Role of self-schema in the foot-in-the-door technique

Patricia J. McKeral

The University of Montana

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/etd

Recommended Citation
https://scholarworks.umt.edu/etd/4911
Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports.

** Please check “Yes” or “No” and provide signature**

Yes, I grant permission
No, I do not grant permission

Author’s Signature

Date:

Any copying for commercial purposes or financial gain may be undertaken only with the author’s explicit consent.
THE ROLE OF SELF-SCHEMA
IN THE FOOT-IN-THE-DOOR TECHNIQUE

By
Patricia J. McKeral
B.S.N., California State University at Sacramento, 1977
M.A., University of Montana, 1986

Presented in partial fulfillment of the requirements
for the degree of
Master of Arts
University of Montana
1994

Approved by

Chairperson, Board of Examiners

Dean, Graduate School

Date
The Role of Self-Schema in the Foot-in-the-door Technique

The effect that schematicity for helpfulness or unhelpfulness might produce on the Foot-in-the-Door phenomenon is examined in this investigation. The commonly accepted self-perception theory explanation suggests that this phenomenon is mediated by a cognitive change that occurs as a result of one's self-perception related to one's compliance with an initial small request. It was hypothesized that only individuals who are aschematic with respect to the domain of helpfulness or unhelpfulness would be affected by a Foot-in-the-Door manipulation.

To test this hypothesis, a screening questionnaire was administered to 623 introductory psychology students. Based on self-reported helpfulness characteristics, individuals were selected for two schematic and two aschematic experimental groups and their respective one-contact control groups. Experimental subjects were telephoned and asked to perform a small initial request. Between two and four days later, both experimental subjects and one-contact control group members were telephoned and asked to perform a larger request. Results showed that a significant reversal of the phenomenon occurred and that this trend was present in all four conditions. As a consequence, no conclusions could be drawn with respect to the hypotheses being tested. Possible reasons for the reversal were discussed.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction ...</td>
<td>1</td>
</tr>
<tr>
<td>The Foot-in-the-Door Phenomenon</td>
<td>2</td>
</tr>
<tr>
<td>Empirical Studies of the FITD Phenomenon</td>
<td>5</td>
</tr>
<tr>
<td>Schema Theory and Social Cognition</td>
<td>20</td>
</tr>
<tr>
<td>Empirical Studies in Support of the Self-Schema Construct</td>
<td>27</td>
</tr>
<tr>
<td>Self-Schema and the Foot-in-the-Door Phenomenon</td>
<td>29</td>
</tr>
<tr>
<td>Hypotheses ..</td>
<td>32</td>
</tr>
<tr>
<td>2. Study ..</td>
<td>35</td>
</tr>
<tr>
<td>Method ...</td>
<td>36</td>
</tr>
<tr>
<td>Subjects and Overview</td>
<td>36</td>
</tr>
<tr>
<td>Measurement of Schematicity</td>
<td>37</td>
</tr>
<tr>
<td>Procedure ...</td>
<td>40</td>
</tr>
<tr>
<td>3. Results ...</td>
<td>46</td>
</tr>
<tr>
<td>4. Discussion ...</td>
<td>60</td>
</tr>
<tr>
<td>References ..</td>
<td>72</td>
</tr>
<tr>
<td>Footnotes ..</td>
<td>77</td>
</tr>
<tr>
<td>Appendices ..</td>
<td>78</td>
</tr>
<tr>
<td>A Screening Questionnaire</td>
<td>78</td>
</tr>
<tr>
<td>B Small Request Script and Questionnaire</td>
<td>81</td>
</tr>
<tr>
<td>C Script for the Large Request</td>
<td>83</td>
</tr>
<tr>
<td>D Script for Answering Compliance Calls</td>
<td>84</td>
</tr>
<tr>
<td>E Table of Values</td>
<td>85</td>
</tr>
</tbody>
</table>
CHAPTER 1

Introduction

In our society we are continually besieged by efforts of others which are intended to alter our attitudes, feelings and behavior, and to gain our compliance with their requests. Not only do others attempt to influence us, but similarly, we strive to influence others with our own appeals. While various approaches can be employed to influence another effectively, Baron and Byrne (1987) state that "attempts to gain compliance through direct requests are one of the most common, if not the most common form of social influence" (p. 240).

An effective method of direct appeal called a multiple request procedure involves the use of two requests: the second request being that to which compliance is actually desired. Multiple request procedures have been demonstrated to increase compliance significantly beyond that which occurs when only the target request is presented. One multiple request technique, commonly known as the foot-in-the-door phenomenon (Freedman & Fraser, 1966), has received much research attention, not only in psychology, but also in the field of marketing.

In 1966, Freedman and Fraser empirically demonstrated that agreeing to a small initial request increased the
probability that one would comply with an ensuing larger request, often referred to as the target request. Since that time, many studies have focused on what Freedman and Fraser named the foot-in-the-door (FITD) phenomenon. Bem's (1972) self-perception theory, which is described in the next section, has become commonly accepted (Beaman, Cole, Preston, Klentz, & Steblay, 1983; DeJong, 1979; Dillard, Hunter, & Burgoon, 1984) as the explanation for the effect. Yet, literature reviews by Beaman et al. (1983) and DeJong (1979) suggested that self-perception theory did not completely explain the underlying mechanism of the effect and urged that more research and theorizing be done.

The Foot-in-the-Door Phenomenon

The FITD phenomenon is a compliance enhancing technique in which, under conditions of no apparent external pressure (DeJong & Musilli, 1982) and minimal external justification (Uranowitz, 1975; Zuckerman, Lazzaro, & Waldgeir, 1979), gaining assent from another to a small initial request increases the probability that the person will comply with a subsequent larger request. The effect was initially demonstrated to be robust even when the two appeals were separated by a two week time delay, involved dissimilar issues, required different actions, and were made by different people (Freedman & Fraser, 1966). However, a comprehensive meta-analysis conducted on FITD research by Beaman et al. (1983) reported that while "the foot-in-the-door effect does seem to influence subsequent
compliance, and it is a replicable phenomenon. . . . this phenomenon is weak and not nearly as robust as has been assumed" (p. 191-192).

As noted, self-perception theory has been commonly accepted (Beaman et al., 1983; Dillard et al., 1984; DeJong, 1979) as the explanation for the FITD effect. This theory is based on the two propositions that follow:

Individuals come to "know" their own attitudes, emotions, and other internal states partially by inferring them from observations of their own overt behavior and/or the circumstances in which this behavior occurs. Thus, to the extent that internal cues are weak, ambiguous, or uninterpretable, the individual is functionally in the same position as an outside observer, an observer who must necessarily rely upon those same external cues to infer the individual's inner states (Bem, 1972, p. 2).

The FITD effect has been thought (Beaman et al., 1983; DeJong, 1979) to be mediated by a cognitive change which occurs as a consequence of one's self-perception of his or her compliance with the initial small request. An individual, after observing his or her own behavior and the situational context in which it occurs, makes an inference about personal feelings, attitudes, and beliefs which produces a change in one's self-image that is consistent with the behavior.

Although Bem's early self-perception articles (1967,
1970) were not published until after 1966, Freedman and Fraser (1966) seemed to anticipate such an explanation when they interpreted the results they had obtained. One can see similarities between the self-perception explanation and Freedman and Fraser's earlier interpretations which stated that an individual upon seeing him/herself help with a good cause without external pressure or justification, comes to view him/herself as "the kind of person who does this sort of thing, who agrees to requests made by strangers, who takes action on things he/she believes in, who cooperates with good causes" (1966, p. 231). This alteration in one's self-view has been thought to increase the likelihood that one will perform similar acts in the future. However, initial compliance does not guarantee subsequent compliance except under circumstances in which one can make an inference for the initial compliance (Seligman, Bush, & Kirsch, 1976; Uranowitz, 1975). Furthermore, a change in self-perception should occur only in the absence of sufficient external justification for the initial response (Lepper, 1973). Many studies (Beaman, Svanum, Manlove, & Hampton, 1974; Freedman & Fraser, 1966; Pliner, Hart, Kohl, & Saari, 1974; Seligman et al., 1976; Snyder & Cunningham, 1975; Uranowitz, 1975) have provided results consistent with a change in self-perception as mediating the consistency between an individual's response to the first request and the subsequent larger request.
The FITD paradigm. The basic FITD paradigm is comprised of two conditions. A group of subjects, the experimental group, is presented with a small initial request; one which will produce compliance in a large percentage of the subjects. Following a delay, a large request is presented to the experimental subjects. A second group, known as the one-contact control group, receives only this large request, usually during the same time period in which the experimental group is receiving the large request. A FITD effect is obtained when the experimental group shows a significantly greater compliance rate to the large request than is obtained from the one-contact control group.

Empirical Studies of the FITD Phenomenon

Over the past two decades more than 50 studies using variations on the FITD paradigm have been conducted attempting to understand further what factors influence the FITD effect. Although many of these investigations have been based on hypotheses generated from self-perception theory, very few have suggested alternative explanations for the phenomenon.

Size of the first request. The size of the first request has been found to be an important factor in whether or not the FITD effect will be obtained. While the size of the initial request must be small enough to ensure obtaining compliance, consistent with the self-perception theory explanation, it must also be large enough to be seen as a meaningful activity for the effect to occur (DeJong, 1979;
Seligman et al., 1976). However, it has been shown (Baron, 1973) that even when compliance with the first request is obtained, if the initial request is made too large, the likelihood of getting the FITD effect is decreased. Both Beaman et al. (1983) and Miller and Suls (1977) suggested a possible curvilinear relationship between the size of the initial request and compliance with the subsequent larger request.

Performance of the initial request. The FITD effect has been demonstrated both with subjects only agreeing to perform the initial act (passive compliance) and with subjects actively executing the first request (active compliance). According to Beaman et al. (1983), both active and passive compliance to the initial request produce the FITD effect, however, active participation produces somewhat greater effect sizes. This pattern of outcomes is consistent with a self-perception theory explanation for the FITD phenomenon.

Time between the first and second requests. The time between an initial request and the subsequent larger appeal has been varied from contiguous requests to a delay of 21 days. Beaman et al. (1983) reported that across studies the average time delay was 4.4 days, and of "the 85 pure FITD conditions," they reviewed, "50% of the conditions were conducted with two days or less between requests" (p. 190).

Although most of the studies in the literature that
report a FITD effect involved some time delay between requests, there are a few investigations (Cann, Sherman, & Elkes, 1975, Study 1; Hansen & Robinson, 1980; Harris, 1972, Study 1; Patch, 1986) employing contiguous requests that obtained significant compliance with the second request. However, Beaman et al. (1983) reported that they found, across studies, a negative correlation between the percentage of compliance to the first request and the effect size when contiguous requests were presented to subjects. Addressing their finding, these authors pointed out that a time delay between requests was important for the FITD effect as it was originally conceptualized. The authors suggested further that a different psychological process is involved when requests are contiguous.

A self-perception theory explanation for the FITD effect might predict that some time is required between the two requests for the shift to occur in one's self-view that is thought to produce the compliance with the second larger request. With the exception of the Beaman et al. (1988) and the Cann et al. (1975) studies, temporal delay as a manipulated independent variable has not been studied and, instead, has varied unsystematically from study to study.

Noncompliance with the first request. Subjects who refuse to comply with an initial request have been found to be less likely to comply with a subsequent request. Snyder and Cunningham (1975) induced subjects either to comply or
not to comply with an initial request specifically to test the self-perception explanation for the FITD effect. These authors reasoned that individuals who do not comply with an initial request should infer that they are unhelpful individuals, and therefore are less likely to comply with a later request than control subjects who were not exposed to the initial request. Results of the Snyder and Cunningham study supported their position and the self-perception explanation for the FITD phenomenon.

Sex of the experimenter. The role that the sex of the experimenter might play in obtaining the FITD effect was studied as a variable in only one investigation (Baron, 1973). Baron found that when requests were presented by male experimenters a FITD effect was obtained but that this did not occur when female experimenters presented the same requests. Beaman et al. (1983) analyzed the relationship between the sex of the experimenter and the effect size obtained across FITD studies and found "that male experimenters produce larger effect sizes than female experimenters when interacting with either female subjects or a combination of female and male subjects" (p. 191). Addressing their findings, these authors concluded that "the sex of the experimenter may play a more prominent role in obtaining results than has previously been acknowledged" (p. 192).

Ratio of the size of the first and second requests. While the influence of the ratio of the size of the first
request to that of the subsequent larger request has not received attention as a manipulated independent variable, some authors (Foss & Dempsey, 1979; Seligman et al., 1976) have suggested that the relationship between the initial and critical request might be an important variable in producing the FITD effect. Although Seligman et al. manipulated the size of the initial request and concluded that an optimal relationship existed between its size and compliance with the second request, they did not actually manipulate the ratio of the size of the first request to that of the second.

Foss and Dempsey (1979), using the FITD paradigm in an attempt to increase blood donations, when discussing their failure to obtain the FITD effect, pointed out that possibly a substantial first request is required to gain compliance with behaviors that individuals are hesitant to engage in. Although this suggestion may have merit, and would effectively reduce the ratio between the first and second requests, it might also decrease the rate of compliance to the initial request, and therefore the number of individuals who could potentially change their self-perceptions. Moreover, in the event that initial compliance is obtained with a larger first request, one might conceivably obtain the effect described by Baron (1973). He reported that some subjects, after complying with a moderately sized initial request, when asked to comply with the larger second request,
explained "their refusal by stating that they had already "done enough" for the E's organization." (p. 114) and it was unfair to ask them to do more. Furthermore, both Beaman et al. (1983) and Miller and Suls (1977) have suggested that a possible curvilinear relationship exists between the size of the initial request and compliance with the subsequent larger request.

Same or different requesters for the two requests. In their first investigation of the FITD phenomenon, Freedman and Fraser (1966, Study 1) used the same requester for both the initial request and the substantially larger second request which was presented after a three day delay. A compliance rate of over 50% was obtained for subjects who had performed the initial request. This was significantly more than the compliance rate of 22% which was obtained for individuals asked only to comply with the larger request. Because Freedman and Fraser were concerned that the high rate of compliance to the larger request that was obtained for their experimental subjects was due to a sense of commitment to the caller, they used different experimenters for each request in Study 2. These investigators still obtained a very large, and statistically significant compliance rate (76% vs. 16.7%) when the two requests involved a similar issue and a similar task.

Similarity in issues and tasks for the two requests. Freedman and Fraser (1966, Study 2) demonstrated that the
strength of the FITD phenomenon did not depend on a subject's commitment to a certain issue or a particular task. When the two requests involved a similar issue and a similar task, when the two requests involved a similar issue but a dissimilar task, when the two requests involved different issues but a similar task, and when both the issue and the task were different, the FITD effect was obtained. Even though the condition of a similar issue with a similar task produced a compliance rate of 76%, this was not significantly different from the over 47% that was found in the other three conditions. It should be noted, however, that while the condition of a similar issue with a similar task produced a compliance rate that was significantly different \(p < .01 \) from the 16.7% compliance rate which was demonstrated in the one-contact control group, the other three experimental conditions were only marginally significantly different \(p < .07, p < .07, p < .08 \) from the one-contact control group.

Presence of external justification to comply. As a test of the self-perception explanation for the FITD phenomenon, a number of conceptually similar studies provided subjects with what they termed as either external pressure (DeJong & Funder, 1977; DeJong & Musilli, 1982) or external justification (Reingen & Kernan, 1977; Uranowitz, 1975; Zuckerman et al., 1979) for complying with the initial request. As noted previously, for a change to occur in one's self-image as a result of compliance with the initial
request, one needs to observe his or her own behavior and the situational context in which it occurs. If there is an absence of external pressure or justification in the situational context of the behavior, the individual makes an inference about personal feelings, attitudes, and beliefs in such a way as to be consistent with the behavior. If, however, an individual experiences external justification or pressure that can be used to explain his or her behavior in that particular situation, the person is expected not to make any personal inference. Moreover, if the pressure is sufficiently strong, what is termed an overjustification effect (Lepper, 1973) can occur, and individuals may actually come to view themselves as requiring extrinsic motivation for the performance of this type of behavior (DeJong, 1979). As a consequence, subjects who are provided with external justification or pressure for their compliance with the first request should be expected to exhibit a compliance rate for the second request that is significantly lower than that displayed by subjects who did not experience the external justification or pressure for their initial behavior.

Consistent with the self-perception theory explanation for the FITD phenomenon, studies which provided subjects with a form of external justification in terms of either a monetary payment (Reingen & Kernan, 1977; Zuckerman et al., 1979) or an external reason (DeJong & Musilli, 1982;
Uranowitz, 1975) demonstrated compliance rates for the second request or activity that were not significantly different from those of the one-contact control group. However, subjects performing the first request without external justification or pressure to explain their behavior were found to be significantly more helpful than those in the one-contact control group.

Effect of social labels on subsequent compliance. Bem (1972), when presenting his theory of self-perception, discussed the ontogeny of self-attribution and suggested that one learns the skill of self-description as a child when taught by others to differentiate between various objects, events, and internal states and to label these with distinct descriptors. When the skill of self-description has been learned, observing one's own behavior and the situational context in which it occurs should provide one with a more robust attitudinal inference than a label provided by another. However, in the appropriate circumstances, a label provided by another for one's behavior should continue to activate a self-perception evaluation (DeJong, 1979). Several studies have examined the effect of providing a subject with a prosocial label for his or her compliance with an initial request on the subject's subsequent compliance (Eisenberg, Cialdini, McCreath, & Shell, 1987; Holte, Jamruszka, Gustafson, Beaman, & Camp, 1984; Kraut, 1973).

Kraut (1973) found that providing adult subjects with
a prosocial label for compliance with an initial request, increased their rate of compliance with a subsequent request beyond that which was obtained from subjects who had not been supplied with the label (62% vs. 47%). Although Kraut's finding was only marginally significant (p<.07), and his investigation was not designed to examine the FITD phenomenon, this study has been cited (DeJong, 1979) as supportive of a self-perception explanation for the FITD effect.

Holte et al. (1984), in an investigation which was designed to examine the influence of self-perception on the donating behavior of fourth-grade children, measured children's self-perceptions as sharers and the accuracy of these self-perceptions prior to giving the children an initial opportunity to donate. Following the first donating opportunity, one group of children was provided with a label of being generous for its donating behavior. It was found that the children who had been labeled as generous, when given a second opportunity to donate, not only were more likely to donate, but also donated more than the control group. An important additional finding was that within the group that was labeled, it was the children who had accurately perceived themselves as nonsharers that were affected most by the label. These children gave significantly more the second time than labeled children who already viewed themselves accurately as sharers (92% vs. 56%). Although a
post-measure to assess a change in children's self-perceptions was not obtained, the authors suggested that providing children who did not already view themselves as sharers with the self-perception of being generous changed their self-perception, and markedly influenced their donating behavior.

In an investigation that was designed to study the development in children of both an understanding of trait stability and their internal preference for consistency, and whether children's preference for consistency produced a FITD effect, Eisenberg et al. (1987) provided kindergarten, second-grade, and fifth-grade children in one FITD condition with a helpful attribution for their initial compliance. Children in a second condition were provided with a positive but nonprosocial attribution for their initial behavior. Although second and fifth-grade children in both FITD conditions helped on a second task significantly more than the control group members, a significant difference in helping was not found between the groups which had been subjected to the two different attribution manipulations.

Even though Eisenberg et al. (1987) did not address the finding of a lack of differentiation between their attribution conditions with respect to the FITD effect, it could be argued that this result would support a self-perception theory explanation for the phenomenon. Both self-perception theory and prior research (DeJong, 1979; Holte et al., 1984; Kraut,
1973) would predict that a label provided by another for one's behavior should activate a self-perception evaluation that influences one's subsequent behavior. If the FITD effect is mediated by a similar process, it would seem reasonable to assume, under circumstances when internal cues for one's behavior are weak, ambiguous, or uninterpretable, both the observation of one's own act of compliance with an initial request and the providing of a prosocial label for this act by another should generate a similar change in one's self-perception. Thus, individuals who comply with a small initial request in a FITD study would not require a label provided by another to alter their self-view, and the results that were reported by Eisenberg et al. with regard to their attribution manipulation should be expected.

The Eisenberg et al. (1987) study is important for a number of reasons. First, this study demonstrated that a response to the FITD manipulation began to appear with children 7 to 8 years of age who showed an understanding of trait stability, as measured by the Cognitive Understanding of Traits Scale, as a predictor of behavior. Second, along with an understanding of trait stability, it was found that a child's preference for consistency in behavior, as measured by the Self/Adult Preference for Consistency Scale, significantly influenced the strength of the FITD effect. In addition, a measure of self-attribution administered to the second and fifth-grade children two months following
the FITD manipulation demonstrated that children in both attribution conditions tended to attribute prosocial motives to their helping acts. Furthermore, of children in the control group who were found to value behavioral consistency, those who had helped on the second task in the absence of an experimenter also attributed their helping to prosocial motives, whereas those who had helped others in the presence of the experimenter gave nonprosocial self-attributions for their helping.

In addition to presenting support for a self-perception explanation for the FITD effect, the Eisenberg et al. (1987) investigation found that the strength of the FITD phenomenon was significantly affected by a child's preference for consistency. It was suggested by the authors that an internal preference for consistency may be the link between the change in self-perception which occurs as a result of compliance with an initial request and subsequent consistent responding.

Alternative explanations. Over the years few alternative explanations have been considered for the FITD effect. Those that have been proposed such as social reinforcement of the initial compliant act (Crano & Sivacek, 1982; Harris, 1972), a redefinition of one's adaptation level (Snyder & Cunningham, 1975), a change in situational perceptions (Rittle, 1981), the salience of social norms for helping (Harris, 1972), and informational availability (Tybout,
Sternthal, & Calder, 1983) have either been unsupported with empirical investigation, or when supported, found to be "inadequate accounts of the foot-in-the-door literature" (DeJong, 1979, p. 2237).

As noted previously, the self-perception theory explanation for the FITD effect has been commonly accepted. However, no published investigation has provided direct evidence for this account by measuring the change in self-perception that is thought to occur as a result of either active or passive compliance with the small first request. Although DeJong (1979) stated that "the self-perception analysis has proven to be a heuristic explanation" (p. 2235), both his literature review and the Beaman et al. (1983) meta-analysis study indicated that self-perception theory did not entirely address the underlying process that is thought to occur and, as a result, it was suggested that more research and theorizing be done.

Although the FITD effect has been thought to be mediated by a cognitive change which occurs as a consequence of one's self-perception of his or her compliance with the initial small request, it may be that obtaining the effect depends on one's original self-perception. For example, some individuals may view themselves as neither helpful nor unhelpful. When induced to comply with the initial request, these individuals may make an attitudinal inference related to their behavior.
and come to incorporate being helpful into their self-images. As a result, when given a subsequent opportunity to be helpful, these individuals should be willing to help another. Such reasoning is consistent with the Holte et al. (1984) study, described earlier, which demonstrated that children who accurately perceived themselves as nonsharers were responsible for the significant difference in donating behavior that was found between the experimental and control groups.

Moreover, individuals who already have very strong self-perceptions of being helpful people should not be expected to be affected by a FITD manipulation within the self-perception theory explanation for the effect. That is, compliance with an initial small request should not produce a cognitive change in individuals who originally view themselves as helpful. Therefore, the compliance rate with a large request for helpful people would not be dependent on whether they complied with an initial small request but, instead, on their original self-view.

Furthermore, individuals who strongly conceptualize themselves as unhelpful people should not be expected to be affected by a manipulation as minor as the initial request. It may be that these are the individuals that constitute the minority of subjects one finds when doing a FITD study who refuse to comply with the small first request.

As was noted earlier, Freedman and Fraser (1966)
demonstrated the FITD effect to be a robust phenomenon, and yet the Beaman et al. (1983) meta-analysis concluded that the effect is weaker than has been assumed. It is possible that since the time of the original Freedman and Fraser study more people have come to view themselves as helpful. If this were true, then in a random sample one would find a preponderance of people who hold a self-perception of themselves as helpful. Based on this reasoning, it is possible that only a minority of subjects would be affected by a FITD manipulation.

During the last decade, social cognition, the study of the normal cognitive structures and processes by which individuals come to understand themselves and others (Fiske & Taylor, 1984), has become a prominent area of research within social psychology. An important cognitive structure, a hypothetical construct known as a self-schema, could account for the findings in the FITD literature and support the reasoning developed above.

Schema Theory and Social Cognition

Although schema theory can be traced historically to the work of Bartlett which was published in 1932, modern schema theory began to emerge in the early part of 1970. By 1975, there was a noteworthy convergence of published papers from investigators in diverse areas of research (e.g., artificial intelligence, motor performance, cognitive psychology, and linguistics) which all argued for a schema
theory approach to information processing (Brewer & Nakamura, 1987).

The study of social cognition within social psychology emerged as a direct result of the development of theories and methods in cognitive psychology (Fiske & Taylor, 1984). Since its onset, much research in social cognition has focused on understanding the cognitive structures that affect an individual's attempt to organize, summarize, or explain his or her own behavior and the behavior of others. Today, "schema" is the term most frequently used when one is denoting a cognitive structure.

Description of schemata. Schemata are hypothetical cognitive structures which guide the perception, organization, processing, and utilization of incoming information or stimuli (Burger, 1986). Schemata are thought to consist of clusters representing conceptually related knowledge, attitudes, and beliefs about persons, objects, situations, actions, events, and sequences of events, and develop from the cognitive processing of information derived from one's past experiences (Markus & Zajonc, 1985). Schemata can contain the attributes which are related to a particular organized representation, the rules which define the relationship among the attributes, or both (Fiske & Taylor, 1984; Markus & Zajonc, 1985). Our memory system is assumed to contain a countless number of schemata, and it is this "organized prior knowledge [which] enables us to function
in a social world that would otherwise be of paralyzing complexity" (Fiske & Taylor, 1984, p. 149).

The properties of an individual's schemata are thought to influence what information one will attend to, and how this information will be encoded, organized, remembered, and retrieved for utilization. "In the most general sense [schemata] provide for the construction of social reality" (Markus & Zajonc, 1985, p. 143).

Schemata function to simplify input by reducing the amount of environmental stimuli that a perceiver attends to, and they serve as interpretive frameworks for new information (Markus & Zajonc, 1985). Actively interacting with incoming data (Brewer & Nakamura, 1987), schemata determine how new information is assimilated with existing knowledge and how the information will be represented in memory (Markus & Zajonc, 1985). When an environmental stimulus is impoverished, schemata function to fill in information which is lacking in the specific input thus allowing the perceiver to process information beyond that which was actually present (Fiske & Taylor, 1984; Markus & Zajonc, 1985). In addition, at output, by having interacted with incoming information, schemata allow the perceiver to respond appropriately to a countless number of new situations (Brewer & Nakamura, 1987).

Schemata studied within social cognition. Research in social cognition has focused on four types of social schemata:
person schemata, role schemata, event schemata, and self-schemata (Fiske & Taylor, 1984). Person schemata determine how we categorize and understand others. Knowledge about broad social categories (e.g., sex, age, race, occupation) are encompassed in role schemata. Event schemata consist of our knowledge about sequences of situational events, and self-schemata contain one's general knowledge about the self. Because the properties of person schemata, role schemata, and event schemata are not being investigated in this thesis, only the characteristics of self-schemata are addressed.

Self-schemata. The cognitive structures which represent how the self is classified in memory are called self-schemata. Markus (1977) coined this term when making one of the first attempts to measure individual differences in the processing of schematic information about the self. According to Markus, "self-schemata are cognitive generalizations about the self, derived from past experience, that organize and guide the processing of self-related information contained in the individual's social experiences" (p. 64).

Individuals categorize information about themselves from past experiences with specific events and from the evaluations of their behavior by themselves and others in specific situations (Markus & Zajonc, 1985). Through the process of repeated categorizations and evaluation, general representations of self-relevant knowledge are produced in
memory (Markus, 1977; Markus, Hamill, & Sentis, 1987).
Once formed, "these schemata function as selective mechanisms
which determine whether information is attended to, how it
is structured, how much importance is attached to it, and
what happens to it subsequently" (Markus, 1977, p. 64).

Because self-schemata are developed from cognitive
representations of past experiences and because people
differ in their past experiences, the categorizations that
are made will also differ thus producing individual
differences in self-schemata (Markus, 1977). As a result,
some individuals will have a strong conception of themselves
on certain attributes, while others may possess a weaker
self-schema for the same domain (Fiske & Taylor, 1984).
Moreover, other individuals may not develop a differentiated
self-view related to the domain, and will therefore be
considered aschematic (without a schema) for that domain
(Markus, 1977). In general, individuals will possess
self-schemata for domains they judge as important to
themselves, on which they consider themselves to be extreme,
and for which they are confident that the converse does not
apply (Fiske & Taylor, 1984).

Even though an individual may possess many well
developed self-schemata, not all are equally salient at any
given moment (Fiske & Taylor, 1984; Markus & Zajonc, 1985).
Context is thought to be a major factor in determining which
of one's self-schemata will be activated (Fiske & Taylor,
1984). However, how recently a schema has been activated, and how frequently it has been applied in the past, partially determine whether a given schema will be activated in a particular situation. In addition, one's affect and motivation can determine schema accessibility. For instance, "unmet needs can prime one's interpretation of ambiguous stimuli" and "highly emotional schemata should be more accessible than neutral ones" (Fiske & Taylor, 1984, p. 176).

Self-schemata perform functions similar to those of other types of schemata; however, their structure is thought to be more complex. Self-schemata filter incoming environmental information. A perceiver will attend to information that is self-relevant while ignoring that which is irrelevant to his or her self-view. Information that is consistent with one's prevailing self-schema will not only receive attention, but will also be processed rapidly and recalled easily (Markus, 1977; Markus & Zajonc, 1985) because the incoming information already exists within one's knowledge structure.

On the other hand, a perceiver may or may not attend to self-relevant information that is inconsistent with his or her self-concept (Fiske & Taylor, 1984; Markus & Zajonc, 1985). It is thought that individuals will generally ignore conflicting information that is not highly contradictory. However, if the inconsistent information does receive attention, it may be reinterpreted and assimilated to fit the prevailing schema thus becoming part of one's dispositions.
and easily remembered (Fiske & Taylor, 1984). Or, the information may be attributed to a temporary situational cause which would make it irrelevant and easily forgotten (Fiske & Taylor, 1984). As a result, schemata are permitted to function unchanged even in the face of contradictory information.

Even though schemata are resistant to change, they do change under certain circumstances. According to Fiske & Taylor (1984), "discrepant information is most likely to cause schema change when the lack of fit is undeniable, that is, [if the lack of fit is] considerable, unambiguous, memorable, and stable" (p. 178). Moreover, if one is faced with a series of instances where information is somewhat discrepant with a prevailing schema, the schema may eventually change.

Generally, knowledge about the self is easily accessible in memory. It is one's self-schemata that assist an individual with remembering self-relevant information. Individuals who possess a self-schema for a particular domain can be expected to make judgments about themselves related to the domain rapidly and with consistency (Fiske & Taylor, 1984). Individuals who are aschematic with respect to a particular domain of behavior, when asked to do so, will also make judgments about themselves with regard to the domain. However, their judgments will be made more slowly and will be less consistent (i.e., will include
adjectives that describe both poles of a bi-polar dimension of behavior). Schematic individuals are able to generate evidence in support of their judgments, remembering, in detail, examples of domain-related behavior. On the other hand, examples produced by aschematics, if generated at all, will be fewer in number and lacking in detail.

When asked to predict their behavior, schematics will make rapid predictions consistent with their self-schema. However, if the situation is novel, schematics may lengthen their processing time because they have considerable knowledge to apply to the novel situation (Fiske & Taylor, 1984). Aschematics will also predict their behavior for the domain but, because they have less information on which to base their judgments, they will process routine information more slowly and novel information more rapidly.

Empirical Studies in Support of the Self-Schema Construct

In 1977, Markus operationally defined the concept of a self-schema and provided evidence in support of individual differences in the processing of self-relevant information. The emphasis of Markus's seminal work "was less on the content of the schemas and more on their selective function in the information-processing sequence" (Markus & Zajonc, 1985, p. 146). Using independence/dependence as the dimension of behavior, Markus identified three groups of subjects (schematic independent, schematic dependent, and those aschematic with respect to this domain) and found
that the groups differentially processed self-relevant information related to the domain. It was Markus's conjecture that "all self-schemas would operate in a fairly similar way regardless of content" (Markus & Zajonc, 1985, p. 146), and this assumption has been supported by subsequent research (Bem, 1981; Davis & Unruh, 1981; Hammen, Marks, deMayo, & Mayol, 1985; Kuiper, Derry, & MacDonald, 1982; Markus, Crane, Bernstein, & Siladi, 1982; Markus et al., 1987; Miller, 1984; Mills, 1983; Strube et al., 1986).

The importance of individual differences in the processing of self-relevant information has been demonstrated for a variety of domains. Markus (1977) identified subjects who were schematic and aschematic on the trait dimension of independence/dependence and compared their performance on an assortment of tasks. She found systematic variations in performance between the groups.

Schematic processing of self-relevant information related to gender has received attention by a number of investigators (Bem, 1981; Markus et al., 1982; Miller, 1984; Mills, 1983). Although gender is considered a universal schema (i.e., one that everyone possesses to some degree), it was found that not all individuals had an elaborated masculine or feminine self-schema. Those that do not are considered to be aschematic with respect to gender. However some individuals, labeled as androgynous, view themselves as both masculine and feminine and their
self-concept would be considered to "have multiple gender self-schemas" (Markus et al., 1982, p. 50).

Markus has also examined the schematic processing of information related to body weight (Markus et al., 1987). She found that some individuals organized self-knowledge with respect to their body weight while others did not.

Other investigators have also examined self-schemata. For example, Strube et al. (1986) examined the cognitive performance of individuals who manifested either Type A or Type B behavior patterns. The results of their study demonstrated differential organizations of responses which corresponded to the differing behavior styles. The authors suggested "that the Type A and B domains may represent distinctly organized content clusters that can be represented independently as self-schemata" (p. 176). A number of studies have examined the processing of self-relevant information by depressed people (Davis & Unruh, 1981; Hammen et al., 1985; Kuiper et al., 1982). Results suggested that when individuals are depressed they process self-relevant information through a depressive self-schema.

Self-schemata and the Foot-in-the-Door Phenomenon

The FITD phenomenon has been thought to be mediated by a cognitive change which occurs as a consequence of one's self-perception of his or her compliance with an initial small request. Many studies have been conducted that support a self-perception theory explanation for the effect,
and yet the nature of the cognitive change that is thought to occur has not been addressed. Modern schema theory, specifically the self-schema construct, may offer such an explanation.

Bem (1972) has argued that a change in self-perception occurs in situations where an individual has weak, ambiguous, or uninterpretable internal cues for his or her behavior. Schema theory would predict that individuals who possess a self-schema for domains of behavior such as helpfulness and unhelpfulness should be expected to have well developed cognitive representations of themselves on these dimensions that are highly resistant to change. Therefore, individuals who have a self-schema for the domains of helpfulness or unhelpfulness should not be expected to alter their self-image as a result of a FITD manipulation. That is, individuals who already view themselves as helpful people when complying with a small request would continue to consider themselves helpful people. Furthermore, individuals who possess an unhelpful self-schema, even if they do comply with a small request, should not be expected to be affected by their behavior which is related to a request as trivial as that which occurs in a FITD paradigm. Therefore, only aschematic individuals, those who do not possess a self-schema for the helpfulness/unhelpfulness dimension, should require an explanation for their compliance with a small request.

Schema theory would predict that the internal cues for
the helping behavior of aschematic helpful/unhelpful individuals should be weak, or ambiguous, or uninterpretable. Consistent with self-perception theory, when helping another, these individuals should find themselves in the position of an outside observer when attempting to understand their helping behavior. Therefore, it would be expected that when viewing their behavior and the situation in which it occurs, aschematic helpful/unhelpful individuals should infer that they are helpful people and thereby change their self-perception. As a result, these previously aschematic individuals should be found to increase significantly the compliance rate to the large request in a FITD paradigm. The purpose of this research is to examine this possibility.

In addition, it may be that some aschematic helpful/unhelpful people would be more likely than others to infer the existence of a helpful disposition from the observation of their behavior related to the small request. As was noted previously, individuals possess self-schemata on domains they judge as important to themselves. Perhaps, to recognize the significance of their behavior related to a small request and to classify it as an example of a helpful act, it is necessary for aschematic helpful/unhelpful individuals to place some degree of value or importance on the concept of a helpful person. The second purpose of this investigation is to explore this possibility by separating aschematic individuals into two groups: an
"aschematic important" group; an "aschematic unimportant" group. The two groups would be similar in that both consist of individuals who rate themselves in the midrange on a helpful/unhelpful scale (i.e., rate themselves as neither helpful nor unhelpful). They would differ from each other by their ratings on a scale that measures the importance of the characteristic of helpfulness to their self-view. Individuals would be assigned to the aschematic important group if they rate themselves above the median on the importance scale and to the aschematic unimportant group if they rate themselves below the median. Aschematic important group members would be expected to attend to their behavior when complying with an initial small request, categorize it as a helpful act, and infer that they are helpful people whereas aschematic unimportant group members should not.

Hypotheses

It is proposed that individuals who possess a helpful self-schema will not be affected by a FITD manipulation. That is, the compliance rate to a large request for self-schema helpful experimental subjects will not differ significantly from that obtained for self-schema helpful individuals not exposed to an initial small request. Also, experimental subjects who possess an unhelpful self-schema will demonstrate a compliance rate to a large request that does not differ significantly from that obtained for other
self-schema unhelpful individuals who were not exposed to the experimental manipulation.

It is proposed that the presence or absence of a self-schema for the dimension of helpfulness/unhelpfulness determines whether a FITD effect will be obtained within a FITD paradigm. Only those individuals who are aschematic with respect to the domain, who view themselves as neither helpful nor unhelpful, will be affected by a FITD manipulation. In addition, it is expected that aschematic experimental subjects who view helping as an important characteristic will demonstrate this increased compliance rate to the larger request while aschematic experimental subjects who view helping as unimportant to their self-view will not.

Because self-schematic helpful and unhelpful subjects should be expected to comply with both the small and large requests in accordance with their self-schema, several secondary hypotheses are proposed. Self-schematic helpful subjects will demonstrate a compliance rate to the initial request that is significantly higher than that demonstrated by experimental aschematic subjects, and self-schematic unhelpful subjects will demonstrate a compliance rate for the initial request that is significantly lower than that displayed by the experimental aschematic subjects. In addition, compliance to the large request for schematic one-contact control subjects should also reflect their
self-schema. Therefore, it is proposed that the self-schema helpful one-contact control group will demonstrate a compliance rate to the large request that is significantly higher than that displayed by the aschematic one-contact control group, and the self-schema unhelpful one-contact control group will demonstrate a compliance rate to the large request that is significantly lower than that demonstrated by the aschematic one-contact control group.
CHAPTER 2

Study

This study investigated the possible attenuating effects that schematicity for helpfulness or unhelpfulness produce on the FITD phenomenon. The FITD effect is thought to be mediated by a cognitive change that occurs as a result of one's self-perception related to his or her compliance with an initial small request. Bem (1972) has argued that individuals function as outside observers of their own behavior in situations where internal cues for the behavior are weak, ambiguous, or uninterpretable. Inferences that occur as a result of these observations are thought to produce a change in one's self-perception so that one's self-image and behavior correspond. In chapter one, it was argued that individuals with a well defined self-schema with respect to the dimension of helpfulness/unhelpfulness should not require an explanation for their compliance or noncompliance with a small request. Given this expectation, individuals schematic with respect to the domain would not demonstrate an increased compliance rate to a larger request when compared with a respective one-contact control group. On the other hand, individuals aschematic with respect to the domain should find that their compliance with a small request would require some explanation and should, as a result, come to infer that they are helpful people. When given another
opportunity to help, aschematic individuals would be expected to demonstrate a higher rate of helping than that found for a respective one-contact control group.

Method

Subjects and Overview

To obtain a classification of each subject's self-schema on the dimension of helpfulness/unhelpfulness, a questionnaire was administered to 623 students during a routine group testing session. Because of the procedure required for this study, students were neither informed of the purpose of this questionnaire nor that they might be selected to participate in an experiment. Students were selected as potential subjects if they met the criteria for inclusion in one of four groups, two of which were schematic and two of which were aschematic, and had listed a home telephone number on their questionnaire. Following the selection process, each group was divided such that approximately one half was designated to receive multiple requests in a FITD paradigm and the other half was designated to serve as one-contact control group members. This process produced a 2 (experimental vs. control) X 4 (classification of schematicity) design.

Between three and six weeks following completion of their questionnaires, experimental subjects were called at home and asked to comply with a small request. Two to four days later both the experimental subjects and a nearly
equal number of similarly classified one-contact control
group members were called and asked to perform a larger
request.

Measurement of Schematicity

Students in introductory psychology classes were asked
to rate themselves on 15-point scales that were designed to
assess how helpful they viewed themselves, how confident
they felt in their self-assessment, and how important this
assessment was to their self-image (Appendix A). Scales for
the adjectives generous, friendly, and understanding were
also included on the self-rating questionnaire to mask the
importance of the questions related to helpfulness.

To begin the selection of individuals for each of the
four groups, the distribution of the 15-point helpfulness
scale was divided into three parts based on the closest
meaningful approximation of thirds. Scores of 13 through
15 were selected to represent the highest self-ratings
on the helpfulness scale. This range encompassed 38%
of the scores on this measure. Scores of 11 and 12 were
chosen to represent the middle 33% of the scores. The
range of 3 through 10, which contained the remaining 28%
of the scores, was designated to represent the lowest
self-ratings on the helpfulness scale. For each of the
three divisions (i.e., the highest, middle, and lowest
groups on the helpfulness measure), a separate distribution
of scores was made for the importance scale; however, for
the confidence scale scores, a separate distribution was made for only the highest and lowest groups. Based on the various distributions, individuals were selected as potential subjects for the following four categories:

Self-schema helpful. To identify subjects for the "self-schema helpful" category, individuals were considered if their helpfulness scale scores were included in the range of 13 through 15. A distribution of self-rating scores was then formed for the confidence and importance scales for these individuals. An individual was selected as a potential subject if he or she had a helpfulness measure score in the range of 13 through 15, an importance scale score above its distribution median of 13, and a confidence measure score that was equal to or greater than its median of 14. This process identified 96 potential self-schema helpful subjects: Those who had some of the highest self-reported helpfulness scores and who indicated, relative to other similar people, they viewed their helpfulness characteristic as quite important and were confident in their self-assessment. Following classification, individuals were randomly assigned either to the experimental group or to the one-contact control group.

Self-schema unhelpful. To identify "self-schema unhelpful" subjects, individuals who rated themselves at the low end of the helpfulness scale with scores between 3 and 10 were selected for evaluation. For this group of individuals,
a distribution of the self-rating scores was formed for both the confidence and the importance scale. An individual was selected as a potential subject if he or she had a helpfulness measure score in the range of 3 through 10, an importance scale score equal to or greater than 9 and a confidence scale score equal to or greater than this group's median of 10. This process identified 85 potential self-schema unhelpful subjects: Those who had some of the lowest self-reported helpfulness scores and who indicated, relative to other similar people, they viewed their unhelpful characteristic as quite important and were confident in their self-assessment. Following classification, individuals were randomly assigned either to the experimental group or to the one-contact control group.

Aschematic for helpful, important. To identify "aschematic for helpful, important" subjects, individuals were considered for this classification if they rated themselves at either 11 or 12 on the helpfulness scale. A distribution of scores was then formed for this group's importance scale scores. An individual was selected as a potential subject for this category if he or she had both a helpfulness measure score of 11 or 12 and an importance scale score that was above this group's median of 12. This process identified 70 aschematic for helpful, important people who characterized themselves as neither helpful nor unhelpful, and indicated relative to other similar people, that helpfulness was important to their self-assessment. Following classification
individuals were assigned randomly either to the experimental group or to the one-contact control group. Because it was unclear how confident aschematic individuals should be in their self-assessment, the confidence distribution was not used for this classification.

Aschematic for helpful, unimportant. To identify "aschematic for helpful, unimportant" subjects, individuals were considered for this classification if they rated themselves at either 11 or 12 on the helpfulness scale and if their importance scale score was below this group's median of 12. This process identified 86 aschematic for helpful, unimportant individuals who characterized themselves as neither helpful nor unhelpful and indicated, relative to other similar people, that this domain was unimportant to their self-images. Again, because it was unclear how confident aschematic individuals should be in their self-assessment, the confidence distribution was not used for this categorization. Following classification, individuals were assigned randomly either to the experimental group or to the one-contact control group.

Procedure

Between three and six weeks following participation in the questionnaire phase of this experiment, subjects assigned to the four multiple request groups were called and asked to perform a small request by one of four female undergraduate psychology majors serving as experimenters. All four were
blind to subject classification and to the hypotheses being tested. Each experimenter was given a list of names and telephone numbers which was compiled from each of the four experimental conditions. An effort was made to construct the lists so that equal numbers of subjects from each of the four experimental conditions were contacted by each of the experimenters during the four weeks.

To make the small request, experimenters called subjects at their homes between Sunday and Tuesday during the times the individuals had indicated on their questionnaires as a good time to be contacted. If a subject could not be reached, the caller made at least four more attempts at other times. When subjects were reached, they were identified by name and then presented with the following script which constituted the small request:

Hello. My name is Ann Myers. I am with the Bureau of Community Services. We are conducting a survey of university students concerning their use of community recreational facilities. Would you be willing to help us by answering a number of questions for our survey that will take only a couple of minutes?

If a subject refused, he or she was thanked for his or her time. When subjects agreed, they were asked the questions (Appendix B) and were then told "you've been very helpful" before being thanked for their participation in the survey. The experimenters noted whether subjects complied with the
small request.

Two to four days after the initial call, experimental subjects and an equal number of similarly classified (in terms of schematicity) one-contact control group members were telephoned and asked to perform a larger request. The experimenters for this phase of the study were the same four female undergraduate psychology majors used to make the initial request. Each experimenter was given a list of names and telephone numbers of experimental subjects who had been contacted previously for the first request. Names of experimental subjects were mixed with equal numbers of names of one-contact control group members selected randomly from each of the four groups. For every experimental subject contacted during a particular calling period of Tuesday through Friday, an attempt was made to contact a one-contact control group member. This procedure ensured that historical events did not differentially impact experimental and control group members. If an individual could not be reached, the caller made four more attempts at other times. No experimenter received the name of a subject whom she had previously called. In addition, the experimenters were blind to an individual's classification, his or her FITD condition and to any responses previously made.

When an individual was reached, the experimenter identified the person by name and then presented the following large request:
Hello. I'm Sue Daniels. I am working for the Research firm of Petty, Petty and Barker. We are conducting research at the University of Montana collecting information concerning student's views of university funding and other political issues. We are asking University of Montana students to help by responding to questions for a 2 to 3 hour period. Would you be willing to come to our office on the U. M. campus and take 2 to 3 hours to be interviewed and answer written questions related to our project?

If the person refused to participate, he or she was thanked for his or her time. When individuals agreed to the large request, they were told the following:

Since you will want to schedule the 2 to 3 hours at a time convenient for you, I will give you the phone number of our appointment secretary.

The person was given a telephone number to call, a list of days and times when someone was available to take the call and was thanked for his or her willingness to help (see Appendix C). The experimenter noted each individual's response to the large request.

During the prearranged days and times, an experimenter was available to take telephone calls from those wanting to arrange for an appointment. The experimenter followed a written script (Appendix D) when answering the calls, noting the name of each person that called. Calling for
an appointment constituted the behavioral measure of compliance with the large request.

Because the FITD effect is dependent on compliance with an initial small request, it was important to ensure that an adequate number of subjects would be willing to comply with this initial appeal. Therefore, the small request was tested by telephoning 25 students who were selected randomly from those individuals who had completed the questionnaire but who had not been selected as subjects. The compliance rate with the small request was found to be 100%.

To ensure that the large request was of sufficient size to be considered a large request, another 25 students were telephoned and presented with the request. These individuals were selected randomly from those who had completed the screening questionnaire but who had been neither selected as subjects nor selected to test the smaller request.

Ideally, large requests in a FITD paradigm should generate a compliance rate of approximately 20%. This is consistent with the literature and can conceptually be considered a large request. For this study, pretesting of the large request indicated that 28% of those who were called agreed to comply. This percentage was deemed close enough to what was intended to continue with the large request as originally planned. Unfortunately, it was discovered during the course of the main study that one of the experimenters was providing counterfeit data. When
this was removed, it was found that base rate compliance
with the large request may have been as high as 35% which
was greater than what was intended.
CHAPTER 3

Results

The results of this experiment are reported in two sections. The first section discusses the primary set of analyses which were conducted to determine whether a FITD effect was obtained and, if so, in which conditions. Section two details the secondary analyses which were performed.

Because the Beaman et al. (1983) meta-analysis study reported a weak mean effect size for the FITD phenomenon, an effort was made to increase the power of this experiment, (in addition to striving to maintain adequate cases in each of the cells), by selecting an a priori probability level of 0.10 as the alpha level for each of the analyses. Thus an outcome with a probability of 0.10 or less would allow for rejection of a null hypothesis that chance alone was responsible for the obtained result.

In addition, the analyses described in the two sections constitute a family of planned comparisons. Because a series of comparisons on a set of data can increase the family-wise error rate (i.e., the number of Type I errors), the Bonferroni inequality was used to adjust for this possibility. This procedure increased the critical value that each of the test statistics was required to equal or exceed for a null hypothesis to be rejected. Because of the unavailability
of a table for critical values for Bonferroni tests at an alpha level of 0.10, a table of values was constructed (J. A. Walsh, personal communication, October 14, 1993) by interpolation (see Appendix E) from those existing for an alpha level of 0.05 (Dayton & Schafer, 1973). Although the critical values for Bonferroni tests are not quite linear in their progression, it was decided that for the purpose of this study the table would provide for an acceptable estimation of equally weighted critical values for an alpha level of 0.10.

Primary Analyses

Prior to conducting the family of planned comparisons, an overall chi-square analysis was performed to evaluate the rate of verbal compliance with the large request. This 2 (experimental vs. control) X 2 (compliance vs. noncompliance) chi-square analysis with the Yates correction for continuity and with one degree of freedom was performed to test the null hypothesis that no relationship existed between compliance as a function of experimental treatment. It was expected that the null hypothesis would be rejected and the alternative hypothesis that there was a relationship between compliance to the large request and condition would be supported. Although a directional prediction was not made, it was anticipated that the results of this analysis would indicate a FITD effect had been achieved. Surprisingly, it was found that the experimental group was significantly
less likely to agree to comply with the large request than was the one-contact control group, thus demonstrating a strong reversal of the FITD effect. As Table 1 indicates, 23% (33 of 145) of the experimental subjects verbally complied with the large request, while nearly 46% (66 of 145) of the one-contact control subjects said they would comply. \(\chi^2(1, n = 290) = 15.70, \text{ critical value } = 6.7. \) Because so few individuals who agreed to comply with the large request actually called for an appointment, 3% (3 of 99), no analyses of behavioral compliance were conducted.

Because the overall chi-square analysis revealed a significant reversal of the FITD effect rather than its absence, it was appropriate for the originally planned series of comparisons to be made to test the remaining hypotheses. The first hypothesis, that individuals who are schematic with respect to helpfulness would not be affected by the FITD manipulation, was tested using a chi-square analysis with the Yates correction for continuity. The frequency of agreeing to comply with the large request for the self-schema helpful experimental group was compared to that which was obtained for its one-contact control group. This 2 (experimental vs. control) X 2 (compliance vs. noncompliance) chi-square analysis with one degree of freedom was expected to be nonsignificant. Because a difference between groups was not expected, a two-tailed test was selected. As predicted, for verbal compliance with the large request, a
Table 1

Overall Verbal Compliance Rate with the Large Request

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Groups</td>
<td>33</td>
<td>112</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>23%</td>
<td>77%</td>
<td></td>
</tr>
<tr>
<td>One-Contact Control Groups</td>
<td>66</td>
<td>79</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>46%</td>
<td>54%</td>
<td></td>
</tr>
</tbody>
</table>
significant difference was not found between the experimental group and the one-contact control group. As shown in Table 2, 24% (10 of 42) of the experimental subjects said yes to the large request and 50% (21 of 42) of the one-contact control group members also agreed to comply, $\chi^2(1, n = 84) = 5.11$, critical value = 6.7.

To test the hypothesis that the frequency of agreeing to comply with the large request for the self-schema unhelpful experimental group would not differ significantly from that obtained for its respective control group, a 2 (experimental vs. control) X 2 (compliance vs. noncompliance) chi-square analysis with the Yates correction for continuity was performed. Because a difference between groups was not expected, a two-tailed test was selected for this analysis. As predicted, a significant difference in verbal compliance with the large request was not found between these groups. As shown in Table 3, 18% (7 of 39) of the experimental subjects and 37% (14 of 38) of the one-contact control group members agreed to comply with the large request, $\chi^2(1, n = 77), = 2.58$, critical value = 6.7.

To evaluate the hypothesis that the experimental group aschematic with respect to helpfulness would demonstrate a verbal compliance rate to the large request that was significantly higher than that which was obtained for its one-contact control group, a 2 (experimental vs. control) X 2 (compliance vs. noncompliance) z-test for proportions
Table 2

Verbal Compliance Rate with the Large Request for the Self-Schema Helpful Group

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Group</td>
<td>10</td>
<td>32</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>24%</td>
<td>76%</td>
<td></td>
</tr>
<tr>
<td>One-Contact Control Group</td>
<td>21</td>
<td>21</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>50%</td>
<td></td>
</tr>
</tbody>
</table>

Table 3

Verbal Compliance Rate with the Large Request for the Self-Schema Unhelpful Groups

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Group</td>
<td>7</td>
<td>32</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>18%</td>
<td>82%</td>
<td></td>
</tr>
<tr>
<td>One-Contact Control Group</td>
<td>14</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>37%</td>
<td>63%</td>
<td></td>
</tr>
</tbody>
</table>
with a Yates correction for continuity was conducted. The
z-test for proportions was selected for this analysis
because a directional prediction had been made; however,
a significant difference was not found between the groups.
As shown in Table 4, 25% (16 of 64) of the aschematic
experimental subjects verbally agreed to comply with the
large request and 48% (31 of 65) of the one-contact control
group members said they would comply, ($z = -2.47$, critical
value = 2.6, one-tailed).

The hypothesis that experimental subjects classified
as aschematic for helpful, important would exhibit a verbal
compliance rate to the large request that was significantly
higher than that displayed by their respective one-contact
control group members was tested by a 2 (experimental vs.
control) X 2 (compliance vs. noncompliance) z-test for
proportions with the Yates correction for continuity. A
one-tailed test was chosen for this analysis because a
directional prediction had been made; however, no significant
difference was found between the groups. As shown in Table
5, nearly 28% (8 of 29) of the aschematic for helpful,
important experimental subjects and 48% (14 of 29) of the
aschematic for helpful, important one-contact control group
members agreed to comply with the large request, ($z = -1.35$,
critical value = 2.6, one-tailed).

To test the hypothesis that the experimental subjects
who were classified as aschematic for helpful, unimportant
Table 4

Verbal Compliance Rate with the Large Request for the Combined Aschematic Groups

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Group</td>
<td>16</td>
<td>48</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>25%</td>
<td>75%</td>
<td></td>
</tr>
<tr>
<td>One-Contact Control Group</td>
<td>31</td>
<td>41</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>48%</td>
<td>52%</td>
<td></td>
</tr>
</tbody>
</table>

Table 5

Verbal Compliance Rate with the Large Request for the Aschematic for Helpful, Important Groups

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Group</td>
<td>8</td>
<td>21</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>28%</td>
<td>72%</td>
<td></td>
</tr>
<tr>
<td>One-Contact Control Group</td>
<td>14</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>48%</td>
<td>52%</td>
<td></td>
</tr>
</tbody>
</table>
would demonstrate a verbal compliance rate to the large request that would not differ significantly from that obtained for their respective one-contact control group members. A 2 (experimental vs. control) X 2 (compliance vs. noncompliance) chi-square analysis with the Yates correction for continuity was performed. Because a directional prediction had not been made, a two-tailed test was selected for this analysis. A significant difference between the groups was not found. As shown in Table 6, 23% (8 of 35) of the experimental subjects agreed to help with the large request as did 47% (17 of 36) of the one-contact control group members, $\chi^2 (1, n = 71) = 3.6$, critical value = 6.7).

Secondary Analyses

The hypothesis that the experimental subjects who were classified as self-schema helpful would exhibit a compliance rate to the initial request that was significantly higher than that displayed by those experimental subjects who were classified as aschematic with respect to helpfulness was analyzed by a 2 (schematic vs. aschematic) X (compliance vs. noncompliance) z-test for proportions with the Yates correction for continuity. Because a directional prediction had been made, a one-tailed test was selected for this analysis; however, a significant difference was not found between the groups. As shown in Table 7, 92% (44 of 48) of the self-schema helpful subjects complied with the small request as did 86% (62 of 72) of the combined aschematic subjects ($z = 1.31$,
Table 6

Verbal Compliance Rate with the Large Request for the Aschematic for Helpful, Unimportant Groups

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Group</td>
<td>8</td>
<td>27</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>23%</td>
<td>77%</td>
<td></td>
</tr>
<tr>
<td>One-Contact Control Group</td>
<td>17</td>
<td>19</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>47%</td>
<td>53%</td>
<td></td>
</tr>
</tbody>
</table>

Table 7

Compliance Rate with the Small Request for the Self-Schema Helpful Experimental Group and the Combined Aschematic Experimental Group

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Schema Helpful Group</td>
<td>44</td>
<td>4</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>92%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Combined Aschematic Group</td>
<td>62</td>
<td>10</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>86%</td>
<td>14%</td>
<td></td>
</tr>
</tbody>
</table>
critical value = 2.6, one-tailed).

The hypothesis that the experimental subjects who were classified as self-schema unhelpful would demonstrate a compliance rate to the initial request that was significantly lower than that displayed by the experimental subjects who were classified as aschematic with respect to helpfulness was analyzed with a 2 (schematic vs. aschematic) X 2 (compliance vs. noncompliance) z-test for proportions with the Yates correction for continuity. A one-tailed test was selected for this analysis because a directional prediction had been made; however, a significant difference was not found between the groups. As Table 8 indicates, 89% (41 of 46) of the self-schema unhelpful subjects helped with the small request as did 86% (62 of 72) of the combined aschematic subjects, \((z = 0.79, \text{critical value} = 2.6, \text{one-tailed})\).

To evaluate the hypothesis that the self-schema helpful one-contact control group members would display a verbal compliance rate to the large request that was significantly higher than that shown by the aschematic combined one-contact control group members, a 2 (schematic vs. aschematic) X 2 (compliance vs. noncompliance) z-test for proportions with the Yates correction for continuity was performed. Because a directional prediction had been made, a one-tailed test was selected for this analysis; however, a significant difference was not found between the groups. As shown in Table 9, 50% (21 of 42) of the self-schema helpful
Table 8
Compliance Rate with the Small Request for the Self-Schema Unhelpful Experimental Group and the Combined Aschematic Experimental Group

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Schema Unhelpful Group</td>
<td>41</td>
<td>5</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>89%</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>Combined Aschematic Group</td>
<td>62</td>
<td>10</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>86%</td>
<td>14%</td>
<td></td>
</tr>
</tbody>
</table>

Table 9
Verbal Compliance Rate with the Large Request for the Self-Schema Helpful Control Group and the Combined Aschematic Control Group

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Schema Helpful Group</td>
<td>21</td>
<td>21</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>Combined Aschematic Group</td>
<td>31</td>
<td>34</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>48%</td>
<td>52%</td>
<td></td>
</tr>
</tbody>
</table>
one-contact control group members and 48% (31 of 65) of the combined aschematic one-contact control groups members agreed to help with the large request, \(z = 0.40 \), critical value = 2.6, one-tailed).

The last hypothesis, that the frequency of verbal compliance with the large request for the self-schema unhelpful one-contact control group would be significantly lower than the frequency that was observed for the aschematic combined one-contact control group, was analyzed by a 2 (schematic vs. aschematic) X 2 (compliance vs. noncompliance) \(z \)-test for proportions with the Yates correction for continuity. Because a directional prediction was made, a one-tailed test was selected for this analysis; however, a significant difference was not found between the groups. As shown in Table 10, 37% (14 of 38) of the self-schema unhelpful one-contact control group members agreed to call for an appointment as did 48% (31 of 65) of the combined aschematic one-contact control group members, \(z = -0.9 \), critical value = 2.6, one-tailed).
Table 10

Verbal Compliance Rate with the Large Request for the
Self-Schema Unhelpful Control Group and the Combined
Aschematic Control Group

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-Schema Unhelpful Group</td>
<td>14</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>37%</td>
<td>48%</td>
<td></td>
</tr>
<tr>
<td>Combined Aschematic Group</td>
<td>31</td>
<td>34</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>48%</td>
<td>52%</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 4

Discussion

In this study, a number of hypotheses were proposed that were contingent upon the occurrence of a successful FITD manipulation. Although the overall chi-square analysis revealed a significant difference between the experimental group and the one-contact control group in frequency of verbal compliance with the large request, it was the one-contact control group and not the experimental group that demonstrated the higher rate of verbal compliance. Therefore, a FITD effect was not achieved, and the remaining analyses revealed that no other significant differences existed.

The results of this study are interesting for a number of reasons. First, an unexpected reversal of the FITD effect was found. Second, an unusually high base rate of verbal compliance to the larger request was obtained for one-contact control group members. Third, there was nearly a nonexistent performance of behavioral compliance with the large request by those who said they would comply. And, fourth, an examination of the data revealed that these findings were present in each of the individual conditions (i.e., regardless of classification with respect to the domain of helpfulness/unhelpfulness).

Although these results are unusual, they are not
without some precedent in the literature. For example, several other studies (DeJong & Funder, 1977; Fish & Kaplan, 1974; Zuckerman et al., 1979) have reported high base rate compliance to the large request for control group members. Even though this differs from what is usually found in a FITD study, and one might consider a high base rate problematic because of its potential to interfere with the determination of a significant finding of the FITD effect, both the DeJong and Funder and the Zuckerman et al. studies were able to demonstrate a significant result. Furthermore, in this study, as well as in the Fish and Kaplan investigation, the high base rate allowed for the discovery of an actual reversal of the effect.

The possibility of a reversal of the FITD phenomenon was entertained by Beaman et al. (1983) as a result of their meta-analysis study. These authors suggested that combining variables within the FITD paradigm could produce interactions that would not merely negate the FITD effect but could cause it to be significantly reversed.

As noted, the report of an actual significant reversal of the FITD effect was made by Fish and Kaplan (1974). These authors found that when experimental subjects passively complied with an initial request, or when they anticipated a future opportunity to comply with a request, their subjects agreed to a subsequent request at a rate that was significantly lower than that which was obtained for the
control group members. Addressing their findings, Fish and Kaplan suggested that in some situations the initial act of compliance may function as a substitute or "token" activity which allows subjects to refuse a subsequent more demanding request that they would have likely complied with had they not been given "a way out". That is, by complying with the initial request, subjects can justify both their having done enough for a cause they feel unenthusiastically but morally obligated to assist, and their refusal of a subsequent more costly request. Although this explanation is interesting, it should be noted that one result the authors obtained disconfirms their reasoning, and that no measures were included in their study that would lend support to their conclusions. Furthermore, their investigation is not without methodological flaws with respect to the usual FITD paradigm.

The discussion by Beaman et al. (1983), which resulted from their meta-analysis study of the FITD literature, would suggest that a finding of a significant reversal of the FITD phenomenon could be more than just an accidental occurrence. Whether this is true for this study cannot be answered without further investigation; however, the possibility does suggest a number of issues for consideration.

Even though this study was designed to be a replication of the typical FITD paradigm, it is possible that some of its features were not as precise as what is necessary to
obtain the outcome when one considers the weak mean effect size that has been reported for the phenomenon (Beaman et al., 1983; Dillard et al., 1983; Dillard, 1991). However, in this investigation the FITD effect was not merely absent as so often has been the case (Beaman et al., 1983; DeJong, 1979; Dillard et al., 1984; Dillard, 1991), but rather a significant reversal of the effect was found. Therefore, it seems reasonable to assume that one or more variables, shown to moderate the FITD phenomenon, may have done so in this investigation.

A feature of this investigation that may differ from what is customary in the successful FITD paradigm was the size of the first request. Although previous studies had successfully used a similar first request (DeJong & Musilli, 1982; Seligman et al., 1976), and pretesting of the request achieved a compliance rate of 100%, it is still possible that the request was too large. An investigation by Baron (1973) is consistent with this reasoning. When Baron presented one group of experimental subjects with a very small first request and a second group with a somewhat larger initial request, he found that 95% of the experimental subjects in both groups complied with the first request. However, whereas 50% of those in the very small first request condition complied with a subsequent larger request, the compliance rate for subjects in the somewhat larger initial request condition did not differ from
that found for the one-contact control group. Even more interesting is his report that some experimental subjects in the somewhat larger initial request condition, when refusing to comply with the target request, "explained their refusal by stating that they had already 'done enough' for the E's organization" (p. 114) and it was unfair to ask them to do more.

Although three meta-analyses (Beaman et al., 1983; Dillard et al., 1984; Fern, Monroe, & Avila, 1986) and one narrative review (DeJong, 1979) have been conducted on the FITD literature, the question about what constitutes an appropriate size for an initial request remains unanswered. Whereas Baron (1973) concluded from his investigation that a first request needed to be very small, Seligman et al. (1976) concluded that a larger initial request was required, and both Beaman et al. (1983) and Miller and Suls (1977) suggested that a possible curvilinear relationship exists between the size of the first request and the rate of compliance with the subsequent larger request. While the possibility exists that the initial request in this investigation may have been too large to produce a FITD effect, it seems unlikely, based on previous research (Baron, 1973; Miller & Suls, 1977), that size alone would generate a significant reversal of the effect.

Although both the application of external pressure to comply with a small request (DeJong & Funder, 1977; DeJong
& Musilli, 1982), and the availability of external justification for complying with an initial request (Reingen & Kernan, 1977; Uranowitz, 1975; Zuckerman et al., 1979) have been shown to moderate the FITD effect, neither appeared to be present in this investigation in either the content of the initial request or in its procedure for delivery. While it is always possible that the manner of presentation of the initial request generated external pressure on subjects to comply or that the contents of the message allowed them to justify their compliance, both these possibilities seem remote.

Another variable that has been shown to be important for an effective FITD manipulation is the existence of a time delay between the first and second requests. In this investigation, the second appeal was made between two and four days after the initial request, and this would generally be accepted as an adequate time delay (Beaman et al., 1983). However, an intriguing argument presented by Miller and Suls (1977) would suggest that this study may have required a longer delay between the first and second requests.

When Miller and Suls (1977) examined the effects of both a small initial request and a somewhat larger first request on subjects' subsequent compliance with the target request, they found that only the small initial request produced a FITD effect. Addressing their results, these
authors suggested that it is the time delay between the first and second request that is crucial in determining the size of initial request that would insure compliance with the second larger appeal. Miller and Suls argument is as follows: Gaining a subject's compliance with a second larger request is dependent not only on the change in self-perception that is thought to occur as a result of the initial act of compliance, but also on whether the initial act is salient when the subject is presented with the high cost second request. If subjects' compliance with an initial request is sufficiently salient when they are presented with a costly second request, the individuals might refuse to perform the second request because they feel "that they had already done their 'good deed for the day'" (P.206). However, if there is an adequate amount of delay between the first and second requests, the salience of the initial act should diminish and the subjects' changed self-perceptions would impel them to comply with the larger second appeal.

Recall that Baron (1973) reported that some of the subjects in his somewhat larger initial request condition justified their refusal of the second request by saying that "they had already 'done enough' for the E's organization" (p. 114), and that it was unfair to ask them to do more. This would indicate that the initial act was salient for these subjects when the second appeal was made
even though a full week had elapsed. However, because Baron used the same organizational name as the sponsor for each of his requests, it is difficult to determine whether the time delay between the first and second request was insufficient to diminish the salience of the initial activity or whether the second request was sufficient to reinstate the salience through association. Interestingly, Seligman et al. (1976) also used the same sponsor for each of their requests and yet, with just a two day time delay between their first and second requests, found that only their somewhat larger initial request conditions produced a FITD effect. Baron, however, may have reconciled these seemingly conflicting findings when he discussed the results of his investigation. He proposed that subjects in his somewhat larger initial request condition may have experienced feelings of psychological reactance (Brehm, 1966) when presented with the costly second request, and this may have reduced their responsiveness to the target request. He suggested further that the FITD manipulation may be effective only when the size of the first request is small enough to avoid the induction of subjects' feelings of reactance.

What Baron (1973) implied is that subjects may have experienced a negative reaction to what they perceived as an external threat to their personal freedom; in this case, a negative reaction to being "set up" for a costly second
request. Moreover, it would be this reaction that would cause subjects to respond in a direction opposite from the one that was desired and opposite from the way they would have normally reacted.

The possible influence of one additional variable that has been shown to moderate the FITD effect, the sex of the experimenter, should be addressed. Even though Beaman et al. (1983) reported that male experimenters produced larger effect sizes for the FITD manipulation, the unavailability of male experimenters required that only female experimenters be used for this investigation. The effect this had on the outcome of this study is unclear.

One additional result should be addressed: the finding of virtually no behavioral compliance with the large request. Although a previous study had indicated that a significant number of subjects would comply behaviorally with a request similar to the one presented in this investigation, a modification was made in the present study which may have caused the size of the large request to increase after verbal compliance with the request had been obtained. In the previous work, when subjects agreed to perform the large request, they were scheduled for their appointments and given a location for their interviews. The rate of behavioral compliance was determined by the number of individuals who arrived for appointments. However, in the present study, when subjects agreed to perform the large
request, they were told of the requirement to telephone during certain hours to schedule an appointment that would require coming to campus for a 2 to 3 hour interview. The rate of behavioral compliance was determined by the number of individuals who called for an appointment. It may be that the requirement of calling for the appointment, and doing so during restricted hours, increased the cost of the large request and, thus, affected the outcome; however, this reasoning is based on speculation. What actually produced the result is a question which requires further investigation.

Conjectures

It is conceivable that the arguments developed both by Baron (1973) and by Miller and Suls (1977) are correct but, individually, incomplete explanations of what occurred in this investigation. More specifically, it is possible that the two to four day time delay that was used in this investigation was not of a sufficient length to diminish the salience of a somewhat larger sized initial activity. Moreover, it is also possible that similarities might have been seen between the first and second requests that would remind subjects of their previous acts of compliance. If the initial activity was salient and subjects felt they had been set up when they received the costly second request, it is conceivable that they would react negatively and would act in a direction opposite from the one that
was desired, thus producing the reversal of the FITD effect that was found in this investigation.

Unfortunately, this argument is based on the speculations of other experimenters and cannot be supported either by the results reported in the literature or by the data gathered in this investigation. How the various variables interact within the FITD paradigm has not been explored in any systematic manner (Beaman et al., 1983) and this, therefore, remains an intriguing empirical question.

Conclusions

The purpose of this study, to investigate the possible attenuating effects that schematicity for helpfulness or unhelpfulness produced on the FITD phenomenon, was not achieved. The hypotheses that were proposed were contingent upon a successful FITD manipulation that was not obtained. Instead, a significant reversal of the FITD effect was found overall, and the trend was present in each of the individual conditions. Although speculations were made, why this occurred cannot be determined either from the current state of the FITD literature or from the data gathered in this investigation. For these reasons, no justification exists for a discussion of how the results of this study affect the self-perception theory explanation of the FITD phenomenon or the arguments of this thesis.

Although the design of this experiment was based on
published FITD studies and on effective pilot work, the results seem to illustrate a point Beaman et al. (1983) made in their discussion of the findings of their meta-analysis study. These authors said that the combining of variables within the FITD paradigm could cause unknown interactions. This seems to be what occurred in this investigation.

With hindsight, it would seem reasonable to understand how the various variables interact when they are combined within the FITD paradigm to assure a consistent effect before attempting to evaluate the self-perception theory explanation for the phenomenon. It is my opinion that future research should be directed toward this goal.
REFERENCES

Footnotes

1 Although the original intent was to choose subjects who scored above the median on the various dimensions, to identify a sufficient number of potential self-schema helpful subjects, it was necessary to include individuals for consideration whose self-rating scores were either 14 or 15 on the confidence distribution that had been formed from their helpfulness scale scores. This process identified 96 potential subjects for the self-schema helpful category.

2 To increase the number of potential self-schema unhelpful subjects, it was necessary to include individuals for consideration whose self-rating scores were equal to or greater than 9 on the importance distribution that had been formed from their helpfulness scale scores. The median for the importance distribution was 10.

3 In addition to the adjustment on the importance distribution, to identify a sufficient number of potential subjects for the self-schema unhelpful category, it again was necessary to include individuals for consideration whose self-rating scores were equal to (as well as greater than) the median of 10 for the confidence distribution that had been formed from their helpfulness scale scores. This process identified 85 potential self-schema unhelpful subjects.
APPENDIX A
INFORMATION PROCESSING SCREENING QUESTIONNAIRE

Name___________________________________ Age____ Sex_____

Year in school: Fr So Jr Se Other (please circle one)

Phone ______________________ Please indicate below the days and
time of day you can usually be reached by phone.

We all have characteristics that we can use to describe ourselves. Our characteristics may or may not be similar to the characteristics others use to describe themselves. Even if these are similar, people tend to differ on how strongly they feel the characteristic applies. We are interested in whether certain characteristics apply to you. When you read the following questions, REFLECT back on your day-to-day life, consider yourself and your usual behavior with regard to friends, casual acquaintances and strangers before you answer the question. When answering the questions, please COMPARE yourself and your usual behavior to that of other people that you know. FOR ALL THE ITEMS BELOW, PLEASE CIRCLE THE NUMBER THAT APPLIES TO YOU.

1. Friendly, an adjective, means demonstrating to another characteristics such as kindness, support, affection, or personal regard. How friendly are you?

Not at all
Friendly
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

How confident are you in the above judgment of yourself?

Not at all
confident
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

How important is this characteristic to your self-image?

Not at all
Important
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2. **Understanding** means a state of cooperative or mutually tolerant relations between people. How **understanding** are you?

<table>
<thead>
<tr>
<th>Not at all</th>
<th>Average</th>
<th>Extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</td>
<td></td>
</tr>
</tbody>
</table>

How **confident** are you in the above judgment of yourself?

<table>
<thead>
<tr>
<th>Not at all</th>
<th>Average</th>
<th>Extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confident</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</td>
<td></td>
</tr>
</tbody>
</table>

How **important** is this characteristic to your self-image?

<table>
<thead>
<tr>
<th>Not at all</th>
<th>Average</th>
<th>Extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</td>
<td></td>
</tr>
</tbody>
</table>

3. **Helpful**, an adjective, means giving, or rendering aid or assistance: of service. How **helpful** are you?

<table>
<thead>
<tr>
<th>Not at all</th>
<th>Average</th>
<th>Extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helpful</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</td>
<td></td>
</tr>
</tbody>
</table>

How **confident** are you in the above judgment of yourself?

<table>
<thead>
<tr>
<th>Not at all</th>
<th>Average</th>
<th>Extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confident</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</td>
<td></td>
</tr>
</tbody>
</table>

How **important** is this characteristic to your self-image?

<table>
<thead>
<tr>
<th>Not at all</th>
<th>Average</th>
<th>Extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Important</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</td>
<td></td>
</tr>
</tbody>
</table>

4. **Generous**, an adjective, means liberal in giving or sharing; unselfish. How **generous** are you?

<table>
<thead>
<tr>
<th>Not at all</th>
<th>Average</th>
<th>Extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generous</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</td>
<td></td>
</tr>
</tbody>
</table>

How confident are you in the above judgment of yourself?

<table>
<thead>
<tr>
<th>Not at all</th>
<th>Average</th>
<th>Extremely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confident</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</td>
<td></td>
</tr>
</tbody>
</table>
How important is this characteristic to your self-image?

<table>
<thead>
<tr>
<th>Not at all Important</th>
<th>Average</th>
<th>Extremely Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

Definitions for the words friendly, understanding, helpful, and generous were obtained from the following source:

APPENDIX B

SMALL REQUEST SCRIPT AND QUESTIONNAIRE

"Is this _____________________. Hello. My name is Ann Myers. I am with the Bureau of Community Services. we are conducting a survey of university students concerning their use of community recreational facilities. Would you be willing to help us by answering a number of questions for our survey that will take only a couple of minutes?"

NOTE THE SUBJECT'S RESPONSE. Yes No

IF THE SUBJECT REFUSES SAY THE FOLLOWING:

"Okay. Thank you for your time".

IF THE SUBJECT AGREES SAY THE FOLLOWING:

"Okay. The first few questions are concerned with some background information so we can compare your answers with students who are similar to you."

1. "How old are you?"
2. "What is your year in school?"
3. "What is your major?"
4. "Are you from Missoula?"

IF THE ANSWER IS YES, GO TO QUESTION #6.

5. "What is your home town?"

"The remaining questions are concerning the types of things you do for fun?"

6. "Do you go to the movies?"

IF THE ANSWER IS NO, GO TO QUESTION #8.

7. "Approximately how many movies do you see each month?"
8. "Do you ride a bike?"

IF THE ANSWER IS NO, GO TO QUESTION #10.
9. "Do you ride your bike on the designated bike routes around Missoula?"

10. "Do you make use of any of the city parks?"

IF THE ANSWER IS NO, GO TO QUESTION #12.

11. "Which park is your favorite?"

12. "Do you use the YMCA or another health club facility?"

IF THE ANSWER IS NO, GO TO QUESTION #14.

13. "How many times each month do you do this?"

14. "Do you like to ski?"

IF THE ANSWER IS NO, GO TO QUESTION #16.

15. "How many times each month during the winter do you ski?"

16. "What is your favorite recreational activity?"

17. "What would you like to do for recreation that you cannot do in this area?"

"That was the last of our questions. You've been very helpful. Thank you for participating in our survey."
APPENDIX C

SCRIPT FOR THE LARGE REQUEST

"Is this ____________________________? Hello. My name is Sue Daniels. I am working for the research firm of Petty, Petty, and Barker. We are conducting research at the University of Montana collecting information concerning student's views on university funding and other political issues. We are asking University of Montana students to help by responding to questions for a 2 to 3 hour period. Would you be willing to come to our office on the U. M. campus and take 2 to 3 hours to be interviewed and answer written questions related to our project?"

NOTE THE SUBJECT'S RESPONSE TO THE REQUEST. YES NO

IF THE ANSWER WAS NO, SAY THE FOLLOWING:

"Okay, thank you for your time."

IF THE ANSWER WAS YES, SAY THE FOLLOWING:

"Because you will want to schedule the 2 to 3 hours at a time that is convenient for you, I will give you the phone number of our appointment secretary. Do you have something to write with? Okay. She can be reached at ___-___ on (days of the week and times available). Just call this number during one of the times I have given you and our secretary will set up an appointment that will be convenient for you. She will also tell you at that time what room on campus we will be using for this project. Thank you for your willingness to help with our project."
SCRIPT FOR ANSWERING COMPLIANCE CALLS

"Hello. This is the Petty, Petty, and Barker appointment secretary. May I help you?"

THE PERSON CALLING SHOULD STATE THE REASON FOR THE CALL.

IF THE PERSON STATED HIS OR HER NAME, SAY THE FOLLOWING:

"I'm sorry, would you repeat your name for me so I can check my interviewing lists?"

WRITE DOWN THE SUBJECT'S FIRST AND LAST NAME. IF YOU ARE UNCERTAIN OF THE NAME, ASK THE SUBJECT TO SPELL THE NAME.

IF THE PERSON DID NOT STATE HIS OR HER NAME, SAY THE FOLLOWING:

"Would you please tell me your name so I can check my interviewing lists?"

WRITE DOWN THE SUBJECT'S FIRST AND LAST NAME. IF YOU ARE UNCERTAIN OF THE NAME, ASK THE SUBJECT TO SPELL THE NAME.

PAUSE FOR ABOUT FIVE SECONDS AND THEN SAY THE FOLLOWING:

"Thank you for waiting. I needed to find your name on our interviewing lists. I'm really sorry to tell you this, but our interviewing schedule is already full. We had a larger response to our request than we anticipated. This doesn't usually happen. We really appreciate your willingness to help with our study. Can we call you if we need you in the future? It is very likely that some of our appointments will cancel.

NOTE HOW SUBJECTS RESPONDS TO THIS QUESTION. YES NO

"Okay. Thank you so much for calling."
APPENDIX E

Critical Values for Bonferroni Chi-Square Tests, df = 1

<table>
<thead>
<tr>
<th>Comparisons</th>
<th>(\text{Alpha} = 0.05^*)</th>
<th>(\text{Alpha} = 0.10^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>3.841</td>
<td>2.7</td>
</tr>
<tr>
<td>1/2</td>
<td>5.024</td>
<td>3.9</td>
</tr>
<tr>
<td>1/3</td>
<td>5.731</td>
<td>4.6</td>
</tr>
<tr>
<td>1/4</td>
<td>6.239</td>
<td>5.1</td>
</tr>
<tr>
<td>1/5</td>
<td>6.635</td>
<td>5.5</td>
</tr>
<tr>
<td>1/6</td>
<td>6.960</td>
<td>5.8</td>
</tr>
<tr>
<td>1/7</td>
<td>7.237</td>
<td>6.1</td>
</tr>
<tr>
<td>1/8</td>
<td>7.477</td>
<td>6.3</td>
</tr>
<tr>
<td>1/9</td>
<td>7.689</td>
<td>6.6</td>
</tr>
<tr>
<td>1/10</td>
<td>7.879</td>
<td>6.7</td>
</tr>
</tbody>
</table>

*The critical values were obtained from the following source: Dayton, C. M., & Schafer, W. D. (1974). Extended tables of \(t \) and chi square for Bonferroni tests with unequal error allocation. *Journal of the American Statistical Association*, 68, p. 341. *The critical values for an alpha = 0.10 were interpolated from alpha = 0.05.*