Syllabus

GEOL 480.01: Hydrogeology

William W. Woessner

University of Montana - Missoula, william.Woessner@umontana.edu

Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Let us know how access to this document benefits you.

Recommended Citation

https://scholarworks.umt.edu/syllabi/5101

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
FALL 2000

GEOLOGY 480 - 4 CREDITS

HYDROGEOLOGY

Instructor: William W. Woessner (SC329)

Text: Required - *Applied Hydrogeology*

Course goals and objectives: Prepare students in environmental geology and related fields to evaluate and quantitatively analyze hydrogeologic problems.

<table>
<thead>
<tr>
<th>CLASS DATE</th>
<th>CHAPTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 5</td>
<td>Intro-Hydrologic Budget</td>
</tr>
<tr>
<td>September 7</td>
<td>Hydrologic Budget</td>
</tr>
<tr>
<td>September 12</td>
<td>Properties of Earth Materials</td>
</tr>
<tr>
<td>September 14</td>
<td>Properties of Earth Materials</td>
</tr>
<tr>
<td>September 19</td>
<td>Aquifer Properties</td>
</tr>
<tr>
<td>September 21</td>
<td>Aquifer Properties</td>
</tr>
<tr>
<td>September 25</td>
<td>Last Day to Add/Drop by Dial Bear</td>
</tr>
<tr>
<td>September 26</td>
<td>Fluid Potential</td>
</tr>
<tr>
<td>September 28</td>
<td>Fluid Potential</td>
</tr>
<tr>
<td>October 3</td>
<td>Equations of GW Flow - Problem Set I Due</td>
</tr>
<tr>
<td>October 5</td>
<td>Equations of GW Flow</td>
</tr>
<tr>
<td>October 10</td>
<td>Exam I</td>
</tr>
<tr>
<td>October 12</td>
<td>Steady Rate Flow</td>
</tr>
<tr>
<td>October 16</td>
<td>Last Day to Drop Add (No $$$ Back)</td>
</tr>
<tr>
<td>October 17</td>
<td>Steady State Flow</td>
</tr>
<tr>
<td>October 19</td>
<td>Unsaturated Flow</td>
</tr>
<tr>
<td>October 24</td>
<td>Unsaturated Flow - Regional Flow Systems</td>
</tr>
<tr>
<td>October 26</td>
<td>Regional Flow Systems</td>
</tr>
<tr>
<td>October 31</td>
<td>Regional Flow Systems</td>
</tr>
<tr>
<td>November 2</td>
<td>Hydrogeologic Systems</td>
</tr>
<tr>
<td>November 7</td>
<td>Holiday</td>
</tr>
</tbody>
</table>
November 9 Hydrogeologic Systems - **Problem Set II Due**

November 10 Field Trip - 12:00 p.m. - 5:00 p.m.

November 14 **Exam II**

November 16 No Class - Work on Term Paper

November 21 Flow to Wells - **Term Paper Due**

November 23 **Holiday**

November 28 Flow to Wells

November 30 No Class

December 5 Flow to Wells

December 7 Water Quality

December 12 Solute Transport

December 14 Ground Water Management - **Problem Set III Due**

FINAL EXAM: Wednesday, December 20, 10:10-12:10 p.m.

COURSE ASSESSMENT: Quality of problem sets. Exams and term paper.

GRADING:
- 3 Problem Sets 27%
- 2 Exams 40%
- Term Paper 8%
- Final Exam 25%

TERM PAPER:

The term paper will be a research report on the Hydrogeology of the city or county in which you grew up or a topic assigned by the Professor. All reports will be assigned no later than September 30. All reports will be no longer than 10 pages of text (excluding figures) and will clearly describe the location, geology, and hydrogeology of the area. It will include information on the hydrostratigraphy, occurrence, movement, quantity, and quality of groundwater as well as its uses in the area. All papers will follow a format of the USGS Water Resources Investigations and include full cited references. Sources of information include professional journal articles, State Geological Survey and Water Survey reports, USGS Water Supply Papers, Professional Papers and Water Resources Investigations, and consulting reports.

All assignments given are expected to be turned in on time for grading in neat and edited form. Problem set assignments are due at the beginning of class on the day due with no exceptions. If you cannot make it to class, give the work to someone who can turn it in for you.

I will post office hours for questions, and you may see me any other time I am in my office if it is convenient.
Outside reading for this class is strongly suggested. The library contains a number of general hydrogeology textbooks which I feel will give additional depth to parts of the course I can only summarize. A list of readings is attached.

REFERENCES

Textbooks

Articles and Other Publications