University of Montana

ScholarWorks at University of Montana

University of Montana Course Syllabi

Open Educational Resources (OER)

Spring 2-1-2017

CSCI 361.01: Computer Architecture/Computer Simulation and Modeling

Jesse Johnson University of Montana - Missoula

Follow this and additional works at: https://scholarworks.umt.edu/syllabi Let us know how access to this document benefits you.

Recommended Citation

Johnson, Jesse, "CSCI 361.01: Computer Architecture/Computer Simulation and Modeling" (2017). *University of Montana Course Syllabi*. 4751. https://scholarworks.umt.edu/syllabi/4751

This Syllabus is brought to you for free and open access by the Open Educational Resources (OER) at ScholarWorks at University of Montana. It has been accepted for inclusion in University of Montana Course Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Computer Simulation and Modeling CSCI 361 Spring 2017 Syllabus

We can only see a short distance ahead, but we can see plenty there that needs to be done.

-Alan Turning

Instructor Details

Name:	Jesse Johnson
Office:	406A Interdisciplinary Science Building
Telephone:	(406) 243-2356
Email:	jesse.johnson@umontana.edu
Web:	http://hs.umt.edu/hs/faculty-list/faculty-details.php?id=540
Office Hours:	T 15:00-16:00 and Th 10:00-12:00, Interdisciplinary Science Building 406A
	<i>Or, by appointment.</i>

Prerequisites

Students taking this course are expected to have:

- Programming experience demonstrated by passing CSCI136 or a similar course.
- Organizational skills and familiarity with computers sufficient to install new software and create a filesystem for the course.
- The ability to attend class.

Course Objectives

The course objective is to integrate key notions from algorithms, computer architecture, operating systems, compilers, and software engineering in one unified framework. This will be done constructively, by building a general-purpose computer system from the ground up. In the process, we will explore many ideas and techniques used in the design of modern hardware and software systems, and discuss major trade-offs and future trends. Throughout this journey, you will gain many cross-section views of the computing field, from the bare bone details of switching circuits to the high level abstraction of object-based software design.

Textbook

This semester I'll be using the following text book. You'll need to purchase a copy at the UM Bookstore, or online.

The Elements of Computing Systems *Nisan and Schocken*

MIT Press 2005

Online Resources

Please bookmark the following online resources immediately:

- with the exception of the textbook, all course material will be made available online, through the University of Montana's Moodle system,
- the textbook has a web site, and
- there is a Coursera Course.

Software

This course uses simulators to test the design of your hardware. They are written in Java, so run on Windows, OSX, and Linux. The software should be downloaded and configured according to the instructions here.

Methodology

This is mostly a hands-on course, evolving around building a series of hardware and software modules. Each module development task is accompanied by a design document, an API, an executable solution, a test script (illustrating what the module is supposed to do), and a detailed implementation plan (proposing how to build it). The projects are spread out evenly, so there will be no special pressure towards the semesters end. Each lecture will start by reviewing the work that was done thus far, and giving guidelines on what to do next. The projects can be done in pairs.

Meeting Times/Place

Times:Monday, Wednesday 15:00–16:20Place:Social Science 362

Final Exam Time and Place

15:20–17:20 Tuesday, May 9, 2017 Social Science 362

Grading Policy

Grading scale

А	94-100
A-	90-93
B+	87-89
В	83-86
B-	80-82
C+	77-79
С	73-76
C-	70-82
D+	67-69
D	63-76
D-	60-62
F	0-59

Students taking the course pass/no pass are required to earn a grade of D or better in order to pass.

Assessments and weights

The following assessments will be used and weighted according to the values in the table to determine final grades.

Component	Description	Number	Weight
In-class problems	Problems worked on in the classroom, by the instructor and	12	30%
	groups of students. $\frac{1}{3}$ of the grade will be attendance, $\frac{1}{3}$		
	assessment from classmates, and $\frac{1}{3}$ correctness of solution.		
	All group members may submit the same work for these		
	assignments.		
Homework	Assessment of individual student performance on the as-	6	40 %
	signed problems. These are to be worked by students out-		
	side of the classroom. Students are encouraged to discuss		
	solutions with their groups, but each submitted assignment		
	must represent the student's own work and be unique.		
Midterm Exam	Test of your knowledge of material presented in class and	1	10%
	done in homework.		
Final Exam	Test of your knowledge of all material presented in class	1	20%
	and done in homework.		

Tentative schedule:

Monday	WEDNESDAY
Jan 23rd 1	25th 2
Course introduction and demonstration of	Introduction to Hardware Description
tools	Language (HDL), logic gates
30th 3	Feb 1st 4
Combinational logic and the ALU	Combinational logic and the ALU
(Arithmetic-Logic Unit)	(Arithmetic-Logic Unit)
6th 5	8th 6
Sequential logic: memory hierarchy	Sequential logic: flip-flop gates, registers,
	and RAM
13th 7	15th 8
Machine language: instruction set, assembly	Machine language: assembly language
and binary versions	programs
20th	22nd 9
Presidents Day	Computer architecture: integrations of
	chipsets built thus far in class
27th 10	Mar 1st 11
Computer architecture: integrations of	Assembler: language translation - parsing
chipsets built thus far in class	and symbol table

Monday	WEDNESDAY	
6th 12	8th 13	
Assembler: language translation -	Midterm Exam	
macro-assembly and construction of		
assembler		
13th 14	15th 15	
Virtual machine I: modern virtual machines,	Virtual machine I: implementation of a VM	
stack based arithmetic, logical and memory	from assembler language previously	
access operations	developed	
20th	22nd	
Spring Break	Spring Break	
27th 16	29th 17	
Virtual machine II: stack-based	High level language: introduce Jack, a	
flow-of-control and subroutine	simple high level language with Java like	
call-and-return techniques, complete VM	syntax	
implementation		
Apr 3rd 18	5th 19	
High level language: trade-offs in language	Compiler I: context-free grammars and	
design and a simple, interactive game in <i>Jack</i>	recursive parsing algorithms, building a	
	tokenizer and parser for Jack.	
10th 20	12th 21	
Compiler I: syntax analyzer and XML output	Compiler II: code generations, low-level	
	handling of arrays and objects	
17th 22	19th 23	
Compiler II: a full-scale compiler, generating	Operating system: design of OS/hardware	
VM code from XML produced previous	and OS/software with regard to time/space	
week	efficiency of design	
24th 24	26th 25	
Operating system: classic algorithms in OS	More fun to go: improvement of our	
design	computer in terms of optimization and	
	functional extensions	
May 1st 26	3rd 27	
More fun to go: HTTP servers, FPGA	Wrap up/Course evaluation	
implementations		
l		

Attendance Policy

Attendance is required and enters your grade as part of the in class assessment (10% of total grade). The policy for excusing absences is identical to that of late assignments.

Late Assignments

Other than in in exceptional circumstances, such as family or medical emergencies *late homework will not be accepted* unless an extension was agreed upon *well in advance* of the due date. All exceptional circumstances must be documented in writing.

Academic Integrity

All students must practice academic honesty. Academic misconduct is subject to an academic penalty by the course instructor and/or a disciplinary sanction by the University. All students need to be familiar with the Student Conduct Code. I will follow the guidelines given there. In cases of academic dishonesy, I will seek out the maximum allowable penalty. If you have questions about which behaviors are acceptable, especially regarding use of code found on the internet or shared by your peers, please ask me.

Disabilities

Students with disabilities may request reasonable modifications by contacting me. The University of Montana assures equal access to instruction through collaboration between students with disabilities, instructors, and Disability Services for Students. Reasonable means the University permits no fundamental alterations of academic standards or retroactive modifications.