Spring 2-1-2018

BIOB 272.00: Genetics and Evolution

Douglas J. Emlen

University of Montana - Missoula, Doug.Emlen@msoumt.edu

Let us know how access to this document benefits you.

Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation

https://scholarworks.umt.edu/syllabi/7509

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@msoumt.edu.
GENETICS and EVOLUTION (BIOB 272, Spring 2018)

Location
- T/TH 9:30-10:50
- NULH 101

Instructor
- Dr. Douglas Emlen, douglas.emlen@umontana.edu
- BioResearch Building 105, 243-2535
- Office hours: TBA or by appointment (email me)

Recitation Instructors
- Romain Boisseau romain1.boisseau@umontana.edu
- Nathanael Herrera nathanael.herrera@umontana.edu
- Johnathan Kaiser johnathan.a.kaiser@gmail.com
- Christopher Pierpont christopher.pierpont@umconnect.umt.edu

Materials
- Class website on Moodle - https://moodle.umt.edu

Introduction
The first part of our course will briefly introduce the study of evolution and then focus on the basic principles of genetics. We will begin with the classic work of Mendel and then continue through the discoveries of modern genomics. The second part of the course deals with evolution. As the prominent geneticist Dobzhansky famously put it, “Nothing in biology makes sense except in the light of evolution.” The study of evolution is therefore all-inclusive, and draws upon many scientific disciplines - geology, chemistry, physics, mathematics, anthropology, botany, zoology, and computer science - in order to develop a comprehensive understanding of the development of life on Earth.

These two topics - genetics and evolution - are treated as a single integrated field of scientific inquiry. Genetic change is the basis of evolution. Our understanding of evolution, therefore, requires a basic understanding of genetics. The converse is true as well. The sequence of the entire human genome was published in 2001 (Venter et al., 2001, Science 291:1304-1351), ushering in the age of large-scale genomics with broad implications for the study of human health and disease. Since this time, the genome sciences have come to dominate the fields of genetics and evolution. Complete genome sequences have been generated for 1,000s of species from a broad diversity of life, including dozens of mammals. Current efforts are underway to sequence 1,000s of human genomes and over 10,000 genomes from a diverse collection of animals. The basic principles of genetics and evolution form the foundation of these exciting frontiers in biology.

Learning outcomes
This course will emphasize biological principles, scientific concepts, and the synthesis of information. Expected outcomes are:

1. To understand the fundamental mechanisms of transmission genetics and inheritance.
2. Learn and apply the principles of population genetics to understand microevolution.
3. Develop an understanding of how the principles of transmission genetics and population genetics relate to human evolution, health, and disease.
4. Understand the principles of quantitative genetics.
5. Develop a basic knowledge of the history of life on Earth.
6. Understand how microevolutionary phenomenon scale to macroevolutionary patterns.
7. Develop an understanding of how the principles of transmission genetics and population genetics relate to the origin and persistence of biological diversity.

Lectures
- T/TH, 9:30 a.m., North Underground Lecture Hall 101 (NULH) 101
- Attendance at lectures is an important part of this course, and all students are expected to attend lectures regularly. Points will be included in your grade for participating in iClicker questions during lecture.

Discussion groups
The topic in these groups will vary from week to week, as shown on the discussion group schedule (see Moodle). Prior arrangements should be made with your teaching assistant if a discussion period will be missed. Your grade in the discussion group will be based on homework assignments, attendance, and participation in class discussions. Homework involves reading the relevant sections of the textbook and any additional papers provided by your TA, and submitting questions for discussion through Moodle prior to section. Your questions must be submitted on Moodle by the following Monday (5 pm). Late submissions will not be accepted.

Review sessions
There will be an evening review session scheduled at least two days prior to each exam. These sessions provide an additional opportunity to ask questions on the lectures, readings, and problems.

Miscellaneous information
- **Accommodations** - The University of Montana assures equal access to instruction through collaboration between students with disabilities, instructors, and Disability Services for Students. If you have a disability that adversely affects your academic performance, and you have not already registered with Disability Services, please contact Disability Services in Lommasson Center 154 or 406.243.2243. I will work with you and Disability Services to provide an appropriate modification.

- **Academic misconduct** will be reported and handled as described in the University of Montana Student Conduct Code. All students must practice academic honesty. Academic misconduct is subject to an academic penalty by the course instructor and/or a disciplinary sanction by the University. All students need to be familiar with the Student Conduct Code.
- **Dropping course or changing grading option**: Students will not be able to change to an audit after the 15th day of classes (Feb 9th; 5 p.m.). Dropping the course will not be allowed after the 45th day of classes (April 2nd). Dropping the course after April 2 may be requested by petition, but the petition must be accompanied by documentation of extenuating circumstances.

- **Student Behavior**: To maximize their likelihood of success, students should attend each lecture, and complete any assigned readings before class. When in class students are expected to behave in a manner that is respectful of others. *All disruptive electronic devices must be turned off during lecture, during Discussion and Review sessions as well as during exams.* If you prefer, you may use laptops or tablets to take notes during lecture – please be respectful of others when doing so.

Grading

Exams will be designed to encourage synthesis of subject matter and not to simply test your ability to recall details. Make-up exams in case of emergency or illness will only be administered if requests are made prior to the exam. You must contact Dr. Emlen at least one week before an exam if you need to make other arrangements to take an exam because you will be off campus due to other University activities (track, ROTC, etc.). Over 15% of your grade (100 points) will be based on attendance and participation in class and weekly discussion groups, additional extra credit will not be offered.

Grades will be based how many of **800 points** you earn over the course of the semester.

1. **Two mid-term exams** (150 points each; **300 points total**)
2. **Discussion groups** (50 participation, 100 HW – **150 points total**). Ten problem sets worth 10 points each will be assigned throughout the semester. The remaining 50 points will be based on attendance and participation in discussions. Please tell your TA before class if you are not able to attend a meeting; points will be subtracted from your score for each discussion meeting that you miss without informing the TA before the section meets.
3. **iClicker points** (150 points). 50 points are strictly participation points; 100 reflect readings from the book, which must be completed prior to class.
4. **Comprehensive final exam** (**200 points**). The Final Exam will be comprehensive and test material covered throughout the semester.

Final grades will be based on your total points as a percentage of the 800 total points possible.

Pluses (+) and minuses (−) will be used (A, A−, B+, B, B−, C+, C, C−, D+, D, and D−) in the assignment of letter grades will be determined by the distribution of total scores, following these guidelines:

- >90% of points (720): A- or better
- >80% of points (640): B- or better
- >70% of points (560): C- or better
- >60% of points (480): D- or better

These cutoffs may be adjusted downward (in favor of the student) to better reflect natural breaks in the class scores.