microbial communities – cultivation, PCR, probes, sequencing	Holben	
Thursday Feb. 9	Microbial genomics and metagenomics	Holben	Paper summary due for: Tyson et al. (2004). Community structure and metabolism through reconstruction of microbial genomes from the environment. <i>Nature</i> 428: 37- 43
Tuesday Feb. 14	Microbial interactions: Symbioses, allelopathy, syntrophy, quorum sensing	Holben	
Thursday Feb. 16	Viral ecology	Holben	Paper summary due for: Raoult and Forterre (2008). Redefining viruses: lessons from Mimivirus. <i>Nature Reviews</i> <i>Microbiology</i> 6: 315-319 doi:10.1038/nrmicro1858
Tuesday Feb. 21	Plant-microbe interactions	Holben	

Thursday Feb. 23	Animal-microbe interactions	Holben	Paper summary due for: Dethlefsen et al. (2007) An ecological and evolutionary perspective on human–microbe mutualism and disease. <i>Nature</i>
Tuesday Feb. 28	Microbial ecology of freshwater ecosystems (lakes, streams, wetlands)	Holben	449: 811-818
Thursday Mar. 2	Microbial ecology of terrestrial ecosystems (soil, forests, tundra)	Holben	Paper summary due for: Bier, Raven L., et al. "Linking microbial community structure and microbial processes: an empirical and conceptual overview." <i>FEMS microbiology</i> <i>ecology</i> 91.10 (2015): fiv113.
Tuesday Mar. 7	Ask your questions session	Holben	Each student comes prepared with 2 questions
Thursday Mar. 9	MID-TERM EXAM	Holben	
Tuesday Mar. 14	Measurements and distributions of microbial biomass	Church	
Thursday Mar. 16	Microbial growth and cellular activity	Church	Paper summary due for: Whitman (1998). Prokaryotes: The unseen majority. PNAS 95: 6578–6583
Tuesday Mar. 21	Spring Break		
Thursday Mar. 23	Spring Break		
Tuesday Mar. 28	Remote lecture: Phototrophy and photosynthesis	Church	
Thursday Mar. 30	In class lecture and group discussion: Photosynthetic microbes and the cyanobacteria	Church	Paper summary due for:Biller et al. (2015).Prochlorococcus:The structureand function of collectivediversity.Nature ReviewsMicrobiology 13: 13-27
Tuesday Apr. 4	Remote lecture: Carbon cycling	Church	

Thursday Apr. 6	In class lecture and group discussion: Nitrogen cycling	Church	Paper summary due for:
Tuesday Apr. 11	Remote lecture: Sulfur and metal cycling	Church	
Thursday Apr. 13	In class lecture and group discussion: Marine ecosystems (I)	Church	Paper summary due for: DeLong (2009). The microbial ocean from genomes to biomes. <i>Nature</i> 459, doi:10.1038/nature08059
Tuesday Apr. 18	Remote lecture: Marine ecosystems (II)	Church	
Thursday Apr. 20	In class lecture and group discussion: Extreme ecosystems (hot springs, deep subsurface, mine drainage)	Church	Paper summary due for: Edwards et al. (2012). The Deep, Dark Energy Biosphere: Intraterrestrial Life on Earth. Ann Rev Earth Planet Sci. 40: 551-568.
Tuesday Apr. 25	Remote lecture: Biofilms	Church	
Thursday Apr. 27	In class lecture and group discussion: Microbial ecology in the Anthropocene	Church	Paper summary due for: Lau and Lennon (2012). Rapid responses of soil microorganisms improve plant fitness in novel environments. PNAS 109:14058–14062. doi:10.1073/pnas.1202319109
Tuesday May. 2	Topic TBD	Church	
Thursday May 4	Ask your questions session		Each student comes prepared with 2 questions
Tuesday May 9	FINAL EXAM		