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Chapter 1 

INTRODUCTION 

Theory

Until the 1970's scientists accepted the view that ozone is transported from  

the strastosphere and destroyed at the earth's surface (Junge,1962,1963; Mohen et 

al.,1977; Danielson and Mohen.,1977). It is now recognized that reactive nitrogen 

compounds, in particular nitric oxide, play an important role in the photochemistry 

of the troposphere {Levy.,1972; Chameides.,1978; Crutzen.,1979; Logan et al,1981). 

The proposed ozone formation reactions are similiar to so called smog chamber 

reactions (Heiklen et al,1971) which mimic urban smog formation;

CO+HO------- >  CO2 +H (1)

H+O2+M------>  HO2+M (2)

HO2 + N O ------ >  HO+NO2  (3)

N 02+hv------->  NO+0 (4)

O+O2 + M ------->  O3 +M (5)

NET REACTION: CO+02+hv >  O 3 +CO2  (6 )

Presence of NO allows competition with (3) because the efficiency of ozone 

production depends critically on the amount of NO in the atmosphere. A 

competing reaction to (3) is

1
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HO2 +O3  >  OH+2 O2  (7)

Coupling this with (1),{2) and with reactions

Og+hv >  0 2 +0 (^D) wavelength 320nm (8 )

and 0 (’ D)+H2 0 ------- >  20H (9)

we obtain a net ozone destruction reaction:

C0+H2+203+hv >  CO2+2O2+2OH (10)

The two crucial rate constants (3) and (7) have been measured often. The 

rate constant of (3) is sufficiently large so that HO2  reacts predominantly with NO 

rather than ozone in the troposphere, providing the NOx mixing ratio is 30pptv or 

more.

Despite the importance of these photochemical processes in understanding 

tropospheric chemistry, the global distribution of nitrogen oxides is not well 

characterized, chiefly because of the difficulty of obtaining reliable measurements 

at a level below SOpptv.

The primary objective of this study is to examine correlations between the

concentrations of carbon monoxide and ozone as well as between nitric oxide and

ozone concentrations using NASA's GTE/CITE data. We used this data for the

following reasons:

1. Only a limited number of reported studies have

used sufficiently sensitive and reliable

instruments with measurement capabilities

in low parts per trillion range. This data

is of that kind (for further detail see

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Carroll et al,1985; Hoell et al, 1985; 

and Gregory et af,1985).

2. The data were collected in a coastal area 

relatively free of strong anthropogenic 

local sources but downwind of

several large metropolitian areas. It 

is representative, therefore, of a 

number of non-urban areas of the Eastern 

United States for which little other data 

are available.

3. The data also includes measurements of 

air masses that have resided over the 

ocean for 24-48 hours.
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Hypotheses Tested In This Study

If the smog chamber reactions are applicable to the background level 

chemistry of the troposphere, then the following trends should be seen in the 

environment:

1. Equations

HOg+NO >  HO+NO2 (3)
N O g + h v  >  NO+0 (4)

show that NO is used to convert HOg back to HO and produce NOg, 

which then dissociates into NO and O, thus producing NO back. 

Therefore, during the daylight hours NO concentrations will be 

positively correlated with ozone with a time lag between the two

gases' concentration peaks.

2. During the daylight hours, when NO concentrations are relatively high 

(>30pptv) ozone concentrations will be positively correlated with NO 

concentrations. The concentrations will be uncorrelated when 

concentrations of NO are low (< 30pptv) . This hypothesis should hold 

because of the rate of reactions of (3) and (7), where

HOg+NO------------ >  HO+NO2  (3)
HOg+Og------->  HO+2O2 (7)

The rate constants of these two reactions have been measured many

times (Chameides.,1978; Fishman, 1983; Chameides and Walker., 1973;

Sieler and Fishman., 1981; Logan et al.,1981; Levine et a l, 1984; Haagen-

Smit.,1952; Mahlman and Levy 11,1980;) It has been found that if NO >
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30pptv, then the rate of reaction of equation (3) is sufficiently fast to 

dominate reaction (7), which results In destruction of ozone.

3. During daylight hours, when concentrations of NO are greater than 

30pptv, CO will be negatively correlated with ozone. This hypothesis is 

derived from reaction (6 )

CO+Og+hv >  CO2 +O3  (6 )

where, CO concentrations Increase and react with Og in presence of 

light to yield CO^ and O 3 , provided NO >  30pptv. Also, as reaction (6 ) 

shows, there should be no lag time.

4. The hypotheses In 2 and 3 will hold most tightly when the O 3  

concentrations are high, that Is, when air masses come from land. This 

hypothesis should hold because the air from land should have had 

precusors of ozone.

5. On the days when air Is returning from the sea, O3  will track the NO 

concentrations that is, presence of ozone In high concentrations, will 

depend on the availability of NO
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Chapter 2

MATERIAL, METHOD OF SELECTION AND ANALYSIS OF DATA 

Material

The data used In this study are ground-based measurements obtained from  

the Chemical Instrumentation Test and Evaluation ( CITE) program conducted as a 

part of NASA's Global Tropospheric Experiment (GTE) in July 1983 at Wallops

Island, Virginia^ (Details can be found in papers by Hoell et al, 1985; Gregory et al,

1985; Carroll et al, 1985; Torress, 1985; Hoell et al, 1985b).

The statistical package "S" was used to create the plots and perform the data 

analysis. The reason for selecting "S" in favor of other available packages was 

that this is an interactive package with excellent graphic features.^

NASA sent the data on a 9 track magnetic tape. The data was loaded on to

the computer and appropriate data sets were selected.

^The data can be obtained from NASA Langley, Hampton, VA 23365 

^ 1  used "S" on UM's VAX-785 computer under the Uttrix operating system.

6
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Method and Data Analysis

As stated above, the primary objective of this study is to examine the

correlations of between CO and Og,and NO and O3  concentrations

(1) When concentrations of NO less than 30pptv.

(2) When concentrations of NO greater than 30pptv.

(3) When air massess were coming from 

the Atlantic Ocean.

(4) When air masses were coming from  

North America.

(5) During the day time.^

(6 ) During the nighttime.

Upon inspection, I found that the days of low NO mixing ratios were the 

same as the days when air masses were coming from the sea (Carroll et al, 1985). 

There were two such days,July 27th and 28th, 1983. However there was no CO 

data for these two days. I also found that the days of mixing ratios greater than 

or equal to 30pptv were the same as the days when the air masses were coming 

from North America. There were five such days, July 15th, 16th, 18th, 20th, 22nd.

There were data recordings of ail three gases for the night of the 21st. 

Though CO and NO data sets for the complete night (4pm to 10am) were lacking, 

there were data available from 4pm to 11pm. There was complete data for O 3

considered a "day" to be from 10am to 4pm because this is the time of day when photochemical 
processes can occur, and night from 4pm to 10am.
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There were NO data recordings for the night of 27th only from 10.30pm to 10am 

and the night of 28th from 9pm to 12.10 am.

Averaging and Plotting the Data Sets:

Since, as received, the data for the three gases were not averaged over a 

common time period (CO, NO and O3  were averaged over five, one and two 

minutes respectively), the data were averaged over a time period of 1 0  minutes 

and prelimnary plots'^ of the concentrations of gases versus time were made for 

each of the gases. A Tektonix 4051 graphics terminal and Tektronix 4611 thermal 

plotter were used for the graphics. Plots indicated that the averaging process (for 

1 0  minutes period) did smooth noise from the data but preseved its general 

behaviour over time.

Calculating the Lag Time:

The lag time has been calculated in two ways in this study. One of the way 

lag time® was estimated by looking at difference in the time between the peak of 

concentrations of gases on the same day. The formula used for calcualting the 

lagig was

Lag Peak time of Ozone -  Peak time of NO or CO.

^There are limes during the day when the instruments were turned off, and the graphs show these 
gaps. For further detail see Gregory et al,1985; Hoell et al,1985; and Carroll et al,1985;

®Let's call the lag time estimated by the formula as lag^ time.

®ln calculating the lag time, if the NO and the CO peaked before O3 , the lag time is reported as a 
positive number in minutes and if the O3  exhibited the peak before CO or NO the data set, then, the 
lag time reported as negative.
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Another way of estimating the lagtime was used to calculate the correlations 

for various lagtimes and select the time corresponding to the best correlation.

Calculating correlations

The Spearman Rank correlation coefficients were calculated between the 

gases using various time lags (0, 10, 20, 60, 90 and 120 minutes for CO and 120, 

150, 180, 210, 240, 270, 300, 330, 360 and 390 minutes for NO). This correlation 

coefficient was used because the ordinary Pearson product-moment correlation 

coefficient assesses only the degree of linear association between two variables. 

In certain situations (for example in this study) variable y may increase (or 

decrease) with an increase in x but not necessarily in linear fashion. When this 

happens the ordinary correlation coefficient will not depict the full extent of the 

relationship between the variables. The rank correlation coefficient, measures any 

monotonie association between y and x (Ott,1984). Scatterplots for each of the 

correlations were also plotted.

To assess the precision of the correlations 95% confidence interval of each 

were calculated (Ott,1984).
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Chapter 3 

RESULTS

Figures 1, 2. 3, 4 and 5 show how concentrations of the ozone, carbon 

monoxide, and nitric oxide changed with time during the daylight hours on July 

15th, 16th, 18th, 20th and 22nd, 1983, respectively. On these days the 

concentrations of NO exceeded 30pptv and airmasses were coming from land.

Of the above figures la, 2a, 3a, 4a, and 5a, all show that NO peaks in the 

morning and 1c, 2c, 3c, 4c, and 5c demonstrate that O 3  peaks in the evening. The 

lag time between the peaks of NO and O3  was calculated for each of the above 

stated days. These were 270, 170, 340, 570 and 470 minutes, respectively. 

Judging from the graphs, these don't appear to be good estimates of the true lag 

times (lag^). Hence, Spearmans rank correlations were calculated between NO and 

O 3  for several different lag time (120, 150, 180, 210, 240, 270, 300, 330, 360, and 

390 minutes). These correlations (Table 1) are negative initially, but progressively 

change to positive as the lag time increases, except on July 20th, 1983. 

Scatterplots^ (Id  and 2d) do not show any well defined relationship but the 

scatterplots of 16th and 22nd show a linear relationship. The precision of the 

correlations can be assessed by the confidence intervals given in the parentheses 

below each correlation coefficient As can be seen, high coefficients have narrow

^The scatterplots of the highest correlation of each day are included in the report.

10
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confidence intervals. But size of the confidence interval is also determined by the 

number of data points and the lengths of time for each NO recording, which in this 

case are 340, 170, 160, 290 and 350 minutes for the five days respectively.

The figures la, 2a, 3a, 4a, and 5a show concentrations change versus time in 

the case of O3  and figures 1b, 2b, 3b, 4b and 5b show the CO mixing ratio change 

with time. These plots demonstrate that the O3  tracks CO very closely. The lag^ 

time between the peaks of O3  and CO (Table 2), are -30, 180, 260, 280, -40  

minutes respectively. These again do not appear to be good estimates of the lag 

time. Again, correlations between CO and O 3  for several different lag times (0, 10, 

20, 60, 90 and 120 minutes) were calculated. The correlations between CO and O3  

for the 15th, 20th and 22nd are high and positive and keep decreasing as lag time 

approaches 120 minutes. The scatterplots (1e,4e and 5e) also show an almost 

linear relationship. The correlations on the 16th remain negative for the lag time 

periods and the scatterplot (Fig 2e) does not show any relationship. Correlations 

on the 18th start out negative at zero lag time and turn positive at lag time of 60 

minutes. The scatterplot of the 18th (Figure 3e) does not show any relationship 

either. The confidence intervals given in the parentheses and looking at the time 

period for each CO data set available which in this case are 320, 230, 130, 290 and 

490 minutes.

The night recordings of the O3 , CO and NO concentrations versus time are 

shown in figures 6 , 7, and 8 . The data for the 27th and 28th nights for CO is 

lacking; therefore, two of these graphs, 7 and 8 , show only O3  and NO plots. No 

relationship can be seen between O3  and NO mixing ratios. The lag time between
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the peaks of NO and O3  were 170, 130, and 290 minutes respectively (Table 3). 

The rank correlations between NO and O3  on the above stated days show no 

pattern either. The night of July 21st shows high positive correlations (0.32 to .97) 

and the scatterplot (Figure 6 d) too shows a linear relaitonship but July 27th and 

28th show low correlations (0.06 to 0.27 and -0.17 to 0.38 respectively), and so do 

the scatterplots 7d and 8 d. The length of time for NO data recordings were 320, 

260, and 2 0 0  minutes respectively.

Figures 6 a and 6 b show the plot of O 3  versus time, and CO versus time, 

respectively for July 21st Table 4 gives the rank correlations between CO and O3 . 

These range from 0. 51 to 0.56 for zero lag period to 60 minutes, 0.27 for 90 

minutes, and -0.27 for 120 minutes. Scatterplot for the highest correlation (Figure 

6 e) shows data in two clusters. The night of the 21st had CO data recordings for 

310 minutes and a lag^ time between peaks of CO and O3  of -70  minutes.

NO recordings versus time and O 3  versus time on the 28th and 29th day are 

shown in figures 9 and 10. The CO data for these two days is lacking. Table 5 

show the correlations which again shows no pattern. They range from -0.40 to 

0.20 for the 28th and 0.10 to 0.26 for the 29th and so do the scatterplots (Figure. 

9d and lOd). Lag period are between peaks -70  and zero minutes for the two days, 

respectively. NO data recordings were available for the time period of 250 and 310 

minutes respectively.
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TABLE 1. Oaytimc correlaitons between ozone and nitrtc oxide 
(  >30pptvK when airmasses were coming from the land.

Date
July
1983.

Tim* length 
for which NO 
data was 
available

Lag period for which 
correiations were calculated.

Ua^
period
calcula

120 ISO 180 2*0 240 270 300 330 360 390 ted.

ISth 340 mine - -.03 
(-.31,.36)

.18 
(-.16,.48)

.13 
(-.19,.46)

-.03 
(-.36,.31)

.03
(-.31.-.36)

.32 
(-.02,.59)

.50 
(.19,.71)

.51 
(.20,.73)

.43 270 mine

16th 170 mine -.38
<-.72, .12)

.46
(-.02,77)

.84 
(.60,.94)

.77 
(.45,.91)

.78 
(.47,.91)

.70 
(.33,.88)

.68
(.29,.87)

.71 
(.34,.88)

.80 
(.51,.92)

.74 
(.40,.90)

170 mine I

18th 160 mine -.73
(-.90,-.40)

-.92
(-.97,-.78)

-.84
(-.94,-.61)

-.70
(-.08,-.31)

.06 
(-.44,.54)

.81 
(.52,.93)

.87
(.65,.93)

.92 
(.78,.97)

.93 
(.85,.98)

.80 
(.50,.92)

340 mine

20th 290 mine -.62
(-.80,-.32)

-.70
(-.84,-.99)

—.60
(-.79,-.29)

-.72
(-.85,-.48)

-.47 -.39 
(-.71,-.12)(-.66,-.02)

-.53
(-.75,-.20)

-.46
(—.70,-.11)

—.36
(-.64,.00)

-.20
(-.52,-17)

570 mine

22nd 330 mine -.37 
(-•93,-.73)

-.81
(-.90,-.65)

-.83
(-.91,.68)

-.73
<-.85,-.2)

-.48 
(-.70,-.17) -.16

(-.46,.18)
.23 
(-.11,.32)

.54 
(.25,.74)

.68 
(.44,.82)

.74 
(.53,.86)

470 mine

* correlation coefficients
*•  confidence interval for the correlation h
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Date
July
1983

Time length 
for which CO 
data was 
available

Lag period for
which correlations were calculated tag 

Per 1od
0 10 20 60 90 120 Calculated

15th 330 mins .79 
(.61,.89)

.84 
(.69,.91)

.81
(.04,-58)

.30
(-.22,-361

.13
(-.32,-451

.02
(-.32,.36) •

-30 mins

16th 230 mins -.39 
(-.77,-.15)

-.52
(-.76,-.14)

-.54
(-.77,-.16)

-.63 
(-.82,.29)

-.19
(-.55,-24)

-.38 
(—.68,—.03)

180 mins

18th 130 mins -.39
(-.77,-20)

-.39
(-.70,.20)

— .44
(-.79,-14)

.51
(-.05,-82)

.51
(-.05,-82)

.38
(-.21,-76)

260 mins

20th 290 mins .76 
(.54,.88)

.82 
(.64,.91)

.82 
(.64,.911

.77
(.56,-88)

.59 
(.28,-78)

.66 
(.38,.82)

280 mins

22nd 490 mins .94 
(.89,.96)

.93
(.87,-96)

.89
(.81,-93)

.70 
(.52,.81)

.63
(.42,-77)

.63
(.42,-77)

-40 mins

-
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TABLE 3. Nighttime correlations between ozone and nitric oxide

.Date
july
11983

Time length 
for which NO 
data was 
available

Lag period for which 
correlations were calculated.

Lage
Period
calcula
ted.120 150 180 210 240 270 300 330 360 390

Slat 320 mins .32
(-.03.-.06)

.39
(.04,-65)

.62
(.66,.90) (.

.95 
89,.97)

,97 
(.93,.98)

.93 
(.86,.96)

.88
(.76,-92)

.86
(.73,-92)

.83
(.67,-91)

.87
(.74,-93)

170 mins

,27th 260 mins .06
(-.34,.43)

.08 
(-.32,.44)

.25
(-.16,.57) (

.20 
-.20,.54)

.08
(-.31,.45)

.16 
(-.24,.51)

.27
(-.13,-59)

.22
(-.18,-55)

.17
(-.23,-52)

.23 
(-.17,.56)

130 mins

28th 200 mins .17
(-.57,.43)

.35
(-.21,.55)

.03 ■ 
(-.36,-42) (

.38
-.30,47)

.11 
(-.42,.54)

.35 
(-.10,.68)

.03 
(-.41,.46)

.28 
(-.18,.64)

-.06 
(-.48,.39)

.00 
(-.43,.44)

290 mins

•  correlation coefficients
*• confidence interval for the correlation

■D
O

CDQ.

■D
CD

C /)
C /)



CD
■ D

OQ.
C

gQ.

■D
CD

C/)

o'3
O

8

( O '
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1 July 
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data was

Lag period for whicn 
correlations were calculated

j
L a %  1 
Period j

available 0 10 20 60 90 120 Calculated j

1st 310 mins ,51
(.18,.73)

.54 .56 .56 
(.23,.75) (.25,.76) (.25,.76)

.27 
( — « 09, — . 56 )
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(-.56,.10)
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TABLE 5. Daytima corraiâtions between ozone and nitric oxide (<  
30pptvh when airmaase* were coming from the see.

Date
July
1983.

Tim* length 
for which NO 
data was 
available

Lag for which correlations 
were calculated. period

calculated
120 ISO 180 210 240 270 300 ' 330 360 390

28t)>

29th

250 eins 

200 ains

.03 .20 .04 .10 -.OS .01 .02 -.4 -.17 -.08 
(-.35, .43) (-.21, .35) (-.36,.42) (-.30, .47) (-.42, .36X-.38, .40)(-.13,-.59)(-.18, .5S)(-.23, .52X-.46, .32)
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(-.10..56) (-.09, .57) (-.16, .51) (-.15, .52) (-.26, .43)(-.18, .50X-.22,.47) (-.24,.45)

-70 ainsH 
0 ains 1

*  correiation coefficients
**  confidence interval for the correlation

CD
Q .

■D
CD

C /)
C /)



Figure 1: July 15,1983( daytime ) 18
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Figure 2: July 16,1983( daytime )
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Figure 3; July 18,1983( daytime )
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Figure 4: July 20,1983( daytime
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Figure 5: July 22,1983(daytime)
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Figure 6: July 21.1983( nighttime )
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Figure 7: July 27,1983( nighttime)
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Figure 8: July 28.1983( nighttime )
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Figure 9; July 28,1983( daytime)
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Figure 10: July 29,t983(daytlme)
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Chapter 4 

DISCUSSION AND CONCLUSIONS

There were sufficient data for ozone for all days of the study period but not 

for NO and CO. There were satisfactory daytime data for CO on July 15th, 20th 

and 22nd. The results and the graphs show (la , 2a, 3a, 4a, 5a, 1b, 2b, 3b, 4b and 

5b) that concentrations of CO and 0^ are positively correlated, provided the NO 

concentrations are greater than 30pptv. The correlations on July 16th and 18th are 

negative and do not exhibit the same trends as the rest of the days, probably 

because the CO data were available for these two days were of very short time 

periods. Also, the relationship between these two gases when NO concentrations 

are less than 30pptv could not be determined because of lack of CO data on July 

27th, 28th and 29th, 1983.

Let us return to the reason behind the hypothesis that, CO should be 

negatively correlated to O 3  with no lag period. To simulate a smog chamber 

observations in the lower troposphere it would be essential to follow the air 

parcels and make measurements throughout the moving parcel at the ground-base 

level and perhaps at heights of 200, 400 and 600ft. Then the recordings at the 

originating place (lets call it place A) would simulate the initial concentrations of 

CO and O3 . Measurements at a later destination (lets call it B) would simulate final 

meaurements in a smog chamber. The air parcel had a certain CO O3  ratios when 

it started from place A (Figure 11). Early in the morning CO concentrations start to

44
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build up since there are no photochemical reactions going on. By the time the air 

parcel reachs place B, photochemical processes have taken place in it. Therefore, 

by the time the air parcel gets to place B, it should have tow CO concentrations 

and high O 3  concentrations, according to reaction series (1) to (5) and the net 

reaction (6 ). Therefore, according to smog chamber reactions we should see a 

negative correlation between concentrations of O3  and CO with no lag period. In 

the results obtained from the study, CO and O3  are positively correlated, with no 

time lag. This brings us to very interesting question. Why are CO and O 3  

positively correlated and what factors are responsible for the positive correlations?

There can be four different answers to the question. (1) The data is not 

sufficient to draw any reliable conclusions, so this hypothesis should be tested 

again using more complete data sets. (2) Rate of production of CO was greater 

than the rate it was transformed to CO2  to produce O3 . (3) HO mixing ratios may 

be a limitation in changing CO to COg, (equation (1)), therefore HO concentrations 

need to be measured and taken into consideration. (4) If the above three 

explanations are not valid then further chemical reactions may be occuring and 

need to be investigated.

The NO data sets of the 15th and 22nd were a complete set too (that is from 

about 10am to 4 pm). But from the data set of July 20th it was obvious that the 

NO peak occured before 10am; therefore the calculated correlations cannot be 

used to draw highly reliable conclusions about the NO and O3  relationship. 

Nonetheless for initial lag periods (until 240 minutes) the correlations are negative 

and turn positive after 240 minutes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

Again the nighttime data for CO cannot be used to draw reliable conclusions, 

because there were recordings for only one night (July 21st). Though the 

nighttime correlations between the two gases were positive for the initial lag 

period, conclusions ought not be drawn from such a skimpy data set.

Nighttime data of NO show no pattern in the correlations calculated. 

Correlations on July 21st are very high for 180 minutes lag time to 390 minutes 

lag time. For the other two nights, the 27th and 28th, when the concentrations of 

NO <  SOpptv, there is no pattern. But conclusions cannot be drawn because there 

was not enough NO data to cover the whole night.

The daytime NO data for July 28th and 29th were almost complete.® The 

correlations between NO and O^are low throughout and they demonstrate no 

trends over time, which means that NO >  SOpptv is necessary to produce ozone. 

But these data sets have two limitations, (1) The data before 10am is not available, 

and (2) CO data for both the days is lacking.

My method of calculating lagtime seems to show no consistency with the 

correlations at the corresponding lag times, which probably means that a different 

method should be used. In my method a faulty peak may have thrown the lag 

time off. The method of finding a lag^time to get the best correlation seems to be 

better because of the higher consistency of in the lagtime.

Lastly, lack of a sufficient quantity of data proved to be a serious impairment 

to the research efforts.

®A complete day considered to be 360 minutes, July 28th and 29th had data for 330 and 290 
minutes respectively.
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Suggestions

To confirm the finding In this study that CO is positively correlated to O 3  

with zero lag time, more complete data sets should be used in future studies and 

several other factors should be considered (for example NOg, CH^, light intensity, 

HO that according to smog chamber study lead to production of O3 ).

A Look at the rate of CO production relative to the rate of CO transformation 

to COg which also produces ozone at the originating site of the air parcel will help 

answer one of the questions raised in this study.

It would be highly beneficial to trace the back trajectories of the air parcels, 

and to follow and make measurements throughout the moving air parcel.

To test the rest of the hypotheses successfully, additional data of the mixing 

ratios of the three gases and the above mentioned variables are needed. Also, the 

back trajectories should be traced and a look at measurements along the path 

should be taken. Some other interesting hypothesis can be tested using the kind 

of data used in the study. In the 23 days plots of ozone versus time, it was 

obvserved that ozone had a regualar pattern of peaking every afternoon except on 

some days when it broke away from the pattern. It would be interesting to  

consider all factors driving ozone concentrations and ask why it is constant on 

some days and variable on others. Also, why are CO and O3  correlations better on 

somedays than others?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

PLACE A PLACE B

H IGH CO CQNC CO+02+hv ->  C 02+03 LOW CO CONC
LOW 0 3  CONC PHOTOCHEMICAL HIGH 03  CONC
NO > S O p p tv PROCESSES IN NO > S O pptv

PROGESS.
>

Flg.11. Pictographic representation of how CO and O 3  

concentrations will change when air parcel moves from place A to B
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