University of Montana

ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &

Professional Papers Graduate School

1986

Analyzing a frame-based information system using the relational
and entity-relationship data models

Bruce James McTavish
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation

McTavish, Bruce James, "Analyzing a frame-based information system using the relational and entity-
relationship data models" (1986). Graduate Student Theses, Dissertations, & Professional Papers. 5097.
https://scholarworks.umt.edu/etd/5097

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

FAigure 3-1:

Figure 3-2:

Figure 3-3:
Figure 3-4:
-Figure 4-1:

L'ist of Figures

The Basic Entity—-Relationship Diagram.
An Identification Dependency in the ERD.
Attributes in the ERD.

The E-R Diagram for FIRESYS.

The FIRESYS model of FIRESYS.

40
40
40
44
54

Table 2-1: Relations for Primary Objects in the FIRESYS ‘Model

Table 2-2:
Table 2-3:

Table 2-4:

List of Tables

Relationship Relations in the FIRESYS Model.
Additional Relations Relating to SPECIES
Additional Relations Relating to HABITAT-TYPE

vi

25
27
30
31

Acknowledgmenfs

Thanks to Dr. Alden Wrighf. You are an insbiiation to your students by being
'such a curious, eager to learn student yourself.

To Greg Hume, Jim Mitchell, and Mohomad (Saiid) Paryavi, my féllow‘ FIRESYS
team members: It has beé_n a very speciél and reWarding experience workiﬁg with
each one Qf you. We made a GREAT team!

A véry special tha;nk-you to my wife Annie. You have help.ed. me see the
value of life, aﬁd the benefits of hard work and dedication. You have aiso put me
through school! | love you Annie. | |

Funding for this project was provided in partlt'hrough a grant from the

Intermountain Fire Sciences Lab, in Missoula, Montana.

vii

Chapter 1

INTRODUCTION

1.1. The Subject Area.

Managing infqrmation effectively is becoming more and mpre_impqrtant in
every workinlg‘ environment. The incorporation of the combuter into the business
world has ‘changed‘ the means of information management from one of index cards
and file cébihets to one of data base management systems and other computer
software programs. The need for efficienf, usle'ful information entry. and retrieval
systems is growing dramat?cally as greater numberé of pgople warit access to ever
increasing volumes of data.

The 'concépt of the data base wés born to address this need. Martin (Martin,

1976/ p. 4) defines a data base as

..a collection 6f data designed to be used by d'ifferent programmers...
The intent ié to store the data independe.nt of any pro'grams that access it. This
step in the evolution of infofmati_on management made it eésier for new
“applications programs to access the data since thle data were stored in a uniform,
controlled manner..

This need for information sysfems has driven the data base designer! to

'The data base designer is the person(s} who develops and implements the programs that make up
a data base management system, or DBMS.

develop tools and.techniques for storing and accessing this growing volume of
informétion. The data base designer develops a complete set of prdgrams which
access, store, allow the viewing of and p‘rovide the s.ecurity for a data base. This
overall set of programs is called 5 Data Base Management System (DBMS).

A number of models have been developed to provide the data base systems
analyst2 with a logical view of the data to be'stored in a data‘base. This togical
view makes it easier to see what facts are being stored and how all of the facts
relate to one another. The logical view‘ has no 'concnzern' for the iniplémentation
details of any one DBMS. A name for this overall logical descrfpiion of a data
"base is schema. A schema describes all of the types of data that will be stored,
and shows the connections or relatiqnships between _the data items (Martin, 1976).

The data‘ base syStems analyst is not the onl\.(‘ person that needs to
‘understand the logical arrangement of the data in the ’corﬁputer. The use} must
also be able to understand and communicate his or her logical view of the data.
This is p‘articularly'important for the perso‘n representing the user when a new
system is first being develbped. This person and the systems an'alyst mpst be
able to express their ideés about the |o§ica| data base strupture. These ideas will
include what information should be stored in the computer and how all of the
, i_nformation is related. A data model will help provide a uniform format to aid in

this communication. Data modeling tools are therefore an important link between

2The data tyasé systems analyst is a data base expert who interacts with the end user of a data
base system and makes the decisions about how to utilize the data base in the most productive
manner.

the data base systems analyst and the user.

The evolution of ideas and cbncepts' in data modeling has included a process
of abstracting further away from the physical implementation of the.data base and -
has aimed mére at describ.ing the objects or entities and their relationships. - This
‘has allowed the user who is unfamiliar with computer data structures to still
communicate easily with a data base systems analyst. The user is able to talk
about his domain as he normélly does, for example, indicating'that part A is
related to process B‘in a certain way. This is in contrast to a user having to
understand some implemen:tation concerns such as pointers or indexed files.
Whenever there is better communication between individuals, the outcome of a
project will be improved.

There have been many models develbped to help define how a data base is_
organized. Some earlier models included CODASYL (Codasyl, 1973), the.
hierarchical model (Tsichritzis & Lochdvsky, 1982), and the netwqu model
(Tsichritzis & Lochovsky, 1982). These models are used as a conceptual template
in which the data elements and their relationships may be pre's'e'n‘ted. However,
these earliér models were closely related to the actual machine représentation a'nd
this reduced their effectiveness and power as a data model_(Martin, 1975). As the
models have evolved over the past 25 vvears they have become easiér to
conceptualize, easier to modify once a model is constructed, and able to represgnt
many ‘levels of complexity (Martin, 1976). This has made it easier for an untrained
end user to sit down with a data base systems analyst and confirm the details of

what data go into the data base in what format and with what relationships. There

is still a need for even more expressive and more powerful data models to handle
;he computerization of more and more complicated types df idfbrmation. (Bic &
Gilbert, 1986, Carison & Arora, 1985). The artificial intelligence community' is
attembting to use (_:omputer's for much more sophisticated applications such as
natural language processing and expert systems. ’Improved medels‘are needed to
reflect this level of sophistication. -

New developments and ideas have had‘a continuous effect on the field of
'in‘format‘ion managemenf. The artificial inte.lligence_(Al) community is one source
of these new concepts. -‘Many Al systems have been developed that store data in
frame's with slots, rather‘than the more traditional format of files of records wi;h
fields (Fikes & Kehler, 1885). A group of individual frames which store the same
type of data may be looked at as similar to a file with a group of 'jhdividuél
records. The slots, which when grouped together make up the frame, are similar
“to the fields which make up a record in a file. Less work has been done in the
area of modeling frame-based information systems vs. modeling the traditional file
of records representation. Modeling a frame-based s‘ystem is ihe area of interest

for this paper.

1.2. The Problem To Be Solved.

The intent of this study'is 'to_show how two of the more recent modeling
techniques can be used to model a frame-based information entry and .retrieval
system, or data base. The two models are the relational model, as originally ~

presented in (Codd, 1970), and the -Entity-Relationship model _aS‘originally

presented in (Chen, 1976). Reéént_ly the author was involved in a projedt to
develop an information entry and retrieval system whose long term objectivé was
'to evolve into. an expert system. [t was felt that a frame-based environment in
- Lisp would be the most practical’anq easily modifiable system. This system, code-
‘named FIRESYS, has since been implemented. .
The initial design for thi‘sA system was done via a tree structured hierarchy of
;the various tvpeé 6f frames (see Appendix B) togethef with a _listing of- the'_frames
with their respective 'slot‘s (see ‘Appendix. A. This appears to have done a
satisfactory job of organizing the_ information. There was no formal attempt to
utilize any data base toois_or t-ech'niques as design aids since the origina_l plan was
to build an expert system and nbt a data base. It was felt th‘at an expert system
required a different set 6f development tools than did a data base. A netwoirk‘
structure was intentionally _avoided during the early design Adue"to its increased
complexity over a tree structure. The tree structure together with the other
,féctors involved in the develbpment of the system provided plenty of complexity at
the time. It is now feit that by using an established daté model to analyze and ‘
evaluate this system, the design team and the end users will be able to understand
the system more easily and completely. Also, the inclusion of the network
complexity into the model will enable the FIRESYS project to more fully implement
tﬁe users long term needs. It is‘hdped that the continuing FIRESYS t.eam will uéé
the results from this paper to realize this improvement.
The 'information system that fhis thesis Will examine was developed between

June of 1985 and-July of 1986. The work was sponsoredvby a grant from the

6

Northern l'r;termountain.Fire‘ Sciénces l;a-b, a division of the USDA. A group of four
Computer Science gradﬁate students from the University of Montana, including the
author,'under‘the g-uidance- of Dr. Alden Wright, a Computer Science faculty
member, was hired to develop a prototype system. The area of inte_rest for this
system was fire and its use in forest and on range lands. It was felt that there
was a lack of expertise |n the area of how‘fi‘re can be used to improve an area of
rénge or forest land. An expert system seemed to be a solution to this problem.
After several months of interaction betwee’h the fire lab personnel and the
prototype team it was decided that-ﬁt'he fire lab was not ready for an expert
system. There was no expert ‘to interact with and it was uncllear just what data or
knowledge was ‘available to put into ‘an expert systefn. ~The decision was made .
that a'q information entry and retr‘ievaibsyst‘em was needed. With this type of‘ a
system the users could collect and enter the data that was available. As the data
is-being collected it will become more obvious just what data is available. It will
then be easier to construct the expert system. Due to the uncertainty of what'
déta would be‘ entered, a very flexible system that could be easily modified Wa-s
desired. The concepts of an object—ori_ented-environment'and packages were

incorporated to facilitate the objective of a flexible system.

1.3. The Framework of This Research.

The system being evaluated, FIRESYS, has already been implemented so this
studv may be considered a reverse engineering approach to the design of a data

base. While one would not want to promote this style of design in most

situations, it seems appropriate to the current project for‘ the following reaébns.
The go_al of FIRESYS waé to build a prototype information system. To accomplish
thisb,the basic specifications for the problerﬁ were determined and a workiﬁg
prototype system Was developed. The re;ults of this prototype included answers
~-to 'many of thé questions about how the system would actually operate. Another
result was the raising of more questions which needed to be addressed. This is
where the reverse engineering comes in. The prototype helped to clarify some
-answérs and raise more questions. dnce the new questions are answered, it is
possible to go back to .the beginning and more completely specify_ the
requireménts for the system. One of the problems encountered during the system
&evelopment was the fact that the corﬁmi‘ssioning'personnel at the firelab did not
have a gleér, consi‘stent'idea of what they wantéd the system to do. This made it
very difficult to .obtain a precise specification of the project from which to proceed.
In this regard, a prototype was clearly the ideal way to go into this venture. The
process of build‘ing a prototyp,e“forces some question_s to be answered during the
-development of the prototype. Also, more questions are raised as a result of the
prototype, and through this process a more complete set of specifications can be
established.

In a clearly defined business environment for example,. esse_ntiallv ali of the
facts are undérstood and 'most questions are answered, before any code is written.
The process of handling a payroll program is quite ekact and the specificatiqns are
precise. Payroll is a very well understood domain for corhbuterization. " The

FIRESYS project was more experimental in nature. Many questions and their

answers were not known until the irﬁtial~prototype system was presented to the
users. These new questions can now be dealit with and answers obtained. The
changes to the system that are desired due to the new answers are more easily
incorporated while the system is still relatively small and more modifiéble.

Now that a system dbes exist it can be evaluated. Whatv was done correctly
can be acknowledged and what was done incﬁfreptly can be altered. Thus the
prbtot&pe development together with reverse engineer.ing is very appropfiate for
this project. This paper’s anélysis of the structure of the data base that was built
will help FIRESYS grow into a more soundly constructed system.

The goals of this paper are to:.

* Model the structure of the FIRESYS data via the relational data model
and then via the Entity—Relationship data model. '

* Compare these two models with the mode! that was used for the
implementation of FIRESYS. ‘

* Determine if the relational and Entity-Relationship data models are
suitable for modeling a frame-based system, such as FIRESYS, and if
so, state what improvements they may bring to the FIRESYS project.

The remainder of this paper is outlined as follows:

* Chapter 2 is the development of a relational model of FIRESYS
* Chapter 3 is the construction of an entity-relationship model

* Chapter 4 wiill present a model of the existing FIRESYS and compare
the relational and Entity-Relationship modeis to this model of the
implementation of FIRESYS.

* Chapter 5 is a presentation of suggested modifications to FIRESYS
based on the findings of this paper. There are aiso some conciuding
remarks on how well the relational and entity-relationship modeis can

be applied to a frame-based representation . of an information
management system. '

Chapter 2

The Relational Data Model of FIRESYS.

2.1. Background on the Relational Model.

The yelational model was first prespnted _form‘any in {Codd, 1970). Since then
many people, including Codd, have expanded on the initial ideas and there is a
very. strong following for this method .of modeling data. This rhodel.has made a
large step away from the physical machine ”represen‘t.ation and_ is' a more
abstracted, logic'al‘ view of the d'ata. As Codd put it in t-\‘i‘s abstvréct (Codd, 1970/-p.
9)

Future users of large data banks must be protected from having to

know how the data is organized in the -machine (the internal
representation). ' ‘ '

2.2. The Components of the Relational'Model.

2.2.1. The Relation

The primary tool used in the relational model is referred to as a relation. To
show the logical structure of a relation an abbreviated format is used. When
presenting a relation complete with values a table format is used. The table
format is considered a mathematical relation which may be defined as:

Rc{le, e, ..el|e €E}

This says that a relation R is a subset of the Cartesian product of its domain’

10

11

sets.” The domain sets in the previous example are the set of Es. In other wdrds,‘
‘given the sets E, EZ,...,En {which do not rieed to be distinct sets), R is a relation on
these sets wh_en it is a set of n-tuples where each tuple’s first element e, is from
E, its second element e, is from E,, and so on (Codd, 1970).

One major difference between the mathematical relation and the data base
relation is that the data base relation is time varying. Over trhe‘c0urse of time,
data are added, deleted and modified in the daté base relation. Another difference
between the méthematical'and the data base relation is the ordering of Fhé n-
tuples. The ordering of the elements in the n~tuple of a mathematiéal relation
must not be altered. In thé relational model this orderihg is not a critical factor as
long as each member of the nftuple‘ can be uniquely identified by its‘ attribute
name. The. attribute names are' provided in both the table and the abbreviated.

formats of the relation. Examples of both of these formats are presénted shortly.

2.2.2. Domains, Attributes and Tuples

A domain can be defined as a general set of values from wﬁich s'pecific
values can be taken. The purpose of the values is to describe some property of
an object. For example, 'frqm the domain of “integers between 1 and 120” values
can be obtained to.specify age, speed,'or floor-number. Frbm the domain of
“character strings of less than 40 characters” values to specify a person’s name,
the sgientific name of a plant, or a habitat-type name can be generated. An
attribute is a semantically meaningful named domain, such as age, scientific-name,
or habitat-type-name.

When a relation is presented in a table format the attributes are the column

12

headings across the top of the table. Each attribute within. any one relation must
have a unique name and all entries in that column must be from the domain of the
named attribute. A relation in a table format with some actual data values is now

presented.

relation name: SPECIES

“scientific-name abbreviation common-name cee
-Sitanion hystrix SIHY .squirreltail ces
Bromus tectorum BRTE cheatgrass con
Festuca idahoensis FEID Idaho fescue aee

The name of the relation is given, fhe attribute names are at the head of each
column, and the prirﬁarv kéy column (primary keys are covered later) is underlined.
Each row in a table relation is called a tuple. Each tuple is a unique object or
entity and the elements of the tuple are descriptive attributes about the object.
The values for each attribute are derive'd from specific domains. The
genefalization of the individua_l entities is called the entity type.

In the abbrevigted format, the attribute names follow the relation name and
are enclosed‘in parenthesis. An example of the abbreviated format, or the

intention of a relation, would be:

SPECIES(scientific-name, abbreviation, common-name, ...)

The name of the relation is SPECIES. The list of attributes includeé scientific-
name, which is the primary-key for the relation (primary keys will .be discussed
‘later), as well as abbreviation, common~name, and others. The primary key

attribute name i's underlined.

13

2.2.3. The Primary Key

An important feature in a relation is the primary key. . Each tuple within the
‘relation must be uniquely identifiable. This is done via the primary key. The key
may be one attribute or it may be a group of attributes. It _may even be an
artificially generated attribute, strictly for the‘ purpose of being the primary key.
fhe primary key‘in the_SPECIES relation givén above is scientific-name. Each
~ species of plant has one scientific name and each sc{entiﬁc name is related to one
and only one- species of plant. This' creates a one—to—one mapping between a
species and a scientific name. This Way a species can alvx;ays be uniquely
identified by its primary key, the scientific-name.

For a. more corﬁplete ‘presentation of the formalities of the relational model
- the reader is directed to (Codd, 1970, Martin, "1975, Martin, 1976, Tsichritzis &

Lochovsky, 1982).

2.3. Normalization of Relations.

One very important process in _'creating a relational model of a data base is
‘normalization (Maier, 1983). Thevnormalization process replaces relationships
between data with relationships within a two-dimensional table (Martin, 1975).
This téblef is also called a relation. (see section 2.2.1) For éxample, a user may

specify a set of relationships between data items in the following manner.

* a given species of plant may be found in several habitat-types
* any given habitat-type can be found.in only one cover-type

* a given cover-type may be found in several ecosystems

14

A means of bfeaking this possibly confusing set Vof statements into a dist‘inct,
clear description is needéd. ‘The normalization process help's'to achieve this goal.
Normalization replaces this seemingly confusing set 6f connections between data
entities with several easy to understa'ﬁd Arelations. Each relation p'resen‘.ts oneA
relationship ihat needé to be clearly understood. There is a well defined way to
. join the relatioris back tégether temporarily so that the original collectionqu
relationships may be viewed as one group if that is desired.

The resuit of normalization is a set of rélatiqns_'which provide a user-—
oriented logical view of the data. | This view: of the data can be implemenfted in a
\(ariety of ways, and the user does not need to know the method of.
implementation. This set of relations is known as the logical schema. It is a
logical description of the data and the -rélationships in a data base. A very
'importa_nt advantage éf normalized rélations is the fact that they can be adapted to
changes very easily. As the da_ta l;ase grows and changes over time, new kinds of
'data may be added to the data base and new views of ihe data may be develobed
for new users.? Usually, these changes will not affect the existing Views_ nor the
existing applicationé programs that access the data. Even changeé in the physical
representation may_b'e‘ made without the need to revise the user's view‘of the
data. This feature ié very desirablg in a data model as It saves lots of money and

time in future modifications.

15

2.3.1. Partial and Transitive Dependencies

There are two éoncepts that neéd to be definéd in order to appreciate what
is happening in fhe normalization proéess. These are partial dependency and
transitive dependency. Examples will be used to help explain these cohcepts.
Partial dependencies will be presented first. ‘

One of the relations that is used in the FIRESYS project Ais’ SEASON-
SEVERITY-SPECIFIC-FIRE-EFFECTS, or SSSFE. Let us assume, for.fhe sake of this

example, that the relation is as follows.

SSSFE(scientific-name, season, severity,
-ave-temp-this-season, fire—effects)

.Th'e attribute ave-temp—t’his-season'wou’!d, by its very meaning; be functionally
dependent upon the value of the season attribute. In othverA words, given a season
value, there will be one value that would be the ave-temp-this—-season. Season is
one of the components of the prim’ary key in the SSSFE relation. Ave~temp-this-
season d'epe‘nds upon a bart of the primary keyAvaIue‘ for its value, hence the name:
pértial dependency. This is an undesirable trait in the data base since the same
temperature value would be redundantly stored with every tuple that had a
- particular season as part of the key. Aside from the storage con;iderations of
redundancy, if the value of a"ve—témp—t‘his—season needed to be changed, it must
be éhanged in every place it was stored. This is the problem of cdnéistency of

data. The following example illustrates this problem.

16

relation name:

SSSFE

scientific-name season severity ave-temp-this-season fire-effects

cheatgrass
cheatgrass
wheatgrass

wheatgrass

spring
summer
spring
spring

mild
hot
mild
hot

67.

871
67
67

killed
killed
damaged
killed

Let us assume that a new study was done and it was determined that the

ave-temp-this-season for spring should actually be two degrees higher than the

current value. All occurrences of that value wherever they occurred in the relation

‘would need to be changed. A better solution, and one which would remove the

partial dependency, would be to create a new relation called SEASON-AVERAGE-

TEMP. This. relation would store a list of -sea_sons together with the average

temperature for that season. The season attribute would then be in both the

SSSFE and the SEASON-AVERAGE-TEMP relations while the ave-temp-this-season

attribute would be in only the SEASON-AVERAGE-TEMP relation. ‘The new

relations would be as followsv.

'SSSFE(scientific—name,' season, severity, fire~effect)
SEASON-AVERAGE-TEMP(season, ave-temp-this-season)

and the tables would look like this.

17

relation name: SSSFE

‘scientific-name season severity fire-effects

cheatgrass
cheatgrass
wheatgrass
wheatgrass

spring mild killed
summer hot killed
spring ~mild damaged

. spring" hot killed

.relation name: SEASON-~AVERAGE-TEMP

season

winter
spring
summer
fall

' season-ave-temp .

22
67
87
56 .

When the value for ave-temp-this-season for spring needed to be changed there

would be one change made in the data b'ase and everything else wo‘uld be up to

date.

As a reminder to the reader, there is no ave—tefnp—this—seasbn attribute in

"the actual SSSFE relation for FIRESYS. Also, an important note here is that in

order for there to be a partial dependency the primary key of the relation must be

-a multiple key. That is, there must be more than one attribute in the key in order

for some non-key attribute to be partiaily dependent upon the key of the relation.

Transitive dependency is the other concept to be discussed. Let us again set

up a hypothetical irelation to satisfy the needs of our example. Assume the

following relation exists.

18

SPECIES(scientific-name, flower—c'olor,'pollinating—insect)

Let us also assume the following: the value of scientific-name, the primary key in
SPEClES,‘det'ermines the value of flower—cdlor;'flower-color, a ndn—key attribute,
determines the value of pollinating-inse_ct. There, is now a hon—kev attribute
.whose value is dependent upoh another nor_l-key attribhté. Pollinating-insect is
dgpendent upon flower—color. This situation is similar to tha{ of . partial
de-pendehcy, but now neither of the attributes is a part of the primary 'key.: The

.following table clearly shows the redundancy involved in a transitive dependency.

relation name: . SPECIES

scientific-name flower-color ' pollinating-insect

rhodeii dendroni red red-bellied-bee

azaleaii plantii yellok yellowabellied-fly
rosel prettyil ‘red red-bellied-bee
carnationi yellowi yellow yellow-bellied-fly

The re>mo'val of the transitive dependency is accomplished by creating a new
relation-. The new relation would be flowercolor-pollinatinginsect. It would contain
»a list of colors together with the insect that pollinates that color of ﬂow.er (this is
>a>1 c‘ontrived relat'ionship between color and inéec;s). The flower-color attribute
would then be in bofh relations and the po[linating—insect‘ attribute would be oniy _

in the colorofflower-pollinatinginsect relation, as shown below.

19

relation name: species

. scientific-name flower-color
rhodeii dendroni red
azaleaiil plantii yellow
rosei prettyi. : red-

carnationi yellowi yellow

relation name: ;flowercolor-pollinatinginsect

 flower-color pollinating-insect
yellow A yellow-bellied-fly

red red-bell 1ed-bee

- 2.3.2. The Th_ree Normal Forms

There are three levels of normalization that are applied to relations. They

are first normal form, second normal form and third normal form.

- 2.3.2.1. First Normal Form

Achieving first normal form involves setting up a table with all of the desired

- attributes for an entity type across the top of the table. These become the

headings for the columns. Next, the data is input as tuples, and these inake up the

rows in the table. This table must meet the following five properties, in order for

it to be in first normal form. {Martin, 1976):

1. Each entry in a table represents one data-item; there are no

repeating groups.

20

2. They are column-homogeneous; that is, in any column all values
are derived from the same domain.

3. Each column is assigned a distinct name; a unique attribute name

‘4. All rows are distinct; duplicate rows are not aliowed. the primary
key helps insure uniqueness.

5. The ordering of the rows and columns can be changed without
affecting either the information content or the semantics of the

data.

the columns must be column-homogeneous and the rows

must be distinct, but the. ordering of both is msugnlflcant

The first property listed requires some additional discussion as it raises the

following question. When is something a repeating group and when is it simply a

group of values? The prqblem involves an attribute that contains a list of values.

This situation occurs several times in the FIRESYS data. For example, within one

speéies there may be a list of common-names. A table representation of this

example would like like this.

relation name: SPECIES

scientific-name common-name abbreviation color ...
Sitanion hystrix squirreltail SIHY green ...
rabbittail ‘
5 birdtail
Bromus tectorum cheatgrass BRTE tan .o
stealgrass
Festuca idahoensis Idaho fescue FEID brown ...

A list of values is not allowed in first normal form which means that this table is

not in first normal form. Theré is a list of common names for two of the species

in the table.

There are two ways of handling an attribute which has a list of

21

values.

* Treat the list as one item, in which case the attribute can remain a

" non-key attribute of the relation. In respect to our example of a
species with a list of common'—names, there would still be only one
tuple for a given species.

* Treat each component of the list as an individual item, in which case it
becomes a part of the primary key. From our example, this would
cause a new tuple to be created for each common-name stored.

The results of the first niethdd would be a relation:ju.s't like the one’ in the
Aprevvious exarﬁple exceptf.that the comnﬁon-name attribute should probably be
renamed list-of-common-names. These common name valueS are now not
suitable to'Ause as a means of identifying or Ibcating these tuples in the example
relatibh or any other tuples in any .other relations. :The value for the list—of—
common-names attribute should be thought of as the tof_a!ity of the list, as
opposed to a list of distinct values.

The second method given above involves creating a new fuple for each
‘common namvé value in the list. The result is an additional relatjoh as shown by
the ‘fouow'ing e?(am,pie. Note that the SPECIES r.elation still exisfs, but does not
contain any cbmmon name values. The new relation now contains th.e common-

name attribute.

relation name: SPECIES

scientific-name abbreviation _color ...

Sitanion hystrix SIHY green ...
Bromus tectorum BRTE tan ces
Festuca idahoensis FEID brown ...

22

relation name: SPECIES-COMMON

scientific-name common-name
Sitanion hystrix squirreltail
Sitanion hystrix rabbittail
Sitanion hystrix birdtail
Bromus tectorum ‘cheatgrass
Bromus tectorum stealgrass

Festuca 1dahoensis Idaho fescue

" How to handle this problem can ‘be a difficult 'deci‘sion. The main factor in
this decision should be how the user envisions the items in the list being used. 'Ifb
the items in the list ‘will be used as a means of idéntifying any tuple in any
relation, then the list should not be kept as one item. Instead, a new relation
should be established and each item in the list is a component of one tuple. If the
items in the list are s;rictly data values that are related to an entity, and they will
_hot be used és a means of identifying that entity, then it is probably acceptable to
|éave the items in a list.

Another factor in the decision of how to handle a list of values concerns the
possibilitv of other attributes that might be associated with the values‘ in the list.
If new attributes will be associated with the list of values, then the second method
should be employed. It will be relatively easy to add any new aftributes to the
new relation with each list item in its own tuple. In contrast, it would be much
more difficult ;o 'incorporate any newly desired attributes and associate them with
individual elements of a ljst, if the first method were used and the items were all

in one list.

23

One concern which is at the implementation level involves the éttribute field
length. Most data base implementations require a fixed length field to be specified
for each attribute. In determining this size, ihe‘ maximum length of a value should
be used, within reason. When an attribute is made up of a list of items, it may be
difficult to determine how many items to aliow for. Also, once the maximum
length is determined, can that much storage space be_ affordéd for this attribute?
The storage space may also be a factor in the decision of how to handle a list of
items.
2.3.2.2. Second & Third ‘Normal Form

Second normal form is thained when a relation is in first normal form and
there aré r;o, partial depéﬁdencies of non-key attributes on prim'ary key attributes.
(see section 2.3.1 for a presentation of partial dependencies.)

Third normal fprm is achieved wﬁen a reiation is in ‘se;:ond normal form and
thére ‘are no transitive dependencies of non-key attributes on primaryA key
attrib‘utes. (see section 2.3.1 for a presentation of transitive dependencies) A data
base in third normal form will be mihima!ly redundant and will avoid update
anomalies. Update anomalies ~aré the result of additions, deletions, or
modifications to the data base which leave inconsistencies or conflicting values. lt>
is very desirable to avoid update anomalies iﬁ a data base operation.

A full d'etai'led, descfiption of the normalization process will not be presented
in t‘his paper. The relatiénal model of FIRESYS will be given, and the third normal

form properties will be described.

24

2.4. The Data To Be Modeled

A prototype system has already been implemented for FIRESYS. Through
-this development a fairly well defined Iist of data items, together 'with the
relationships between the data, has been generatéd. For a full listing of theée data
items and their relationships the reader is directed to Appehdix A.

There are five major éntity types of interest. Tﬁere are otvh’er entity types
whose importance to the overall structure 6f the FIRESYS data is less imtportant.
A brief view of these other entity types, and how they relate to t'he five major

entityv types, will be presented in section 2.4.3. The primary entity types are:
* Ecosystems ' '

* Cover-types
* Habitat-types
* Species

' * Season-Severity-Specific Fire Effects

2.4.1. The Entity Relations.

A relation is created for each of the 'objects or entity types of importance to
FIRESYS. A, list of attributes is associated with each object. From this list, a
primary key js selected. Each of the relations is presented in third normal form,
and this fact will be detailed for each relation. This preseniation of the data
assurﬁes that f_or any attfibute containihg a list of values the entire list is treated.
" as a single value. (see section 2A.3.2.1 for a discussion of a list of values in an

attribute.)

25

Table 2-1 shows the relations with the attributes of interest for the five
_primary objects. The primary key is the underlined attribute. Only a few of the
actual attributes for these relations ‘are shown in order to keep the presentation

simple.

Table 2-1: Relatio‘ns' for Primary Objects in the FIRESYS Model

ECOSYSTEM(ecosystem-name, classification-key,
kuechler-vegetation-types, ...)

COVER-TYPES(cover-type-name, site-characteristics,
vegetative-composition, ...)

HABITAT-TYPES(habitat-type-name, distribution,
successional-trends, ...)

SPECIES(scientific-name, life-form, abbreviati-on, o)

SEASON-SEVERITY~-SPECIFIC-FIRE-EFFECTS(
season, severity, scientific-name,
effect, certainty-factor, ..)

The relations in Table 2-1 are .in third normal form. The following facts
support this vclaim. All values of each attribute in each relation are fully dependent
upon the entire primary key of that relation. For example, in the COVER-TYPES
relation with the key cover—typ.e-name, all ofher attribUtee, some of which are not
shown, depeﬁd entirely upon the value of cover-type-name. There are no partial
dependencies and there are no transitive dependencies. In fact, there could not be
any partial dependencies since the primary key is a single attribute value.

The ECOSYSTEM, HABITAT-TYPES and SPECIES relations -also have single

attribute primary keys. The values for all of the attributes in these three relations

