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Chapter 1

INTRODUCTION

1.1. The Subject Area.

Managing information effectively is becoming more and more important in 

every working environment. The incorporation of the computer into the business 

world has changed the means of information management from one of index cards 

and file cabinets to one of data base management systems and other computer 

software programs. The need for efficient, useful information entry and retrieval 

systems is growing dramatically as greater numbers of people want access to ever 

increasing volumes of data.

The concept of the data base was born to address this need. Martin (Martin, 

1976/ p. 4) defines a data base as

...a collection of data designed to be used by different programmers...

The intent is to store the data independent of any programs that access it. This 

step in the evolution of information management made it easier for new  

applications programs to access the data since the data were stored in a uniform, 

controlled manner.

This need for information systems has driven the data base designer1 to

1The data base designer is the person(s) who develops and implements the programs that make up 
a data base management system, or DBMS.

1
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develop tools and techniques for storing and accessing this growing volume of 

information. The data base designer develops a complete set of programs which 

access, store, allow the viewing of and provide the security for a data base. This 

overall set of programs is called a Data Base Management System (DBMS).

A number of models have been developed to provide the data base systems 

analyst2 with a logical view of the data to be stored in a data base. This logical 

view makes it easier to see what facts are being stored and how all of the facts 

relate to one another. The logical view has no concern for the implementation 

details of any one DBMS. A name for this overall logical description of a data 

base is schema. A schema describes all of the types of data that will be stored, 

and shows the connections or relationships between the data items (Martin, 1976).

The data base systems analyst is not the only person that needs to 

understand the logical arrangement of the data in the computer. The user must 

also be able to understand and communicate his or her logical view of the data. 

This is particularly important for the person representing the user when a new  

system is first being developed. This person and the systems analyst must be 

able to express their ideas about the logical data base structure. These ideas will 

include what information should be stored in the computer and how all of the 

information is related. A data model will help provide a uniform format to aid in 

this communication. Data modeling tools are therefore an important link between

2The data base systems analyst is a data base expert who interacts with the end user of a data  
base system and makes the decisions about how to utilize the data base in the most productive 
manner.
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the data base systems analyst and the user.

The evolution of ideas and concepts in data modeling has included a process 

of abstracting further away from the physical implementation of the data base and 

has aimed more at describing the objects or entities and their relationships. This 

has allowed the user who is unfamiliar with computer data structures to still 

communicate easily with a data base systems analyst. The user is able to talk 

about his domain as he normally does, for example, indicating that part A is 

related to process B in a certain way. This is in contrast to a user having to 

understand some implementation concerns such as pointers or indexed files. 

Whenever there is better communication between individuals, the outcome of a 

project will be improved.

There have been many models developed to help define how a data base is 

organized. Some earlier models included CODASYL (Codasyl, 1973), the 

hierarchical model (Tsichritzis & Lochovsky, 1982), and the network model 

(Tsichritzis & Lochovsky, 1982). These models are used as a conceptual tem plate  

in which the data elements and their relationships may be presented. However, 

these earlier models were closely related to the actual machine representation and 

this reduced their effectiveness and power as a data model (Martin, 1975). As the 

models have evolved over the past 25 years they have become easier to  

conceptualize, easier to modify once a model is constructed, and able to represent 

many levels of complexity (Martin, 1976). This has made it easier for an untrained 

end user to sit down with a data base systems analyst and confirm the details of 

what data go into the data base in what format and with what relationships. There



is still a need for even more expressive and more powerful data models to handle 

the computerization of more and more complicated types of information. (Bic 8» 

Gilbert, 1986, Carlson 81 Arora, 1985). The artificial intelligence community is 

attempting to use computers for much more sophisticated applications such as 

natural language processing and expert systems. Improved models are needed to 

reflect this level of sophistication.

New developments and ideas have had a continuous effect on the field of 

information management. The artificial intelligence (Al) community is one source 

of these new concepts. Many Al systems have been developed that store data in 

frames with slots, rather than the more traditional format of files of records with 

fields (Fikes & Kehler, 1985). A group of individual frames which store the same 

type of data may be looked at as similar to a file with a group of individual 

records. The slots, which when grouped together make up the frame, are similar 

to the fields which make up a record in a file. Less work has been done in the 

area of modeling fram e-based information systems vs. modeling the traditional file 

of records representation. Modeling a frame-based system is the area of interest 

for this paper.

1.2. The Problem To Be Solved.

The intent of this study is to show how two of the more recent modeling 

techniques can be used to model a frame-based information entry and retrieval 

system, or data base. The two models are the relational model, as originally 

presented in (Codd, 1970), and the Entity-Reiationship model as originally
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presented in (Chen, 1976). Recently the author was involved in a project to 

develop an information entry and retrieval system whose long term objective was 

to evolve into an expert system. It was felt that a fram e-based environment in 

Lisp would be the most practical and easily modifiable system. This system, code- 

named FIRESYS, has since been implemented.

The initial design for this system was done via a tree structured hierarchy of 

the various types of frames (see Appendix B) together with a listing of the frames 

with their respective slots (see Appendix A. This appears to have done a

satisfactory job of organizing the information. There was no formal attempt to

utilize any data base tools or techniques as design aids since the original plan was 

to build an expert system and not a data base. It was felt that an expert system  

required a different set of development tools than did a data base. A network 

structure was intentionally avoided during the early design due to its increased 

complexity over a tree structure. The tree structure together with the other 

factors involved in the development of the system provided plenty of complexity at 

the time. It is now felt that by using an established data model to analyze and 

evaluate this system, the design team and the end users will be able to understand 

the system more easily and completely. Also, the inclusion of the network 

complexity into the model will enable the FIRESYS project to more fully implement 

the users long term needs. It is hoped that the continuing FIRESYS team will use 

the results from this paper to realize this improvement.

The information system that this thesis will examine was developed between

June of 1985 and July of 1986. The work was sponsored by a grant from the



Northern Intermountain Fire Sciences Lab, a division of the USDA. A group of four 

Computer Science graduate students from the University of Montana, including the 

author, under the guidance of Dr, Alden Wright, a Computer Science faculty 

member, was hired to develop a prototype system. The area of interest for this 

system was fire and its use in forest and on range lands. It was felt that there 

was a lack of expertise in the area of how fire can be used to improve an area of 

range or forest land. An expert system seemed to be a solution to this problem.

After several months of interaction between the fire lab personnel and the 

prototype team it was decided that the fire lab was not ready for an expert 

system. There was no expert to interact with and it was unclear just what data or 

knowledge was available to put into an expert system. The decision was made 

that an information entry and retrieval system was needed. With this type of a 

system the users could collect and enter the data that was available. As the data 

is being collected it will become more obvious just what data is available. It will 

then be easier to construct the expert system. Due to the uncertainty of what 

data would be entered, a very flexible system that could be easily modified was 

desired. The concepts of an object-oriented environment and packages were  

incorporated to facilitate the objective of a flexible system.

1.3. The Framework of This Research.

The system being evaluated, FIRESYS, has already been implemented so this 

study may be considered a reverse engineering approach to the design of a data 

base. While one would not want to promote this style of design in most
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situations, it seems appropriate to the current project for the following reasons. 

The goal of FIRESYS was to build a prototype information system. To accomplish 

this the basic specifications for the problem were determined and a working 

prototype system was developed. The results of this prototype included answers 

to many of the questions about how the system would actually operate. Another 

result was the raising of more questions which needed to be addressed. This is 

where the reverse engineering comes in. The prototype helped to clarify some 

answers and raise more questions. Once the new questions are answered, it is

possible to go back to the beginning and more completely specify the

requirements for the system. One of the problems encountered during the system  

development was the fact that the commissioning personnel at the firelab did not 

have a clear, consistent idea of what they wanted the system to do. This made it 

very difficult to obtain a precise specification of the project from which to proceed. 

In this regard, a prototype was clearly the ideal way to go into this venture. The 

process of building a prototype forces some questions to be answered during the 

development of the prototype. Also, more questions are raised as a result of the 

prototype, and through this process a more complete set of specifications can be 

established.

In a clearly defined business environment for example, essentially all of the 

facts are understood and most questions are answered, before any code is written. 

The process of handling a payroll program is quite exact and the specifications are 

precise. Payroll is a very well understood domain for computerization. The

FIRESYS project was more experimental in nature. Many questions and their
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answers were not known until the initial prototype system was presented to the 

users. These new questions can now be dealt with and answers obtained. The 

changes to the system that are desired due to the new answers are more easily 

incorporated while the system is still relatively small and more modifiable.

Now that a system does exist it can be evaluated. What was done correctly 

can be acknowledged and what was done incorrectly can be altered. Thus the 

prototype development together with reverse engineering is very appropriate for 

this project. This paper's analysis of the structure of the data base that was built 

will help FIRESYS grow into a more soundly constructed system.

The goals of this paper are to:

*  Model the structure of the FIRESYS data via the relational data model 
and then via the Entity-Reiationship data model.

*  Compare these two models with the model that was used for the 
implementation of FIRESYS.

*  Determine if the relational and Entity-Reiationship data models are 
suitable for modeling a fram e-based system, such as FIRESYS, and if 
so, state what improvements they may bring to the FIRESYS project.

The remainder of this paper is outlined as follows:

*  Chapter 2 is the development of a relational model of FIRESYS

* Chapter 3 is the construction of an entity-relationship model

*  Chapter 4 will present a model of the existing FIRESYS and compare
the relational and Entity-Reiationship models to this model of the
implementation of FIRESYS.

*  Chapter 5 is a presentation of suggested modifications to FIRESYS 
based on the findings of this paper. There are also some concluding 
remarks on how well the relational and entity-relationship models can
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be applied to a fram e-based representation of an information 
management system.

9



Chapter 2

The Relational Data Model of FIRESYS. 

2.1. Background on the Relational Model.

The relational model was first presented formally in (Codd, 1970). Since then 

many people, including Codd, have expanded on the initial ideas and there is a 

very strong following for this method of modeling data. This model has made a 

large step away from the physical machine representation and is a more 

abstracted, logical view of the data. As Codd put it in his abstract (Codd, 1970/ p. 

9)

Future users of large data banks must be protected from having to 
know how the data is organized in the machine (the internal 
representation).

2.2. The Components of the Relational Model.

2.2.1. The Relation

The primary tool used in the relational model is referred to as a relation. To 

show the logical structure of a relation an abbreviated format is used. When 

presenting a relation complete with values a table format is used. The table 

format is considered a mathematical relation which may be defined as:

R £ { [ e 1f e2 en] | e; £ E.}.

This says that a relation R is a subset of the Cartesian product of its domain

10
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sets. The domain sets in the previous example are the set of E;'s. In other words,

given the sets Ev E2 En (which do not need to be distinct sets), R is a relation on

these sets when it is a set of n-tuples where each tuple's first element e, is from  

Ev its second element e2 is from E2, and so on (Codd, 1970).

One major difference between the mathematical relation and the data base 

relation is that the data base relation is time varying. Over the course of time, 

data are added, deleted and modified in the data base relation. Another difference 

between the mathematical and the data base relation is the ordering of the n - 

tuples. The ordering of the elements in the n-tuple of a mathematical relation 

must not be altered. In the relational model this ordering is not a critical factor as 

long as each member of the n-tuple can be uniquely identified by its attribute 

name. The attribute names are provided in both the table and the abbreviated 

formats of the relation. Examples of both of these formats are presented shortly.

2.2.2. Domains, Attributes and Tuples

A domain can be defined as a general set of values from which specific 

values can be taken. The purpose of the values is to describe some property of 

an object. For example, from the domain of “integers between 1 and 120" values 

can be obtained to specify age, speed, or floor-number. From the domain of 

"character strings of less than 40 characters" values to specify a person's name, 

the scientific name of a plant, or a habitat-type name can be generated. An 

attribute is a semantically meaningful named domain, such as age, scientific-name, 

or habitat-type-nam e.

When a relation is presented in a table form at the attributes are the column
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headings across the top of the table. Each attribute within any one relation must 

have a unique name and all entries in that column must be from the domain of the 

named attribute. A relation in a table format with some actual data values is now 

presented.

relation name: SPECIES

scientiflc-name abbreviation common-name

Sitanion hystrix SIHY squirreltail
Bromus tectorum BRTE cheatgrass
Festuca idahoensis FEID Idaho fescue

The name of the relation is given, the attribute names are at the head of each 

column, and the primary key column (primary keys are covered later) is underlined. 

Each row in a table relation is called a tuple. Each tuple is a unique object or 

entity and the elements of the tuple are descriptive attributes about the object. 

The values for each attribute are derived from specific domains. The 

generalization of the individual entities is called the entity type.

In the abbreviated format, the attribute names follow the relation name and 

are enclosed in parenthesis. An example of the abbreviated format, or the 

intention of a relation, would be:

SPECIESfscientific-name, abbreviation, common-name, ...)

The name of the relation is SPECIES. The list of attributes includes scientific- 

name, which is the primary-key for the relation (primary keys will be discussed 

later), as well as abbreviation, common-name, and others. The primary key 

attribute name is underlined.
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2.2.3. The Primary Key

An important feature in a relation is the primary key. Each tuple within the 

relation must be uniquely identifiable. This is done via the primary key. The key 

may be one attribute or it may be a group of attributes. It may even be an 

artificially generated attribute, strictly for the purpose of being the primary key. 

The primary key in the SPECIES relation given above is scientific-name. Each 

species of plant has one scientific name and each scientific name is related to one 

and only one species of plant. This creates a o n e -to -o n e  mapping between a 

species and a scientific name. This way a species can always be uniquely 

identified by its primary key, the scientific-name.

For a more complete presentation of the formalities of the relational model 

the reader is directed to (Codd, 1970, Martin, 1975, Martin, 1976, Tsichritzis & 

Lochovsky, 1982).

2.3. Normalization of Relations.

One very important process in creating a relational model of a data base is 

normalization (Maier, 1983). The normalization process replaces relationships 

between data with relationships within a two-dimensional table (Martin, 1975). 

This table is also called a relation, (see section 2.2.1) For example, a user may 

specify a set of relationships between data items in the following manner.

*  a given species of plant may be found in several habitat-types

*  any given habitat-type can be found in only one cover-type

*  a given cover-type may be found in several ecosystems
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A means of breaking this possibly confusing set of statements into a d istinct 

clear description is needed. The normalization process helps to achieve this goal. 

Normalization replaces this seemingly confusing set of connections between data 

entities with several easy to understand relations. Each relation presents one 

relationship that needs to be clearly understood. There is a well defined way to  

join the relations back together temporarily so that the original collection of 

relationships may be viewed as one group if that is desired.

The result of normalization is a set of relations which provide a user- 

oriented logical view of the data. This view of the data can be implemented in a 

variety of ways, and the user does not need to know the method of

implementation. This set of relations is known as the logical schema. It is a

logical description of the data and the relationships in a data base. A very 

important advantage of normalized relations is the fact that they can be adapted to  

changes very easily. As the data base grows and changes over time, new kinds of 

data may be added to the data base and new views of the data may be developed 

for new users. Usually, these changes will not affect the existing views nor the 

existing applications programs that access the data. Even changes in the physical

representation may be made without the need to revise the user's view of the

data. This feature is very desirable in a data model as it saves lots of money and 

time in future modifications.



15

2.3.1. Partial and Transitive Dependencies

There are two concepts that need to be defined in order to appreciate what 

is happening in the normalization process. These are partial dependency and 

transitive dependency. Examples will be used to help explain these concepts. 

Partial dependencies will be presented first.

One of the relations that is used in the FIRESYS project is SEASON- 

SEVERITY-SPECIFIC-FIRE-EFFECTS, or SSSFE. Let us assume, for the sake of this 

example, that the relation is as follows.

SSSFE(scientific-name, season, severity, 
ave-tem p-this-season, fire-effects)

The attribute ave-tem p-th is-season would, by its very meaning, be functionally 

dependent upon the value of the season attribute. In other words, given a season 

value, there will be one value that would be the ave-tem p-th is-season. Season is 

one of the components of the primary key in the SSSFE relation. A v e -te m p -th is - 

season depends upon a part of the primary key value for its value, hence the name 

partial dependency. This is an undesirable trait in the data base since the same 

temperature value would be redundantly stored with every tuple that had a 

particular season as part of the key. Aside from the storage considerations of 

redundancy, if the value of ave-tem p-this-season needed to be changed, it must 

be changed in every place it was stored. This is the problem of consistency of 

data. The following example illustrates this problem.
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relation name: SSSFE

scientific-name season severity ave-temp-this-season fire-effects

Let us assume that a new study was done and it was determined that the 

ave-tem p-th is-season for spring should actually be two degrees higher than the 

current value. All occurrences of that value wherever they occurred in the relation 

would need to be changed. A better solution, and one which would remove the 

partial dependency, would be to create a new relation called SEASON-AVERAGE- 

TEMP. This relation would store a list of seasons together with the average 

temperature for that season. The season attribute would then be in both the 

SSSFE and the SEASON-AVERAGE-TEMP relations while the ave-tem p-th is-season  

attribute would be in only the SEASON-AVERAGE-TEMP relation. The new

relations would be as follows.

SSSFE(scientific-name, season, severity, fire-effect) 
SEASON-AVERAGE-TEMP(season. ave-tem p-this-season)

cheatgrass
cheatgrass
wheatgrass
wheatgrass

spring mild 
summer hot 
spring mild 
spring hot

67
87
67
67

killed
killed
damaged
killed

and the tabies would look like this.



17

relation name: SSSFE

scientific-name season severity fire-effects

cheatgrass spring mild killed
cheatgrass summer hot killed
wheatgrass spring mild damaged
wheatgrass spring hot killed

relation name: SEASON-AVERAGE-TEMP

season season-ave-temp

winter 22
spring 67
summer 87
fall 56

When the value for ave-tem p-this-season for spring needed to be changed there 

would be one change made in the data base and everything else would be up to 

date.

As a reminder to the reader, there is no ave-tem p-th is-season attribute in 

the actual SSSFE relation for FIRESYS. Also, an important note here is that in 

order for there to be a partial dependency the primary key of the relation must be 

a multiple key. That is, there must be more than one attribute in the key in order 

for some non-key attribute to be partially dependent upon the key of the relation.

Transitive dependency is the other concept to be discussed. Let us again set 

up a hypothetical relation to satisfy the needs of our example. Assume the 

following relation exists.



SPECIES(scientific-nam e, flower-color, pollinating-insect)
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Let us also assume the following: the value of scientific-name, the primary key in 

SPECIES, determines the value of flower-color; flower-color, a non-key attribute, 

determines the value of pollinating-insect. There is now a non-key attribute 

whose value is dependent upon another non-key attribute. Pollinating-insect is 

dependent upon flow er-color. This situation is similar to that of partial 

dependency, but now neither of the attributes is a part of the primary key. The 

following table clearly shows the redundancy involved in a transitive dependency.

relation name: SPECIES

scientific-name flower-color pollinating-insect

rhodeii dendroni red
azaleaii plantii yellow
rosei prettyi red
carnation! yellowi yellow

The removal of the transitive dependency is accomplished by creating a new 

relation. The new relation would be flowercolor-pollinatinginsect. It would contain 

a list of colors together with the insect that pollinates that color of flower (this is 

a contrived relationship between color and insects). The flow er-co lor attribute 

would then be in both relations and the pollinating-insect attribute would be only 

in the colorofflower-pollinatinginsect relation, as shown below.

red-bellied-bee
yellow-bellied-fly
red-bellied-bee
yellow-bellied-fly
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relation name: species

scientific-name flower-color

rhodeii dendroni red
azaleaii plantii yellow
rosei prettyi red
carnation! yellowi yellow

relation name: flowercolor-pollinatinginsect

flower-color pollinating-insect

yellow yellow-bellied-fly
red red-bellied-bee

2.3.2. The Three Normal Forms

There are three levels of normalization that are applied to relations. They

are first normal form, second normal form and third normal form.

2.3.2.1. First Normal Form

Achieving first normal form involves setting up a table with all of the desired 

attributes for an entity type across the top of the table. These become the 

headings for the columns. Next, the data is input as tuples, and these make up the 

rows in the table. This table must meet the following five properties, in order for 

it to be in first normal form. (Martin, 1976):

1. Each entry in a table represents one data-item; there are no
repeating groups.
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2. They are column-homogeneous; that is, in any column all values 
are derived from the same domain.

3. Each column is assigned a distinct name; a unique attribute name

4. All rows are distinct; duplicate rows are not allowed, the primary 
key helps insure uniqueness.

5. The ordering of the rows and columns can be changed without 
affecting either the information content or the semantics of the 
data, the columns must be column-homogeneous and the rows 
must be distinct, but the ordering of both is insignificant.

The first property listed requires some additional discussion as it raises the 

following question. When is something a repeating group and when is it simply a 

group of values? The problem involves an attribute that contains a list of values. 

This situation occurs several times in the FIRESYS data. For example, within one 

species there may be a list of common-names. A table representation of this 

example would like like this.

relation name: SPECIES
/

scientific-name common-name abbreviation color ...

Sitanion hystrix squirreltail SIHY green ...
rabbittail
birdtail

Bromus tectorum cheatgrass BRTE tan
stealgrass

Festuca idahoensis Idaho fescue FEID brown ...

A list of values is not allowed in first normal form which means that this table is 

not in first normal form. There is a list of common names for two of the species 

in the table. There are two ways of handling an attribute which has a list of
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values.

*  Treat the list as one item, in which case the attribute can remain a 
non-key attribute of the relation. In respect to our example of a 
species with a list of common-names, there would still be only one 
tuple for a given species.

*  Treat each component of the list as an individual item, in which case it 
becomes a part of the primary key. From our example, this would 
cause a new tuple to be created for each com m on-nam e stored.

The results of the first method would be a relation just like the one in the

previous example except that the com m on-nam e attribute should probably be

renamed list-of-com m on-nam es. These common name values are now not

suitable to use as a means of identifying or locating these tuples in the example

relation or any other tuples in any other relations. The value for the lis t-o f-

common-names attribute should be thought of as the totality of the list, as

opposed to a list of distinct values.

The second method given above involves creating a new tuple for each

common name value in the list. The result is an additional relation as shown by

the following example. Note that the SPECIES relation still exists, but does not

contain any common name values. The new relation now contains the com m on-

name attribute.

relation name: SPECIES

scientific-name abbreviation color ...

Sitanion hystrix SIHY green ...
Bromus tectorum BRTE tan •«,
Festuca idahoensis FEID brown ...
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relation name: SPECIES-COMMON

scientific-name_______ common-name

Sitanion hystrix squirreltail
Sitanion hystrix rabbittail
Sitanion hystrix birdtail
Bromus tectorum cheatgrass
Bromus tectorum stealgrass
Festuca idahoensis Idaho fescue

How to handle this problem can be a difficult decision. The main factor in 

this decision should be how the user envisions the items in the list being used. If 

the items in the list will be used as a means of identifying any tuple in any 

relation, then the list should not be kept as one item. Instead, a new relation 

should be established and each item in the list is a component of one tuple. If the 

items in the list are strictly data values that are related to an entity, and they will 

not be used as a means of identifying that entity, then it is probably acceptable to 

leave the items in a list.

Another factor in the decision of how to handle a list of values concerns the 

possibility of other attributes that might be associated with the values in the list. 

If new attributes will be associated with the list of values, then the second method 

should be employed. It will be relatively easy to add any new attributes to the 

new relation with each list item in its own tuple. In contrast, it would be much 

more difficult to incorporate any newly desired attributes and associate them with 

individual elements of a list, if the first method were used and the items were all 

in one list.



One concern which is at the implementation level involves the attribute field 

length. Most data base implementations require a fixed length field to be specified 

for each attribute. In determining this size, the maximum length of a value should 

be used, within reason. When an attribute is made up of a list of items, it may be 

difficult to determine how many items to allow for. Also, once the maximum  

length is determined, can that much storage space be afforded for this attribute? 

The storage space may also be a factor in the decision of how to handle a list of 

items.

2 .3.2 .2 . Second & Third Normal Form

Second normal form is obtained when a relation is in first normal form and 

there are no partial dependencies of non-key attributes on primary key attributes, 

(see section 2.3.1 for a presentation of partial dependencies.)

Third normal form is achieved when a relation is in second normal form and 

there are no transitive dependencies of non-key attributes on primary key 

attributes, (see section 2.3.1 for a presentation of transitive dependencies) A data 

base in third normal form will be minimally redundant and will avoid update 

anomalies. Update anomalies are the result of additions, deletions, or 

modifications to the data base which leave inconsistencies or conflicting values. It 

is very desirable to avoid update anomalies in a data base operation.

A full detailed description of the normalization process will not be presented 

in this paper. The relational model of FIRESYS will be given, and the third normal 

form properties will be described.
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2.4. The Data To Be Modeled

A prototype system has already been implemented for FIRESYS. Through 

this development a fairly well defined list of data items, together with the 

relationships between the data, has been generated. For a full listing of these data 

items and their relationships the reader is directed to Appendix A.

There are five major entity types of interest. There are other entity types 

whose importance to the overall structure of the FIRESYS data is less important. 

A brief view of these other entity types, and how they relate to the five major

entity types, will be presented in section 2.4.3. The primary entity types are:
*  Ecosystems

*  Cover-types

*  Habitat-types

*  Species

*  Season-Severity-Specific Fire Effects

2.4.1. The Entity Relations.

A relation is created for each of the objects or entity types of importance to  

FIRESYS. A list of attributes is associated with each object. From this list, a 

primary key is selected. Each of the relations is presented in third normal form, 

and this fact will be detailed for each relation. This presentation of the data 

assumes that for any attribute containing a list of values the entire list is treated  

as a single value, (see section 2.3.2.1 for a discussion of a list of values in an 

attribute.)
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Table 2-1  shows the relations with the attributes of interest for the five 

primary objects. The primary key is the underlined attribute. Only a few of the 

actual attributes for these relations are shown in order to keep the presentation 

simple.

Table 2-1: Relations for Primary Objects in the FIRESYS Model

ECOSYSTEM(ecosvstem -nam e, classification-key, 
kuechler-vegetation-types, ... )

COVER-TYPES(cover-type-nam e. site-characteristics, 
vegetative-composition, ... )

HABITAT-TYPES(habitat-type-nam e, distribution, 
successional-trends, ... )

SPECIES(scientific-nam e. life-form , abbreviation, ... )

SEASON-SEVERITY-SPECIFIC-FIRE-EFFECTS(
season, severity, scientific-name, 
effect, certainty-factor, ...)

The relations in Table 2-1  are in third normal form. The following facts 

support this claim. All values of each attribute in each relation are fully dependent 

upon the entire primary key of that relation. For example, in the COVER-TYPES 

relation with the key cover-type-nam e, ail other attributes, some of which are not 

shown, depend entirely upon the value of cover-type-nam e. There are no partial 

dependencies and there are no transitive dependencies. In fact, there could not be 

any partial dependencies since the primary key is a single attribute value.

The ECOSYSTEM, HABITAT-TYPES and SPECIES relations also have single 

attribute primary keys. The values for all of the attributes in these three relations


