
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1986

Analyzing a frame-based information system using the relational Analyzing a frame-based information system using the relational

and entity-relationship data models and entity-relationship data models

Bruce James McTavish
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
McTavish, Bruce James, "Analyzing a frame-based information system using the relational and entity-
relationship data models" (1986). Graduate Student Theses, Dissertations, & Professional Papers. 5097.
https://scholarworks.umt.edu/etd/5097

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

List of Figures

Figure 3-1: The Basic Entity-Reiationship Diagram. 40
Figure 3-2: An Identification Dependency in the ERD. 40
Figure 3-3: Attributes in the ERD. 40
Figure 3-4: The E-R Diagram for FIRESYS. 44
Figure 4-1: The FIRESYS model of FIRESYS. 54

v

List of Tables

Table 2-1: Relations for Primary Objects in the FIRESYS Model 25
Table 2-2: Relationship Relations in the FIRESYS Model. 27
Table 2-3: Additional Relations Relating to SPECIES 30
Table 2-4: Additional Relations Relating to HABITAT-TYPE 31

vi

Acknowledgments

Thanks to Dr. Alden Wright. You are an inspiration to your students by being

such a curious, eager to learn student yourself.

To Greg Hume, Jim Mitchell, and Mohomad (Saiid) Paryavi, my fellow FIRESYS

team members: It has been a very special and rewarding experience working with

each one of you. We made a GREAT team!

A very special thank-you to my wife Annie. You have helped me see the

value of life, and the benefits of hard work and dedication. You have also put me

through school! I love you Annie.

Funding for this project was provided in part through a grant from the

Intermountain Fire Sciences Lab, in Missoula, Montana.

vii

Chapter 1

INTRODUCTION

1.1. The Subject Area.

Managing information effectively is becoming more and more important in

every working environment. The incorporation of the computer into the business

world has changed the means of information management from one of index cards

and file cabinets to one of data base management systems and other computer

software programs. The need for efficient, useful information entry and retrieval

systems is growing dramatically as greater numbers of people want access to ever

increasing volumes of data.

The concept of the data base was born to address this need. Martin (Martin,

1976/ p. 4) defines a data base as

...a collection of data designed to be used by different programmers...

The intent is to store the data independent of any programs that access it. This

step in the evolution of information management made it easier for new

applications programs to access the data since the data were stored in a uniform,

controlled manner.

This need for information systems has driven the data base designer1 to

1The data base designer is the person(s) who develops and implements the programs that make up
a data base management system, or DBMS.

1

2

develop tools and techniques for storing and accessing this growing volume of

information. The data base designer develops a complete set of programs which

access, store, allow the viewing of and provide the security for a data base. This

overall set of programs is called a Data Base Management System (DBMS).

A number of models have been developed to provide the data base systems

analyst2 with a logical view of the data to be stored in a data base. This logical

view makes it easier to see what facts are being stored and how all of the facts

relate to one another. The logical view has no concern for the implementation

details of any one DBMS. A name for this overall logical description of a data

base is schema. A schema describes all of the types of data that will be stored,

and shows the connections or relationships between the data items (Martin, 1976).

The data base systems analyst is not the only person that needs to

understand the logical arrangement of the data in the computer. The user must

also be able to understand and communicate his or her logical view of the data.

This is particularly important for the person representing the user when a new

system is first being developed. This person and the systems analyst must be

able to express their ideas about the logical data base structure. These ideas will

include what information should be stored in the computer and how all of the

information is related. A data model will help provide a uniform format to aid in

this communication. Data modeling tools are therefore an important link between

2The data base systems analyst is a data base expert who interacts with the end user of a data
base system and makes the decisions about how to utilize the data base in the most productive
manner.

3

the data base systems analyst and the user.

The evolution of ideas and concepts in data modeling has included a process

of abstracting further away from the physical implementation of the data base and

has aimed more at describing the objects or entities and their relationships. This

has allowed the user who is unfamiliar with computer data structures to still

communicate easily with a data base systems analyst. The user is able to talk

about his domain as he normally does, for example, indicating that part A is

related to process B in a certain way. This is in contrast to a user having to

understand some implementation concerns such as pointers or indexed files.

Whenever there is better communication between individuals, the outcome of a

project will be improved.

There have been many models developed to help define how a data base is

organized. Some earlier models included CODASYL (Codasyl, 1973), the

hierarchical model (Tsichritzis & Lochovsky, 1982), and the network model

(Tsichritzis & Lochovsky, 1982). These models are used as a conceptual tem plate

in which the data elements and their relationships may be presented. However,

these earlier models were closely related to the actual machine representation and

this reduced their effectiveness and power as a data model (Martin, 1975). As the

models have evolved over the past 25 years they have become easier to

conceptualize, easier to modify once a model is constructed, and able to represent

many levels of complexity (Martin, 1976). This has made it easier for an untrained

end user to sit down with a data base systems analyst and confirm the details of

what data go into the data base in what format and with what relationships. There

is still a need for even more expressive and more powerful data models to handle

the computerization of more and more complicated types of information. (Bic 8»

Gilbert, 1986, Carlson 81 Arora, 1985). The artificial intelligence community is

attempting to use computers for much more sophisticated applications such as

natural language processing and expert systems. Improved models are needed to

reflect this level of sophistication.

New developments and ideas have had a continuous effect on the field of

information management. The artificial intelligence (Al) community is one source

of these new concepts. Many Al systems have been developed that store data in

frames with slots, rather than the more traditional format of files of records with

fields (Fikes & Kehler, 1985). A group of individual frames which store the same

type of data may be looked at as similar to a file with a group of individual

records. The slots, which when grouped together make up the frame, are similar

to the fields which make up a record in a file. Less work has been done in the

area of modeling fram e-based information systems vs. modeling the traditional file

of records representation. Modeling a frame-based system is the area of interest

for this paper.

1.2. The Problem To Be Solved.

The intent of this study is to show how two of the more recent modeling

techniques can be used to model a frame-based information entry and retrieval

system, or data base. The two models are the relational model, as originally

presented in (Codd, 1970), and the Entity-Reiationship model as originally

5

presented in (Chen, 1976). Recently the author was involved in a project to

develop an information entry and retrieval system whose long term objective was

to evolve into an expert system. It was felt that a fram e-based environment in

Lisp would be the most practical and easily modifiable system. This system, code-

named FIRESYS, has since been implemented.

The initial design for this system was done via a tree structured hierarchy of

the various types of frames (see Appendix B) together with a listing of the frames

with their respective slots (see Appendix A. This appears to have done a

satisfactory job of organizing the information. There was no formal attempt to

utilize any data base tools or techniques as design aids since the original plan was

to build an expert system and not a data base. It was felt that an expert system

required a different set of development tools than did a data base. A network

structure was intentionally avoided during the early design due to its increased

complexity over a tree structure. The tree structure together with the other

factors involved in the development of the system provided plenty of complexity at

the time. It is now felt that by using an established data model to analyze and

evaluate this system, the design team and the end users will be able to understand

the system more easily and completely. Also, the inclusion of the network

complexity into the model will enable the FIRESYS project to more fully implement

the users long term needs. It is hoped that the continuing FIRESYS team will use

the results from this paper to realize this improvement.

The information system that this thesis will examine was developed between

June of 1985 and July of 1986. The work was sponsored by a grant from the

Northern Intermountain Fire Sciences Lab, a division of the USDA. A group of four

Computer Science graduate students from the University of Montana, including the

author, under the guidance of Dr, Alden Wright, a Computer Science faculty

member, was hired to develop a prototype system. The area of interest for this

system was fire and its use in forest and on range lands. It was felt that there

was a lack of expertise in the area of how fire can be used to improve an area of

range or forest land. An expert system seemed to be a solution to this problem.

After several months of interaction between the fire lab personnel and the

prototype team it was decided that the fire lab was not ready for an expert

system. There was no expert to interact with and it was unclear just what data or

knowledge was available to put into an expert system. The decision was made

that an information entry and retrieval system was needed. With this type of a

system the users could collect and enter the data that was available. As the data

is being collected it will become more obvious just what data is available. It will

then be easier to construct the expert system. Due to the uncertainty of what

data would be entered, a very flexible system that could be easily modified was

desired. The concepts of an object-oriented environment and packages were

incorporated to facilitate the objective of a flexible system.

1.3. The Framework of This Research.

The system being evaluated, FIRESYS, has already been implemented so this

study may be considered a reverse engineering approach to the design of a data

base. While one would not want to promote this style of design in most

7

situations, it seems appropriate to the current project for the following reasons.

The goal of FIRESYS was to build a prototype information system. To accomplish

this the basic specifications for the problem were determined and a working

prototype system was developed. The results of this prototype included answers

to many of the questions about how the system would actually operate. Another

result was the raising of more questions which needed to be addressed. This is

where the reverse engineering comes in. The prototype helped to clarify some

answers and raise more questions. Once the new questions are answered, it is

possible to go back to the beginning and more completely specify the

requirements for the system. One of the problems encountered during the system

development was the fact that the commissioning personnel at the firelab did not

have a clear, consistent idea of what they wanted the system to do. This made it

very difficult to obtain a precise specification of the project from which to proceed.

In this regard, a prototype was clearly the ideal way to go into this venture. The

process of building a prototype forces some questions to be answered during the

development of the prototype. Also, more questions are raised as a result of the

prototype, and through this process a more complete set of specifications can be

established.

In a clearly defined business environment for example, essentially all of the

facts are understood and most questions are answered, before any code is written.

The process of handling a payroll program is quite exact and the specifications are

precise. Payroll is a very well understood domain for computerization. The

FIRESYS project was more experimental in nature. Many questions and their

8

answers were not known until the initial prototype system was presented to the

users. These new questions can now be dealt with and answers obtained. The

changes to the system that are desired due to the new answers are more easily

incorporated while the system is still relatively small and more modifiable.

Now that a system does exist it can be evaluated. What was done correctly

can be acknowledged and what was done incorrectly can be altered. Thus the

prototype development together with reverse engineering is very appropriate for

this project. This paper's analysis of the structure of the data base that was built

will help FIRESYS grow into a more soundly constructed system.

The goals of this paper are to:

* Model the structure of the FIRESYS data via the relational data model
and then via the Entity-Reiationship data model.

* Compare these two models with the model that was used for the
implementation of FIRESYS.

* Determine if the relational and Entity-Reiationship data models are
suitable for modeling a fram e-based system, such as FIRESYS, and if
so, state what improvements they may bring to the FIRESYS project.

The remainder of this paper is outlined as follows:

* Chapter 2 is the development of a relational model of FIRESYS

* Chapter 3 is the construction of an entity-relationship model

* Chapter 4 will present a model of the existing FIRESYS and compare
the relational and Entity-Reiationship models to this model of the
implementation of FIRESYS.

* Chapter 5 is a presentation of suggested modifications to FIRESYS
based on the findings of this paper. There are also some concluding
remarks on how well the relational and entity-relationship models can

9

be applied to a fram e-based representation of an information
management system.

9

Chapter 2

The Relational Data Model of FIRESYS.

2.1. Background on the Relational Model.

The relational model was first presented formally in (Codd, 1970). Since then

many people, including Codd, have expanded on the initial ideas and there is a

very strong following for this method of modeling data. This model has made a

large step away from the physical machine representation and is a more

abstracted, logical view of the data. As Codd put it in his abstract (Codd, 1970/ p.

9)

Future users of large data banks must be protected from having to
know how the data is organized in the machine (the internal
representation).

2.2. The Components of the Relational Model.

2.2.1. The Relation

The primary tool used in the relational model is referred to as a relation. To

show the logical structure of a relation an abbreviated format is used. When

presenting a relation complete with values a table format is used. The table

format is considered a mathematical relation which may be defined as:

R £ { [e 1f e2 en] | e; £ E.}.

This says that a relation R is a subset of the Cartesian product of its domain

10

11

sets. The domain sets in the previous example are the set of E;'s. In other words,

given the sets Ev E2 En (which do not need to be distinct sets), R is a relation on

these sets when it is a set of n-tuples where each tuple's first element e, is from

Ev its second element e2 is from E2, and so on (Codd, 1970).

One major difference between the mathematical relation and the data base

relation is that the data base relation is time varying. Over the course of time,

data are added, deleted and modified in the data base relation. Another difference

between the mathematical and the data base relation is the ordering of the n -

tuples. The ordering of the elements in the n-tuple of a mathematical relation

must not be altered. In the relational model this ordering is not a critical factor as

long as each member of the n-tuple can be uniquely identified by its attribute

name. The attribute names are provided in both the table and the abbreviated

formats of the relation. Examples of both of these formats are presented shortly.

2.2.2. Domains, Attributes and Tuples

A domain can be defined as a general set of values from which specific

values can be taken. The purpose of the values is to describe some property of

an object. For example, from the domain of “integers between 1 and 120" values

can be obtained to specify age, speed, or floor-number. From the domain of

"character strings of less than 40 characters" values to specify a person's name,

the scientific name of a plant, or a habitat-type name can be generated. An

attribute is a semantically meaningful named domain, such as age, scientific-name,

or habitat-type-nam e.

When a relation is presented in a table form at the attributes are the column

12

headings across the top of the table. Each attribute within any one relation must

have a unique name and all entries in that column must be from the domain of the

named attribute. A relation in a table format with some actual data values is now

presented.

relation name: SPECIES

scientiflc-name abbreviation common-name

Sitanion hystrix SIHY squirreltail
Bromus tectorum BRTE cheatgrass
Festuca idahoensis FEID Idaho fescue

The name of the relation is given, the attribute names are at the head of each

column, and the primary key column (primary keys are covered later) is underlined.

Each row in a table relation is called a tuple. Each tuple is a unique object or

entity and the elements of the tuple are descriptive attributes about the object.

The values for each attribute are derived from specific domains. The

generalization of the individual entities is called the entity type.

In the abbreviated format, the attribute names follow the relation name and

are enclosed in parenthesis. An example of the abbreviated format, or the

intention of a relation, would be:

SPECIESfscientific-name, abbreviation, common-name, ...)

The name of the relation is SPECIES. The list of attributes includes scientific-

name, which is the primary-key for the relation (primary keys will be discussed

later), as well as abbreviation, common-name, and others. The primary key

attribute name is underlined.

13

2.2.3. The Primary Key

An important feature in a relation is the primary key. Each tuple within the

relation must be uniquely identifiable. This is done via the primary key. The key

may be one attribute or it may be a group of attributes. It may even be an

artificially generated attribute, strictly for the purpose of being the primary key.

The primary key in the SPECIES relation given above is scientific-name. Each

species of plant has one scientific name and each scientific name is related to one

and only one species of plant. This creates a o n e -to -o n e mapping between a

species and a scientific name. This way a species can always be uniquely

identified by its primary key, the scientific-name.

For a more complete presentation of the formalities of the relational model

the reader is directed to (Codd, 1970, Martin, 1975, Martin, 1976, Tsichritzis &

Lochovsky, 1982).

2.3. Normalization of Relations.

One very important process in creating a relational model of a data base is

normalization (Maier, 1983). The normalization process replaces relationships

between data with relationships within a two-dimensional table (Martin, 1975).

This table is also called a relation, (see section 2.2.1) For example, a user may

specify a set of relationships between data items in the following manner.

* a given species of plant may be found in several habitat-types

* any given habitat-type can be found in only one cover-type

* a given cover-type may be found in several ecosystems

14

A means of breaking this possibly confusing set of statements into a d istinct

clear description is needed. The normalization process helps to achieve this goal.

Normalization replaces this seemingly confusing set of connections between data

entities with several easy to understand relations. Each relation presents one

relationship that needs to be clearly understood. There is a well defined way to

join the relations back together temporarily so that the original collection of

relationships may be viewed as one group if that is desired.

The result of normalization is a set of relations which provide a user-

oriented logical view of the data. This view of the data can be implemented in a

variety of ways, and the user does not need to know the method of

implementation. This set of relations is known as the logical schema. It is a

logical description of the data and the relationships in a data base. A very

important advantage of normalized relations is the fact that they can be adapted to

changes very easily. As the data base grows and changes over time, new kinds of

data may be added to the data base and new views of the data may be developed

for new users. Usually, these changes will not affect the existing views nor the

existing applications programs that access the data. Even changes in the physical

representation may be made without the need to revise the user's view of the

data. This feature is very desirable in a data model as it saves lots of money and

time in future modifications.

15

2.3.1. Partial and Transitive Dependencies

There are two concepts that need to be defined in order to appreciate what

is happening in the normalization process. These are partial dependency and

transitive dependency. Examples will be used to help explain these concepts.

Partial dependencies will be presented first.

One of the relations that is used in the FIRESYS project is SEASON-

SEVERITY-SPECIFIC-FIRE-EFFECTS, or SSSFE. Let us assume, for the sake of this

example, that the relation is as follows.

SSSFE(scientific-name, season, severity,
ave-tem p-this-season, fire-effects)

The attribute ave-tem p-th is-season would, by its very meaning, be functionally

dependent upon the value of the season attribute. In other words, given a season

value, there will be one value that would be the ave-tem p-th is-season. Season is

one of the components of the primary key in the SSSFE relation. A v e -te m p -th is -

season depends upon a part of the primary key value for its value, hence the name

partial dependency. This is an undesirable trait in the data base since the same

temperature value would be redundantly stored with every tuple that had a

particular season as part of the key. Aside from the storage considerations of

redundancy, if the value of ave-tem p-this-season needed to be changed, it must

be changed in every place it was stored. This is the problem of consistency of

data. The following example illustrates this problem.

16

relation name: SSSFE

scientific-name season severity ave-temp-this-season fire-effects

Let us assume that a new study was done and it was determined that the

ave-tem p-th is-season for spring should actually be two degrees higher than the

current value. All occurrences of that value wherever they occurred in the relation

would need to be changed. A better solution, and one which would remove the

partial dependency, would be to create a new relation called SEASON-AVERAGE-

TEMP. This relation would store a list of seasons together with the average

temperature for that season. The season attribute would then be in both the

SSSFE and the SEASON-AVERAGE-TEMP relations while the ave-tem p-th is-season

attribute would be in only the SEASON-AVERAGE-TEMP relation. The new

relations would be as follows.

SSSFE(scientific-name, season, severity, fire-effect)
SEASON-AVERAGE-TEMP(season. ave-tem p-this-season)

cheatgrass
cheatgrass
wheatgrass
wheatgrass

spring mild
summer hot
spring mild
spring hot

67
87
67
67

killed
killed
damaged
killed

and the tabies would look like this.

17

relation name: SSSFE

scientific-name season severity fire-effects

cheatgrass spring mild killed
cheatgrass summer hot killed
wheatgrass spring mild damaged
wheatgrass spring hot killed

relation name: SEASON-AVERAGE-TEMP

season season-ave-temp

winter 22
spring 67
summer 87
fall 56

When the value for ave-tem p-this-season for spring needed to be changed there

would be one change made in the data base and everything else would be up to

date.

As a reminder to the reader, there is no ave-tem p-th is-season attribute in

the actual SSSFE relation for FIRESYS. Also, an important note here is that in

order for there to be a partial dependency the primary key of the relation must be

a multiple key. That is, there must be more than one attribute in the key in order

for some non-key attribute to be partially dependent upon the key of the relation.

Transitive dependency is the other concept to be discussed. Let us again set

up a hypothetical relation to satisfy the needs of our example. Assume the

following relation exists.

SPECIES(scientific-nam e, flower-color, pollinating-insect)

18

Let us also assume the following: the value of scientific-name, the primary key in

SPECIES, determines the value of flower-color; flower-color, a non-key attribute,

determines the value of pollinating-insect. There is now a non-key attribute

whose value is dependent upon another non-key attribute. Pollinating-insect is

dependent upon flow er-color. This situation is similar to that of partial

dependency, but now neither of the attributes is a part of the primary key. The

following table clearly shows the redundancy involved in a transitive dependency.

relation name: SPECIES

scientific-name flower-color pollinating-insect

rhodeii dendroni red
azaleaii plantii yellow
rosei prettyi red
carnation! yellowi yellow

The removal of the transitive dependency is accomplished by creating a new

relation. The new relation would be flowercolor-pollinatinginsect. It would contain

a list of colors together with the insect that pollinates that color of flower (this is

a contrived relationship between color and insects). The flow er-co lor attribute

would then be in both relations and the pollinating-insect attribute would be only

in the colorofflower-pollinatinginsect relation, as shown below.

red-bellied-bee
yellow-bellied-fly
red-bellied-bee
yellow-bellied-fly

19

relation name: species

scientific-name flower-color

rhodeii dendroni red
azaleaii plantii yellow
rosei prettyi red
carnation! yellowi yellow

relation name: flowercolor-pollinatinginsect

flower-color pollinating-insect

yellow yellow-bellied-fly
red red-bellied-bee

2.3.2. The Three Normal Forms

There are three levels of normalization that are applied to relations. They

are first normal form, second normal form and third normal form.

2.3.2.1. First Normal Form

Achieving first normal form involves setting up a table with all of the desired

attributes for an entity type across the top of the table. These become the

headings for the columns. Next, the data is input as tuples, and these make up the

rows in the table. This table must meet the following five properties, in order for

it to be in first normal form. (Martin, 1976):

1. Each entry in a table represents one data-item; there are no
repeating groups.

20

2. They are column-homogeneous; that is, in any column all values
are derived from the same domain.

3. Each column is assigned a distinct name; a unique attribute name

4. All rows are distinct; duplicate rows are not allowed, the primary
key helps insure uniqueness.

5. The ordering of the rows and columns can be changed without
affecting either the information content or the semantics of the
data, the columns must be column-homogeneous and the rows
must be distinct, but the ordering of both is insignificant.

The first property listed requires some additional discussion as it raises the

following question. When is something a repeating group and when is it simply a

group of values? The problem involves an attribute that contains a list of values.

This situation occurs several times in the FIRESYS data. For example, within one

species there may be a list of common-names. A table representation of this

example would like like this.

relation name: SPECIES
/

scientific-name common-name abbreviation color ...

Sitanion hystrix squirreltail SIHY green ...
rabbittail
birdtail

Bromus tectorum cheatgrass BRTE tan
stealgrass

Festuca idahoensis Idaho fescue FEID brown ...

A list of values is not allowed in first normal form which means that this table is

not in first normal form. There is a list of common names for two of the species

in the table. There are two ways of handling an attribute which has a list of

21

values.

* Treat the list as one item, in which case the attribute can remain a
non-key attribute of the relation. In respect to our example of a
species with a list of common-names, there would still be only one
tuple for a given species.

* Treat each component of the list as an individual item, in which case it
becomes a part of the primary key. From our example, this would
cause a new tuple to be created for each com m on-nam e stored.

The results of the first method would be a relation just like the one in the

previous example except that the com m on-nam e attribute should probably be

renamed list-of-com m on-nam es. These common name values are now not

suitable to use as a means of identifying or locating these tuples in the example

relation or any other tuples in any other relations. The value for the lis t-o f-

common-names attribute should be thought of as the totality of the list, as

opposed to a list of distinct values.

The second method given above involves creating a new tuple for each

common name value in the list. The result is an additional relation as shown by

the following example. Note that the SPECIES relation still exists, but does not

contain any common name values. The new relation now contains the com m on-

name attribute.

relation name: SPECIES

scientific-name abbreviation color ...

Sitanion hystrix SIHY green ...
Bromus tectorum BRTE tan •«,
Festuca idahoensis FEID brown ...

22

relation name: SPECIES-COMMON

scientific-name_______ common-name

Sitanion hystrix squirreltail
Sitanion hystrix rabbittail
Sitanion hystrix birdtail
Bromus tectorum cheatgrass
Bromus tectorum stealgrass
Festuca idahoensis Idaho fescue

How to handle this problem can be a difficult decision. The main factor in

this decision should be how the user envisions the items in the list being used. If

the items in the list will be used as a means of identifying any tuple in any

relation, then the list should not be kept as one item. Instead, a new relation

should be established and each item in the list is a component of one tuple. If the

items in the list are strictly data values that are related to an entity, and they will

not be used as a means of identifying that entity, then it is probably acceptable to

leave the items in a list.

Another factor in the decision of how to handle a list of values concerns the

possibility of other attributes that might be associated with the values in the list.

If new attributes will be associated with the list of values, then the second method

should be employed. It will be relatively easy to add any new attributes to the

new relation with each list item in its own tuple. In contrast, it would be much

more difficult to incorporate any newly desired attributes and associate them with

individual elements of a list, if the first method were used and the items were all

in one list.

One concern which is at the implementation level involves the attribute field

length. Most data base implementations require a fixed length field to be specified

for each attribute. In determining this size, the maximum length of a value should

be used, within reason. When an attribute is made up of a list of items, it may be

difficult to determine how many items to allow for. Also, once the maximum

length is determined, can that much storage space be afforded for this attribute?

The storage space may also be a factor in the decision of how to handle a list of

items.

2 .3.2 .2 . Second & Third Normal Form

Second normal form is obtained when a relation is in first normal form and

there are no partial dependencies of non-key attributes on primary key attributes,

(see section 2.3.1 for a presentation of partial dependencies.)

Third normal form is achieved when a relation is in second normal form and

there are no transitive dependencies of non-key attributes on primary key

attributes, (see section 2.3.1 for a presentation of transitive dependencies) A data

base in third normal form will be minimally redundant and will avoid update

anomalies. Update anomalies are the result of additions, deletions, or

modifications to the data base which leave inconsistencies or conflicting values. It

is very desirable to avoid update anomalies in a data base operation.

A full detailed description of the normalization process will not be presented

in this paper. The relational model of FIRESYS will be given, and the third normal

form properties will be described.

24

2.4. The Data To Be Modeled

A prototype system has already been implemented for FIRESYS. Through

this development a fairly well defined list of data items, together with the

relationships between the data, has been generated. For a full listing of these data

items and their relationships the reader is directed to Appendix A.

There are five major entity types of interest. There are other entity types

whose importance to the overall structure of the FIRESYS data is less important.

A brief view of these other entity types, and how they relate to the five major

entity types, will be presented in section 2.4.3. The primary entity types are:
* Ecosystems

* Cover-types

* Habitat-types

* Species

* Season-Severity-Specific Fire Effects

2.4.1. The Entity Relations.

A relation is created for each of the objects or entity types of importance to

FIRESYS. A list of attributes is associated with each object. From this list, a

primary key is selected. Each of the relations is presented in third normal form,

and this fact will be detailed for each relation. This presentation of the data

assumes that for any attribute containing a list of values the entire list is treated

as a single value, (see section 2.3.2.1 for a discussion of a list of values in an

attribute.)

25

Table 2-1 shows the relations with the attributes of interest for the five

primary objects. The primary key is the underlined attribute. Only a few of the

actual attributes for these relations are shown in order to keep the presentation

simple.

Table 2-1: Relations for Primary Objects in the FIRESYS Model

ECOSYSTEM(ecosvstem -nam e, classification-key,
kuechler-vegetation-types, ...)

COVER-TYPES(cover-type-nam e. site-characteristics,
vegetative-composition, ...)

HABITAT-TYPES(habitat-type-nam e, distribution,
successional-trends, ...)

SPECIES(scientific-nam e. life-form , abbreviation, ...)

SEASON-SEVERITY-SPECIFIC-FIRE-EFFECTS(
season, severity, scientific-name,
effect, certainty-factor, ...)

The relations in Table 2-1 are in third normal form. The following facts

support this claim. All values of each attribute in each relation are fully dependent

upon the entire primary key of that relation. For example, in the COVER-TYPES

relation with the key cover-type-nam e, ail other attributes, some of which are not

shown, depend entirely upon the value of cover-type-nam e. There are no partial

dependencies and there are no transitive dependencies. In fact, there could not be

any partial dependencies since the primary key is a single attribute value.

The ECOSYSTEM, HABITAT-TYPES and SPECIES relations also have single

attribute primary keys. The values for all of the attributes in these three relations

