Fall 9-1-2000

PHYS 341.01: Fundamentals of Modern Physics

Carla M. Reidel

University of Montana, Missoula

Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Let us know how access to this document benefits you.

Recommended Citation
https://scholarworks.umt.edu/syllabi/5360

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
FUNDAMENTALS OF MODERN PHYSICS

LECTURES: MWF 1:10-2:00, Science Complex 231

INSTRUCTOR: Dr. Carla Riedel
Office: SC 122 / 243-5179 / riedel@selway.umt.edu
Office hours: M 11:10, T 3:10, W 2:10, R 9:10, F 10:10,
and by appointment

DESCRIPTION: Includes historical background for development of modern physics,
and an introduction to special relativity, quantum mechanics,
atomic physics, and subatomic physics.

PREREQUISITES: One year of general physics (preferably Phys 221/222);
One year of differential and integral calculus (Math 152/153).

TEXT: A Traveler's Guide to Spacetime, Moore (McGraw-Hill 1995) and

ONLINE: Class website: http://www.physics.umt.edu/phys341

HOMEWORK: Plan to spend at least 6 hours on homework each week.
Homework will be assigned one to three times a week.
Working with others on homework is encouraged, but
the work you turn in must be your own.
Due at beginning of class on due date.
20% per day late-homework fee.

EXAMS: Closed book.
Simple calculator (without symbolic manipulation) required.
Three in-class midterms (one 3"x5" note card allowed).
One two-hour, comprehensive final (one 8.5"x11" sheet allowed).
Help sessions will be scheduled prior to each exam.
Make-up exams allowed only in extreme situations, and
only when arranged in advance.

GRADING:
Midterms 40%
Homework 35%
Final Exam 25%
All grading will be based on correctness, completeness, and clarity.

Students with disabilities requiring accommodations, please, see the instructor.
Tentative Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Chapter</th>
<th>Topic</th>
<th>Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/5 - 9/8</td>
<td>M1</td>
<td>Introduction The Principle of Relativity</td>
<td></td>
</tr>
<tr>
<td>9/11 - 9/15</td>
<td>M2, M3</td>
<td>Synchronization, Spacetime, Nature of Time, Metric Equation</td>
<td></td>
</tr>
<tr>
<td>9/18 - 9/22</td>
<td>M6, M7</td>
<td>Coordinate Transformations, Contractions</td>
<td></td>
</tr>
<tr>
<td>9/25 - 9/29</td>
<td>M9, M10</td>
<td>Four-Momentum</td>
<td></td>
</tr>
<tr>
<td>10/2 - 10/6</td>
<td>K14</td>
<td>Elementary Particles</td>
<td>F 10/6</td>
</tr>
<tr>
<td>10/9 - 10/13</td>
<td>K3, K4</td>
<td>Photons as Particles, Particles as Waves</td>
<td></td>
</tr>
<tr>
<td>10/16 - 10/20</td>
<td>K4, K5</td>
<td>The Schrödinger Equation</td>
<td></td>
</tr>
<tr>
<td>10/23 - 10/27</td>
<td>K5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/30 - 11/3</td>
<td>K5</td>
<td></td>
<td>F 11/3</td>
</tr>
<tr>
<td>11/6, 11/8</td>
<td>K6</td>
<td>The Rutherford-Bohr Atom</td>
<td></td>
</tr>
<tr>
<td>11/13 - 11/17</td>
<td>K6, K7</td>
<td>The Hydrogen Atom</td>
<td></td>
</tr>
<tr>
<td>11/20 - 11/21</td>
<td>K7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/27 - 12/1</td>
<td>K8</td>
<td>Many-Electron Atoms</td>
<td></td>
</tr>
<tr>
<td>12/4 - 12/8</td>
<td>K8, K12</td>
<td>Nuclear Physics</td>
<td>F 12/8</td>
</tr>
<tr>
<td>12/11 - 12/15</td>
<td>K12</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>12/21</td>
<td></td>
<td>1:10–3:10</td>
<td>FINAL</td>
</tr>
</tbody>
</table>

M = Moore; K = Krane

Subject coverage may vary, but exam dates are firm.

Reminder: September 25 is No Penalty Drop Deadline.