1954

On two-dimensional Lebesgue measure and rectangle functions

Richard D. Remington
The University of Montana

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/etd
ON TWO-DIMENSIONAL LEBESGUE MEASURE AND RECTANGLE FUNCTIONS

by

RICHARD D REMINGTON

B.A., Montana State University, 1952

Presented in partial fulfillment of the requirements for the degree of Master of Arts

MONTANA STATE UNIVERSITY

1954

Approved by:

[Signatures and dates]
ACKNOWLEDGMENTS

The author is especially indebted to Professor William M. Myers, Jr. for the suggestion of the subject of this thesis and for his generous assistance and constant guidance throughout the entire work. And to Professor Joseph Hashisaki for his critical reading of the entire work.

R.D.R.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>I.</td>
<td>TWO-DIMENSIONAL LEBESGUE MEASURE</td>
<td>4</td>
</tr>
<tr>
<td>II.</td>
<td>THE LEBESGUE INTEGRAL AND LEBESGUE MEASURABLE AND SUMMABLE FUNCTIONS</td>
<td>29</td>
</tr>
<tr>
<td>III.</td>
<td>RECTANGLE FUNCTIONS AND DERIVATIVES</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>BIBLIOGRAPHY</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

Throughout the entire discussion, the underlying space being considered is \(\mathbb{R}^2 \), the Euclidean plane. Any point \(p \) in this space may be represented by an ordered pair of real numbers \((a, b)\). As in common practice, points will be located with reference to two coordinate, perpendicular axes, the \(x \) (horizontal) and \(y \) (vertical) axes.

Some of the notations and conventions encountered will be as follows. A set will be a collection of objects called points. A collection of sets will be called a class. Lower case English letters will denote points; upper case English letters will denote sets; and script capital English letters will denote classes. The following symbols with definitions indicated will be extensively used.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\in)</td>
<td>"is a member of" or "belongs to"</td>
</tr>
<tr>
<td>(\notin)</td>
<td>"is not a member of" or "does not belong to"</td>
</tr>
<tr>
<td>(\subseteq)</td>
<td>"is contained in" or "is a subset of"</td>
</tr>
<tr>
<td>(\nsubseteq)</td>
<td>"is not contained in" or "is not a subset of"</td>
</tr>
<tr>
<td>(\supseteq)</td>
<td>"contains"</td>
</tr>
<tr>
<td>(\nsubseteq)</td>
<td>"does not contain"</td>
</tr>
<tr>
<td>(\therefore)</td>
<td>"therefore"</td>
</tr>
<tr>
<td>(d(p_1, p_2))</td>
<td>"the distance from (p_1) to (p_2)"</td>
</tr>
<tr>
<td>(N(p, \varepsilon))</td>
<td>"the neighborhood of (p) of radius (\varepsilon)"</td>
</tr>
</tbody>
</table>

The distance between points will be defined in the ordinary sense. That is, if \(p_1 = (x_1, y_1) \) and \(p_2 = (x_2, y_2) \), then \(d(p_1, p_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \).

A neighborhood of a point \(p \) of radius \(\varepsilon \) is the set of all points \(q \) such that \(d(p, q) < \varepsilon \). Thus, it will consist of the interior of a circle having \(p \) as center and radius \(\varepsilon \).
If E and F are two sets, then $E + F$ will denote the set of all points p such that either $p \in E$ or $p \in F$. If E_1, E_2, \ldots, E_n are sets, then $\sum_{i=1}^{n} E_i$ will denote the set of points p such that $p \in E_i$ for some $i = 1, 2, \ldots, n$. If E_1, E_2, \ldots are sets, then $\sum_{i=1}^{\infty} E_i$ will denote the set of points p such that $p \in E_i$ for some $i = 1, 2, \ldots$. If \mathcal{A} is any class of sets, then $\bigcup_{E \in \mathcal{A}} E$ will denote the set of points p such that $p \in E$ for some set $E \in \mathcal{A}$.

If E and F are two sets, then $E \cdot F$ will denote the set of all points p such that p is in both E and F. If E_1, E_2, \ldots, E_n are sets, then $\prod_{i=1}^{n} E_i$ will denote the set of points p such that $p \in E_i$ for $i = 1, 2, \ldots, n$. If E_1, E_2, \ldots are sets, then $\prod_{i=1}^{\infty} E_i$ denotes the set of points p such that $p \in E_i$ for each $i = 1, 2, \ldots$. If \mathcal{A} is any class of sets, then $\bigcap_{E \in \mathcal{A}} E$ denotes the set of points p such that $p \in E$ for each set $E \in \mathcal{A}$.

The empty set or set consisting of no points will be denoted by \emptyset.

$\mathcal{C}(E)$, the complement of E will denote the set of all points p such that $p \notin E$.

$E - F$ will denote the set of points p such that $p \in E$ and $p \notin F$. i.e. $E - F = E \cdot \mathcal{C} F$.

Sometimes a set of points in the plane will be explicitly denoted. For example $E_{x,y} \left[a \leq x < b; \quad c \leq y < d \right]$ will denote the set of points p whose x and y coordinates fulfill the restrictions indicated inside the brackets.

An open set is a set G such that if $p \in G$, then there exists an $\varepsilon > 0$ such that $N(p, \varepsilon) \subset G$.

A point p is a limit point of a set E if for every $\varepsilon > 0$, there exists $q \neq p$ such that $q \in E$ and $q \in N(p, \varepsilon)$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
A closed set is a set F such that if p is a limit point of F, then $p \in F$.

If E is any set, then \overline{E} will denote the closure of E and will be defined as the set of all points p such that either $p \in E$ or p is a limit point of E.

If E is any set, then E^0 will denote the interior of E and will be defined as the set of points p such that $N(p, \varepsilon) \subseteq E$ for some $\varepsilon > 0$.

If $\{a_n\}$ is a sequence of real numbers, then we say the limit of $\{a_n\}$ as n approaches infinity is L, if for any $\varepsilon > 0$ there exists an integer M such that if $n > M$, then $|a_n - L| < \varepsilon$. We write $\lim_{n \to \infty} a_n = L$.

The limit inferior of a sequence of real numbers $\{a_n\}$ is abbreviated $\lim \inf_{n \to \infty} a_n$ and is defined as follows. $\lim \inf_{n \to \infty} a_n = c$ means that c is the smallest number for which there exists a subsequence $\{a_{n_k}\}$ of $\{a_n\}$ such that $\lim_{k \to \infty} a_{n_k} = c$.

The limit superior of a sequence of real numbers $\{a_n\}$ is abbreviated $\lim \sup_{n \to \infty} a_n$ and is defined as follows. $\lim \sup_{n \to \infty} a_n = d$ means that d is the largest number for which there exists a subsequence $\{a_{n_k}\}$ of $\{a_n\}$ such that $\lim_{k \to \infty} a_{n_k} = d$.

If E is any set of real numbers, then the least upper bound, abbreviated l.u.b., of E is defined as follows. M is the least upper bound of E if both these conditions are satisfied.

1. If $p \in E$, then $p \leq M$.

2. If L is such that $p \leq L$ for each $p \in E$, then $L \leq M$.

If E is any set of real numbers, then the greatest lower bound,
abbreviated g.l.b., of E is defined as follows. m is the greatest lower bound of E if both these conditions are satisfied.

1. If $p \in E$, then $p \geq m$.
2. If 1 is such that $p \geq 1$ for each $p \in E$, then $1 \leq m$.

If E is a set of real numbers, then we say that E is a bounded set if E has both a least upper bound and a greatest lower bound.

If $\{f_n(p)\}$ is a sequence of functions defined on a set E and if $f(p)$ is a function defined on E, then we say $\{f_n(p)\}$ converges to $f(p)$ on E, if for any $\varepsilon > 0$, there exists an integer M depending upon both ε and p, such that if $n > M$, then $|f_n(p) - f(p)| < \varepsilon$. We write $\lim_{n \to \infty} f_n(p) = f(p)$ on E or $f_n(p) \to f(p)$ on E.

If $\{f_n(p)\}$ is a sequence of functions defined on a set E and if $f(p)$ is a function defined on E, then we say $\{f_n(p)\}$ converges to $f(p)$ uniformly on E, if for any $\varepsilon > 0$, there exists an integer M, depending only upon ε and independent of the point $p \in E$, such that if $n > M$, then $|f_n(p) - f(p)| < \varepsilon$. We write $\lim_{n \to \infty} f_n(p) = f(p)$ uniformly on E or $f_n(p) \to f(p)$ uniformly on E.

CHAPTER I

TWO-DIMENSIONAL LEbesgue MEASURE

Let \mathcal{P} be the collection of all oriented half-open rectangles of the form $R_{a,b; c,d} = \{x, y | a \leq x < b; c \leq y < d\}$.

1.1 \emptyset (the empty set) $\in \mathcal{P}$ since $\emptyset = R_{a,a; c,c}$.

1.2 If $R \in \mathcal{P}$ and if $S \in \mathcal{P}$ then $R \cup S \in \mathcal{P}$. This is a conclusion which may be easily verified.

1.3 If $E \in \mathcal{P}$, $F \in \mathcal{P}$, then $F - E = R_1 \cup R_2 \cup R_3 \cup R_4$, where each $R_i \in \mathcal{P}$ and $R_i \cap R_j = \emptyset$ if $i \neq j$. Note: one or more of the R_i's may be empty.
1.4 Definition. If $R \in \mathcal{P}$ and if $R = E_{x,y} [a \leq x < b; c \leq y < d]$, then $A(R) = (b-a) (d-c)$ (area of R).

1.5 $A(\emptyset) = (a-a) (c-c) = 0$

1.6 If $R \in \mathcal{P}$, then $A(R) \geq 0$.

1.7 If $R = R_{a,b;c,d}$ and if R_1, R_2, \ldots, R_n are such that $R_j = R_{a_j,b_j;c_j,d_j}$ for each j, $R = \bigcup_{j=1}^{n} R_j$, and $R_j \cap R_k = \emptyset$ if $j \neq k$, then $\sum_{j=1}^{n} A(R_j) = A(R)$.

Proof: By induction. Conclusion true if $n = 1$. $A(R) = A(R)$

Suppose $n = 2$. We may without loss of generality assume that $(a,c) \not\in R_1$. Then $a_1 = a$, $c_1 = c$. There are two cases.

(1) Suppose $b_1 = b_2$. Then $b_2 = b_1$, $c_2 = c_1 = c$, and $d_2 = d_1 = d$.

$A(R_1) \not\subset A(R_2) = (b_1 - a_1) (d_1 - c_1) \not\subset (b_2 - a_2) (d_2 - c_2) = (a_2 - a) (d - c) \not\subset (b - a) (d - c) = A(R)$.

(2) Suppose $d_1 = c_2$. Then $a = a_1 = a_2$, $b = b_1 = b_2$ and $d = d_2$.

$A(R_1) \not\subset A(R_2) = (b_1 - a_1) (d_1 - c_1) \not\subset (b_2 - a_2) (d_2 - c_2) = (b - a) (d_2 - c_1) \not\subset (b - a) (d - c) = A(R)$.

In the general case we may assume without loss of generality that $(a,c) \not\in R_1$.

Then $a_1 = a$, $c_1 = c$. $R_1 = R_{a_1,b_1;c_1,d_1}$.

Let $R' = R_{b_1,b;c_1,d_1}$, $R'' = R_{a,b;d_1,d}$.

$A(R) = (b-a) (d-c) = (b_1-a) (d_1-c) \not\subset (b-b_1) (d_1-c) \not\subset (b-a) (d-d_1) = A(R_1) \not\subset A(R') \not\subset A(R'')$.

Suppose conclusion is true for all $k < n$.

$R' \subset R - R_1$, $\sum_{j=2}^{n} R_j = R - R_1$

$R' = R' \cdot \sum_{j=2}^{n} R_j = \sum_{j=2}^{n} R' \cdot R_j$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Similarly, \(R^n = \sum_{j=2}^{n} R^n \cdot R_j \).

By inductive assumption,

\[
A(R') = \sum_{j=2}^{n} A(R' \cdot R_j), \quad A(R^n) = \sum_{j=2}^{n} A(R^n \cdot R_j)
\]

\[
\therefore \quad A(R) = A(R_1) + \sum_{j=2}^{n} \left[A(R' \cdot R_j) \lor A(R^n \cdot R_j) \right].
\]

We must show \(A(R' \cdot R_j) \lor A(R^n \cdot R_j) = A(R_j) \) for \(j = 2, \ldots, n \).

Case 1: Either \(R_j \subseteq R' \) or \(R_j \subseteq R^n \). \(R_1, R', R^n \), are disjoint.

Hence \(A(R' \cdot R_j) \lor A(R^n \cdot R_j) = A(R_j) \)

Case 2. Suppose \(R_j \subseteq R' \lor R^n \), \(R_j \cdot R' \neq \emptyset \) and \(R_j \cdot R^n \neq \emptyset \).

Then \(R_j = R_j \cdot R' \lor R_j \cdot R^n \).

\[
\therefore \quad A(R_j) = A(R_j \cdot R') \lor A(R_j \cdot R^n), \text{ by the inductive assumption.}
\]

Thus,

\[
\sum_{j=2}^{n} \left[A(R' \cdot R_j) \lor A(R^n \cdot R_j) \right] = \sum_{j=2}^{n} A(R_j). \quad A(R) = \sum_{j=1}^{n} A(R_j).
\]

If \(R \in \mathcal{P} \) and if \(R_i \in \mathcal{P}, i = 1,2,\ldots,n \), and if \(R_j \cdot R_k = \emptyset \), if \(j \neq k \), and if \(\sum_{j=1}^{n} R_i \subseteq R \), then \(\sum_{i=1}^{n} A(R_i) \leq A(R) \).

Proof: By induction.

\[R = R_1 + \sum_{j=1}^{m} S_j \text{ where } S_j \in \mathcal{P} \text{ for each } j, R_1 \cdot S_j = \emptyset, \text{ and } S_1 \cdot S_j = \emptyset \text{ if } i \neq j. \]

From the preceding conclusion, \(A(R) = A(R_1) + \sum_{j=1}^{m} A(S_j), \)

\[
\sum_{i=2}^{m} R_i \subseteq R - R_1, \quad \sum_{j=1}^{m} S_j = R - R_1
\]

\[
(\sum_{i=2}^{m} R_i) \cdot (\sum_{j=1}^{m} S_j) = \sum_{i=2}^{m} R_i \cdot S_j =
\]

\[
\sum_{j=1}^{m} \sum_{i=2}^{m} R_i \cdot S_j; \quad S_j \cdot \sum_{j=1}^{m} R_i \subseteq S_j.
\]

Assume conclusion is true for all \(k < n \). It is true for \(n = 1 \).
If \(i = 2,3,\ldots,n \),

\[
R_i \cdot S_j = R_i \cdot \sum_{j=1}^{n} S_j = R_i (R_i - R_1) = R_i
\]

\[
A(R_1) = \sum_{j=1}^{n} A(R_1 \cdot S_j) \text{ by } 1.7.
\]

\[
A(R) \geq A(R_1) + \sum_{i=2}^{n} \sum_{j=1}^{n} A(R_i \cdot S_j) = A(R_1) + \sum_{i=2}^{n} \sum_{j=1}^{n} A(R_i \cdot S_j) =
\]

\[
A(R_1) + \sum_{i=2}^{n} A(R_i) = \sum_{i=1}^{n} A(R_i).
\]

If \(\sum_{i=1}^{n} R_i \subset R \), where \(R \in \mathcal{P}, R_i \in \mathcal{P} \) for \(i = 1,\ldots,n \), \(R \cdot R_j = \emptyset \), if \(i \neq j \), then

\[
\sum_{i=1}^{n} A(R_i) \leq A(R).
\]

Proof: From the above, \(\sum_{i=1}^{n} A(R_i) \leq A(R) \) for each \(n \).

\[
A(R_i) \geq 0 \text{ for each } i.
\]

Thus the sequence of partial sums of \(\sum_{i=1}^{n} A(R_i) \) is an increasing sequence bounded above by \(A(R) \) and therefore converges to a limit less than or equal to \(A(R) \).

i.e.

\[
\sum_{i=1}^{n} A(R_i) \leq A(R).
\]

Suppose \(R \subset \sum_{i=1}^{n} R_i \), where \(R = R_{a,b;c,d} \); \(R_i = R_{a_i,b_i,c_i,d_i} \); \(R_i \in \mathcal{P} \) for each \(i \).

Then \(A(R) \leq \sum_{i=1}^{n} A(R_i) \).

Proof: Induction on the number of \(R_i \).

1. When \(n = 1 \), \(R \subset R_1 \), \(A(R) \leq A(R_1) \).

2. Assume that the conclusion is true when \(k < n \).

3. Let \(p = (a,c) \). Without loss of generality we may assume \(p \in R_1 \).

Let \(R' = R_{a,b_1,c,d_1} = R \cdot R_1 \); \(R'' = R_{b_1,b_2,c,d_2} \); \(R''' = R_{a,b_1,d_1,d} \).

\[
R' = R' \cdot R'' \\
R'' = R'' \cdot R''' \\
R = R' \cdot R'' \cdot R'''
\]

\(R', R'', R''' \) are all disjoint. \(A(R) = A(R') \uplus A(R'') \uplus A(R''') \).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
By inductive assumption,
\[A(R^n) \leq \sum_{i=2}^{n} A(R^n \cdot R_i); \quad A(R''') \leq \sum_{i=2}^{n} A(R'' \cdot R_i); \quad A(R') \leq A(R_1). \]

\[A(R) \leq A(R') + \sum_{i=2}^{n} \left[A(R^n \cdot R_i) + A(R'' \cdot R_i) \right] R^n \cdot R_i + R'' \cdot R_i \leq A(R_1). \]

By induction, \(A(R^n \cdot R_i) \leq A(R_i) \) for each \(i \).

\[A(R) = A(R') + A(R'') \leq A(R_1) + \sum_{i=1}^{n} A(R_i) = \sum_{i=1}^{n} A(R_i). \]

1.11 Suppose \(R = \sum_{i=1}^{n} R_i, R \in \mathcal{P}, R_i \in \mathcal{P} \) for each \(i \). Then \(A(R) \leq \sum_{i=1}^{n} A(R_i) \).

Proof: Given \(\varepsilon > 0 \). Suppose \(R = R_{a,b,c,d}, R_i = R_{a_i,b_i,c_i,d_i} \).

Let \(S \subset R, S = R_{a,b,c,d} \) so that \(A(R) > A(S) > A(R) - \frac{\varepsilon}{2} \).

Let \(R_i \subset S_i, S_i = R_{a_i,b_i,c_i,d_i} \) so that \(A(R_i) < A(S_i) < A(R_i) + \frac{\varepsilon}{2^{i+1}} \).

Let \(\bar{S} \) be the closure of \(S \). Let \(S_1^o \) be the interior of \(S_1 \).

\[\bar{S} \subset R \subset \sum_{i=1}^{n} R_i \subset \sum_{i=1}^{n} S_1^o, \quad R_i \subset S_1^o \text{ for each } i. \]

By the Heine-Borel Covering theorem,
\[\bar{S} \subset \bigcup_{i=1}^{n} S_1^o; \quad S \subset \bigcup_{i=1}^{n} S_i \]

\[A(R) - \frac{\varepsilon}{2} < A(S) \leq \sum_{i=1}^{n} A(S_i) < \sum_{i=1}^{n} \left[A(R_i) + \frac{\varepsilon}{2^{i+1}} \right] = \sum_{i=1}^{n} A(R_i) + \frac{\varepsilon}{2}. \]

\[\therefore A(R) - \varepsilon < \sum_{i=1}^{n} A(R_i). \]

Since \(\varepsilon \) was arbitrary,
\[A(R) \leq \sum_{i=1}^{n} A(R_i). \]

1.12 If \(R \in \mathcal{P} \), if \(R_i \in \mathcal{P} \) for each \(i \), if \(R_i \cdot R_j = \emptyset \) for \(i \neq j \), and if \(R = \sum_{i=1}^{n} R_i \), then \(A(R) = \sum_{i=1}^{n} A(R_i). \)
Proof: 1. \(\sum_{i=1}^{\infty} R_i \subseteq R \Rightarrow \sum_{i=1}^{\infty} A(R_i) \leq A(R) \).

2. \(R \subseteq \bigcup_{i=1}^{\infty} R_i \Rightarrow A(R) \leq \sum_{i=1}^{\infty} A(R_i) \). Thus,

\[A(R) = \sum_{i=1}^{\infty} A(R_i) . \]

1.13 If \(E \) is any set and if for every countable sequence of sets \(\{ R_i \}_{i=1}^{\infty} \) such that \(R_i \in \mathcal{P} \) for each \(i \) and such that \(E \subseteq \bigcup_{i=1}^{\infty} R_i \) we have

\[\sum_{i=1}^{\infty} A(R_i) = +\infty , \]

then we define \(\mu^*(E) = +\infty \).

1.14 Definition.

If \(E \) is any subset of \(\mathbb{R}^2 \), the Euclidean plane, then \(\mu^*(E) \), the exterior Lebesgue measure of \(E \), is defined thus:

\[\mu^*(E) = \text{g.l.b.} \sum_{i=1}^{\infty} A(R_i) \]

where g.l.b. is taken with respect to all possible countable coverings of \(E \) by means of sets \(R_i \in \mathcal{P} \). i.e. where \(E \subseteq \bigcup_{i=1}^{\infty} R_i \).

This means that if \(\mu^*(E) \) is finite, then if \(E \subseteq \bigcup_{i=1}^{\infty} R_i \), where \(R_i \in \mathcal{P} \) for each \(i \), then \(\mu^*(E) \leq \sum_{i=1}^{\infty} A(R_i) \). Also if \(E > \), then there exists a collection of sets \(\{ R_i \}_{i=1}^{\infty} \), such that \(R_i \in \mathcal{P} \) for each \(i \), and such that

\[\mu^*(E) > \epsilon > \sum_{i=1}^{\infty} A(R_i) . \]

1.15 \(\mu^*(\mathbb{R}^2) = +\infty \).

Proof: Deny. Suppose \(\mu^*(\mathbb{R}^2) < +\infty \). Then by 1.14 there exists a countable sequence of sets \(\{ R_i \}_{i=1}^{\infty} \) such that \(R_i \in \mathcal{P} \) for each \(i \) and such that

\[R_2 \subseteq \bigcup_{i=1}^{\infty} R_i \text{ and } A(R_1) = a < +\infty \text{ and } \mu^*(\mathbb{R}^2) \leq a . \]

But there exists \(R = \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right] \times \left[-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right] \subset \mathbb{R}^2 \), \(A(R) \leq \mu^*(\mathbb{R}^2) \). But \(A(R) = 2a \).

This is a contradiction. We conclude that \(\mu^*(\mathbb{R}^2) = +\infty \).
1.16 If E is any set, $\mu^*(E) \geq 0$.

1.17 $\mu^*(\emptyset) = 0$

1.18 If E is a countable set, then $\mu^*(E) = 0$

Proof: Let $E = \{P_1, P_2, \ldots, P_n, \ldots\}$. Give $\varepsilon > 0$.

Suppose $p_i = (a_i, c_i)$ for each i.

Let $R_1 = R_{a_1, c_1 + \frac{\varepsilon}{2}}, R_2 = R_{a_2, c_2 + \frac{\varepsilon}{2}}, \ldots$, $E \subset \sum_{m=1}^{\infty} R_n$

$A(R_n) = \frac{\varepsilon}{a} + \frac{\varepsilon}{c} + \frac{\varepsilon}{d} + \ldots = \varepsilon$

$\mu^*(E) = \sum_{n=1}^{\infty} A(R_n) = \varepsilon$.

Since ε was arbitrary and since $\mu^*(E) \geq 0$, we conclude that $\mu^*(E) = 0$.

1.19 Let $R \in \mathbb{P}$. Then $\mu^*(R) = A(R) = (b-a)(d-c)$, if $R = [a, b] \times [c, d]$.

Proof:

1. $R \subset R \implies \mu^*(R) \leq A(R)$

2. Suppose $R \subset \sum_{i=1}^{\infty} R_i$, where $R_i \in \mathbb{P}$ for each i. $A(R) \leq \sum_{i=1}^{\infty} A(R_i)$

for all such coverings of R. But $\mu^*(R) = \inf \sum_{i=1}^{\infty} A(R_i)$ for all such sums. $A(R) \leq \mu^*(R)$.

We conclude that $\mu^*(R) = A(R)$.

1.20 Suppose $E \subset F$, then $\mu^*(E) \leq \mu^*(F)$.

Proof:

1. Suppose $\mu^*(F) = +\infty$. Then conclusion is true.

2. Suppose $\mu^*(F)$ is finite. Give $\varepsilon > 0$. Then by 1.14 there is a covering R_1, R_2, \ldots, such that $F \subset \sum_{i=1}^{\infty} R_i$ and $\sum_{i=1}^{\infty} A(R_i) < \mu^*(F) + \varepsilon$.

$E \subset \sum_{i=1}^{\infty} R_i$, $\mu^*(E) \leq \sum_{i=1}^{\infty} A(R_i)$, $\mu^*(E) < \mu^*(F) + \varepsilon$.

Since ε is arbitrary, we conclude that $\mu^*(E) \leq \mu^*(F)$.
1.21 Let $G = \{ x, y \mid a < x < b, \quad c < y < d \}$, i.e. a oriented open rectangle. Then $\mu^*(G) = (b-a)(d-c)$.

Proof:

1. Let $R = \{ x, y \mid a \leq x < b, \quad c \leq y < d \}$.

Then $\mu^*(R) = A(R) = (b-a)(d-c)$.

:. by 1.20 $\mu^*(G) \leq \mu^*(R) = (b-a)(d-c)$.

2. Give $\epsilon > 0$. Let $0 < \delta < (d-c) + (b-a)$ Let $S = \{ x, y \mid a < x < b, \quad c < y < d \}$.

Then $\mu^*(S) = A(S) = (b-a-\delta)(d-c-\delta) = (b-a)(d-c) - \delta((d-c)+(b-a)) + \delta^2 = (b-a)(d-c) - \delta((d-c)+(b-a) - \delta)$.

:. by 1.20 $\mu^*(S) \leq \mu^*(G)$.

Since δ is arbitrarily small, though positive, we conclude

$(b-a)(d-c) \leq \mu^*(G)$, .:. $\mu^*(G) = (b-a)(d-c)$.

1.22 Let $F = \{ x, y \mid a < x < b, \quad c < y < d \}$. Then $\mu^*(F) = (b-a)(d-c)$.

Proof:

1. Let $R = \{ x, y \mid a \leq x < b, \quad c \leq y < d \}$.

Then $\mu^*(R) = A(R) = (b-a)(d-c)$, $(b-a)(d-c) \leq \mu^*(F)$.

2. Give $\epsilon > 0$. Take $0 < \delta < 1$, such that $\delta < (d-c) + (b-a)$.

Let $S = \{ x, y \mid a < x < b, \quad c < y < d \}$.

Then $\mu^*(S) = A(S) = (b-a)(d-c) + \delta((d-c)+(b-a)) + \delta^2 = (b-a)(d-c) + \delta((b-a)+(d-c)+\delta)$.

By 1.20 $\mu^*(F) \geq \mu^*(S) = A(S) = (b-a)(d-c) + \delta((b-a)+(d-c)+\delta) < (b-a)(d-c) + \epsilon$.

Since ϵ is arbitrarily small but positive we conclude

$\mu^*(F) \geq (b-a)(d-c)$, .:. $\mu^*(F) = (b-a)(d-c)$.

1.23 Suppose $R = \{ x, y \mid a, b, c, d \in \mathbb{R} \}$. Let R^0 denote the interior of R and \bar{R} denote the closure of R. If S is such that $R^0 \subset S \subset \bar{R}$, then $\mu^*(S) = (b-a)(d-c)$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Proof: \(\mu^*(R) = (b-a)(d-c) \).

\(\mu^*(R) = (b-a)(d-c) \), By 1.20 \(\mu^*(R) \leq \mu^*(S) \leq \mu^*(R) \)
\(\therefore \mu^*(S) = (b-a)(d-c) \).

1.24 If \(E \) and \(F \) are any two sets, then \(\mu^*(E+F) \leq \mu^*(E) + \mu^*(F) \).

Proof: Case 1. Suppose either \(\mu^*(E) \) or \(\mu^*(F) \) is \(+\infty\). Then the conclusion is immediate.

Case 2. Suppose both \(\mu^*(E) \) and \(\mu^*(F) \) are finite. Give \(\varepsilon > 0 \).

From 1.14 there exists \(\{ S_i \} \) such that \(S_i \subset P \) for each \(i \) and such that \(E \subset \bigcup_{i=1}^{\infty} S_i \) and \(\mu^*(E) > \sum_{i=1}^{\infty} A(S_i) - \frac{\varepsilon}{2} \).

There exists \(\{ T_i \} \) such that \(T_i \subset P \) for each \(i \) and such that \(F \subset \bigcup_{i=1}^{\infty} T_i \) and \(\mu^*(F) > \sum_{i=1}^{\infty} A(T_i) - \frac{\varepsilon}{2} \).

\[E + F \subset \bigcup_{i=1}^{\infty} S_i + \bigcup_{i=1}^{\infty} T_i \]
\[\mu^*(E+F) \leq \sum_{i=1}^{\infty} A(S_i) + \sum_{i=1}^{\infty} A(T_i) \]
\[\mu^*(E) + \mu^*(F) > \sum_{i=1}^{\infty} A(S_i) + \sum_{i=1}^{\infty} A(T_i) - \varepsilon \geq \mu^*(E+F) - \varepsilon. \]

Since \(\varepsilon > 0 \) is arbitrary, we conclude
\[\mu^*(E)+\mu^*(F) \geq \mu^*(E+F) \]

1.25 If \(A = \bigcup_{i=1}^{\infty} A_i \), then \(\mu^*(A) \leq \sum_{i=1}^{\infty} \mu^*(A_i) \)

Proof: Case 1. Suppose \(\mu^*(A_i) = +\infty \) for some \(i \). Then the conclusion is obvious.

Case 2. Suppose \(\mu^*(A_i) \) is finite for each \(i \). Proof by induction on the number of \(A_i \).

a. The theorem is true if \(n = 1 \). \(\mu^*(A_1) \leq \mu^*(A_1) \).

By 1.24 \(\mu^*(A_1 + A_2) \leq \mu^*(A_1) + \mu^*(A_2) \)

b. Suppose conclusion is true for \(n = k \). Then

\[\mu^*(\bigcup_{i=1}^{k} A_i) \leq \sum_{i=1}^{k} \mu^*(A_i) \]. Add \(\mu^*(A_{k+1}) \) to both sides.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Consider $\sum_{i=1}^{k} A_i$ as a set and using the case $n = 2$, we obtain
\[
\mu^*(\sum_{i=1}^{k} A_i) = \mu^*(\sum_{i=1}^{k} A_i) + \mu^*(A_{k+1}) = \sum_{i=1}^{k} \mu^*(A_i)
\]
Since the truth of the conclusion in any case implies its truth in the next, we conclude
\[
\mu^*(A) = \mu^*(\sum_{i=1}^{n} A_i) = \sum_{i=1}^{n} \mu^*(A_i).
\]

1.26 If $B \subseteq \sum_{i=1}^{n} A_i$, then $\mu^*(B) \leq \sum_{i=1}^{n} \mu^*(A_i)$

Proof: By 1.20 $\mu^*(B) \leq \mu^*(\sum_{i=1}^{n} A_i)$

But by the preceding theorem $\mu^*(\sum_{i=1}^{n} A_i) \leq \sum_{i=1}^{n} \mu^*(A_i)$.

1.27 If $B \subseteq \sum_{i=1}^{n} A_i$, then $\mu^*(B) \leq \sum_{i=1}^{n} \mu^*(A_i)$

Proof: Case 1. Suppose $\mu^*(A_i) = +\infty$ for some i. Then the conclusion is obvious.

Case 2. Suppose $\mu^*(A_i)$ is finite for each i. Give $\epsilon > 0$.

By 1.14 there are sets $R_1,1, R_1,2, R_1,3, \ldots \in \mathcal{P}$ such that $A_1 \subseteq \sum_{j=1}^{g_1} R_1,j$ and
\[
\sum_{j=1}^{g_1} A(R_1,j) < \mu^*(A_1) + \frac{\epsilon}{2}.
\]

There are sets $R_2,1, R_2,2, \ldots \in \mathcal{P}$, such that $A_2 \subseteq \sum_{j=1}^{g_2} R_2,j$ and
\[
\sum_{j=1}^{g_2} A(R_2,j) < \mu^*(A_2) + \frac{\epsilon}{4}.
\]

There are sets $R_1,1, R_1,2, \ldots \in \mathcal{P}$, such that $A_1 \subseteq \sum_{j=1}^{g_1} R_1,j$

and
\[
\sum_{j=1}^{g_1} A(R_1,j) < \mu^*(A_1) + \frac{\epsilon}{2}.
\]

If $B \subseteq \sum_{i=1}^{g_1} A_i \subseteq \sum_{i=1}^{g_1} \sum_{j=1}^{g_2} R_i,j$

Then
\[
\mu^*(B) \leq \sum_{i=1}^{g_1} \sum_{j=1}^{g_2} A(R_i,j) < \sum_{i=1}^{g_1} \left(\mu^*(A_i) + \frac{\epsilon}{2} \right)
\]
If E is the x-axis, then $\mu^*(E) = 0$.

Proof: Give $\varepsilon > 0$. Let E_+ be the non-negative x-axis. Let E_- be the negative x-axis. Let $R_1 = R_{o,1}; -\frac{\varepsilon_1}{2^{32}}; R_2 = R_{1,2}; -\frac{\varepsilon_2}{6^{32}}$; $R_3 = R_{2,3}; -\frac{\varepsilon_3}{32^{32}}; \ldots; R_n = R_{n-1,n}; -\frac{\varepsilon_n}{2^{n+2}}; \ldots$; $\sum A(R_n) = \frac{\varepsilon}{2^{n+1}}$ for each n; $E_+ \subseteq \sum R_n$; $E_+ \subseteq \sum A(R_n) = \frac{\varepsilon}{2}$.

$\therefore \mu^*(E_+) \leq \frac{\varepsilon}{2}$. Similarly, it can be seen that $\mu^*(E_-) \leq \frac{\varepsilon}{2}$. $E = E_+ + E_-$. $\mu^*(E) \leq \mu^*(E_+) + \mu^*(E_-) \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

Since $0 \leq \mu^*(E) \leq \varepsilon$ and since ε is arbitrary, we conclude that $\mu^*(E) = 0$.

If E is the y-axis, then $\mu^*(E) = 0$.

Proof: Give $\varepsilon > 0$. Let E_+ be the non-negative y-axis. Let E_- be the negative y-axis. Let $R_1 = R_{e_1,1}; -\frac{\varepsilon_1}{\varepsilon_1}; R_2 = R_{e_2,2}; -\frac{\varepsilon_2}{\varepsilon_2}; \ldots; R_n = R_{e_n,n}; -\frac{\varepsilon_n}{\varepsilon_n}; \ldots$ $A(R_n) = \frac{\varepsilon}{2^{n+1}}$, $E_+ \subseteq \sum R_n$; $R_n \in \mathbb{R}$ for each n; $A(R_n) = \frac{\varepsilon}{2}$.

$\therefore \mu^*(E_+) \leq \frac{\varepsilon}{2}$. Similarly it can be seen that $\mu^*(E_-) \leq \frac{\varepsilon}{2}$. $E = E_+ + E_-$. $\mu^*(E) \leq \mu^*(E_+) + \mu^*(E_-) \leq \varepsilon$.

Since $0 \leq \mu^*(E) \leq \varepsilon$ and ε is arbitrary, we conclude that $\mu^*(E) = 0$.

If L is a line parallel to either the x or y axis, then $\mu^*(L) = 0$.

Proof: By a translation of axes, L can be transformed into an axis and can thus be seen to have exterior measure 0.

If L is a line segment, then $\mu^*(L) = 0$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Proof: Case 1. If \(L \) has slope equal to either 0 or \(\pm \infty \), then it is a subset of a line \(M \) parallel to an axis. \(\mu^*(M) = 0, \mu^*(L) \leq \mu^*(M) \Rightarrow \mu^*(L) = 0. \)

Case 2. The slope of \(L \) is positive but finite. Let \(p = (a,c) \) and \(q = (b,d) \) be the endpoints of \(L \), where \(a < b, \ c < d \). (Note: This will exclude degenerate line segments consisting of either no points or a single point. An empty segment of course has exterior measure 0 and a single point segment may be included in Case 1 above).

Consider \(R_1 = R_{a,b;c,d} \). \(L-q \subset R_1 \). \(L = (L-q) + q \). \(\mu^*(L) \leq \mu^*(L-q) + \mu^*(q) \). But \(L-q \subset L \), \(\mu^*(L-q) = \mu^*(L) \). \(\mu^*(L) = \mu^*(L-q) \). \(A(R_1) = (b-a) \ (d-c) \).

Consider \(R_{21} = R_{a,\frac{a+b}{2};c,\frac{c+d}{2}} \) and \(R_{22} = R_{b,\frac{a+b}{2};\frac{c+d}{2},d} \).

\(R_{21} \cdot R_{22} = \emptyset \). \(L-q \subset R_{21} + R_{22} \).

\(A(R_{21} + R_{22}) = A(R_{21}) + A(R_{22}) = \frac{A(R_1)}{2} \).

Consider \(R_{31} = R_{a,\frac{3a+b}{4};\frac{3c+d}{4}} \) \(R_{32} = R_{\frac{3a+b}{4},\frac{a+b}{2};\frac{3c+d}{4},d} \).

\(R_{33} = R_{\frac{a+b}{2},\frac{3a+b+36c}{8};\frac{c+d}{2},\frac{c+3d}{2}} \) \(R_{34} = R_{\frac{a+3b}{4},\frac{b+c+3d}{4};\frac{a+3b}{4},d} \).

\(L-q \subset R_{31} + R_{32} + R_{33} + R_{34} \).

\(R_{31}, R_{34} = \emptyset \) if \(i \neq j \).

\(A(R_{31} + R_{32} + R_{33} + R_{34}) = A(R_{31}) + A(R_{32}) + A(R_{33}) + A(R_{34}) = \frac{A(R_1)}{4} \).

Continuing this process indefinitely, we find that we can cover \(L-q \) with a sequence of oriented half-open rectangles of arbitrarily small total area. We conclude, therefore, that \(\mu^*(L-q) = \emptyset = \mu^*(L) \).

Case 3. The slope of \(L \) is negative but finite. Let \(p = (a,d), q = (b,c) \) be the endpoints of \(L \), where \(a < b, \ c < d \).

Again let \(R_1 = R_{a,b;c,d} \). \(A(R_1) = (b-a) \ (d-c) \).
\[L(\mathbf{p} + \mathbf{q}) \subseteq R_1. \mu^*(\mathbf{p} + \mathbf{q}) = 0. \]
\[\mu^*(L) \leq \mu^*(L(\mathbf{p} + \mathbf{q})) + \mu^*(\mathbf{p} + \mathbf{q}) = \mu^*(L(\mathbf{p} + \mathbf{q})) \]
\[L(\mathbf{p} + \mathbf{q}) \subseteq L. \cdot \mu^*(L(\mathbf{p} + \mathbf{q})) \leq \mu^*(L) \]
\[\mu^*(L) = \mu^*(L(\mathbf{p} + \mathbf{q})) \]

Let \(R_{21} = R_{21} : R_{22} = R_{22} \cdot \)

\[R_{21} \cdot R_{22} = \emptyset. \quad L(\mathbf{p} + \mathbf{q}) \subseteq R_{21} + R_{22} \]
\[A(R_{21} + R_{22}) = A(R_{21}) + A(R_{22}) = A(R_1) / 2 \]

Again, as before, we can by continuing this process cover \(L(\mathbf{p} + \mathbf{q}) \) with a sequence of oriented half-open rectangles of arbitrarily small total area. We conclude that \(\mu^*(L) = 0. \)

1.32 If \(L \) is any line, then \(\mu^*(L) = 0 \)

Proof: \(L = \bigcup_{i=1}^{k} l_i \), where each \(l_i \) is a half-open line segment of unit of length and \(l_i \cdot l_j = \emptyset \) if \(i \neq j \).
\[\mu^*(L) = \mu^*(\bigcup_{i=1}^{k} l_i) = \sum_{i=1}^{k} \mu^*(l_i) = 0 \]

1.33 Definition. A set \(E \) is said to be a Lebesgue measurable set if, for every set \(A \) we have
\[\mu^*(A) = \mu^*(A \cdot E) + \mu^*(A \cdot \complement E). \]
Henceforth, the word "measurable" will be understood to mean "Lebesgue measurable."

1.34 For any two sets \(A \) and \(E \), we have
\[\mu^*(A) \leq \mu^*(A \cdot E) + \mu^*(A \cdot \complement E). \]

Proof: \(A = A \cdot E + A \cdot \complement E \)
\[\therefore \text{from 1.24} \quad \mu^*(A) \leq \mu^*(A \cdot E) + \mu^*(A \cdot \complement E). \]

1.35 \(E \) is a measurable set if and only if, for every set \(A \), we have
\[\mu^*(A) = \mu^*(A \cdot E) + \mu^*(A \cdot \complement E). \]
Proof: 1. If E is a measurable set, then for every set A,
\[\mu^*(A) = \mu^*(A \cdot E) + \mu^*(A \cdot E^c), \]
\text{hence } \mu^*(A) \geq \mu^*(A \cdot E) + \mu^*(A \cdot E^c).

2. Suppose for every set A, $\mu^*(A) \geq \mu^*(A \cdot E) + \mu^*(A \cdot E^c)$.
Then from 1.34, $\mu^*(A) = \mu^*(A \cdot E) + \mu^*(A \cdot E^c)$.
\[\therefore \mu^*(A) = \mu^*(A \cdot E) + \mu^*(A \cdot E^c). \]

\text{Hence, } E \text{ is a measurable set.}

1.36 \emptyset is a measurable set.

Proof: Let A be any set. We must show that
\[\mu^*(A) = \mu^*(A \cdot \emptyset) + \mu^*(A \cdot \emptyset^c). \]
\[\mu^*(A \cdot \emptyset) = \mu^*(\emptyset) = 0. \]
\[\mu^*(A \cdot \emptyset^c) = \mu^*(A). \]

\text{Hence, it follows that } \mu^*(A) = \mu^*(A \cdot \emptyset) + \mu^*(A \cdot \emptyset^c).

1.37 If E is such that $\mu^*(E) = 0$, then E is a measurable set.

Proof: Let A be any set. We must show that
\[\mu^*(A) = \mu^*(A \cdot E) + \mu^*(A \cdot E^c) \]
\[\mu^*(A \cdot E) = 0, \text{ since } A \cdot E \subseteq E, \text{ and } \mu^*(A \cdot E) = \mu^*(E) = 0. \]
\[A \cdot E \subseteq A, \therefore \mu^*(A \cdot E) = \mu^*(A). \]

1.38 If E is a measurable set, then $E \cdot E$ is a measurable set.

Proof: Let A be any set. We must show that $\mu^*(A) = \mu^*(A \cdot E)$
$\mu^*(A \cdot E)$, but E is a measurable set.

So, $\mu^*(A) = \mu^*(A \cdot E) + \mu^*(A \cdot E^c)$.
\[E = E \cdot E \therefore \mu^*(A) = \mu^*(A \cdot E \cdot E) + \mu^*(A \cdot E^c). \]

1.39 R_2 is a measurable set

Proof: \emptyset is measurable. \therefore $E \emptyset = R_2$ is measurable.
1.40 If E and F are measurable sets, then $E + F$ is a measurable set.

Proof: Let A be any set. We shall show that

$$
\mu(A) = \mu(A \cdot (E + F)) + \mu(A \cdot \emptyset (E + F)).
$$

Since E is measurable, $\mu(A) = \mu(A \cdot E) + \mu(A \cdot \emptyset E)$

Since F is measurable,

$$
\mu(A \cdot E) = \mu(A \cdot E \cdot F) + \mu(A \cdot E \cdot \emptyset F)
$$

$$
\mu(A \cdot \emptyset E) = \mu(A \cdot \emptyset E \cdot F) + \mu(A \cdot \emptyset E \cdot \emptyset F)
$$

\[\mu(A) = \mu(A \cdot E \cdot F) + \mu(A \cdot E \cdot \emptyset F) + \mu(A \cdot \emptyset E \cdot F) + \mu(A \cdot \emptyset E \cdot \emptyset F).
\]

Since E is measurable,

$$
\mu(A \cdot (E + F)) = \mu(A(E + F) \cdot E) + \mu(A(E + F) \cdot \emptyset E)
$$

Since F is measurable,

$$
\mu(A \cdot (E + F) \cdot E) = \mu(A(E + F) \cdot E \cdot F) + \mu(A(E + F) \cdot E \cdot \emptyset F);
\mu(A(E + F) \cdot \emptyset E) = \mu(A(E + F) \cdot \emptyset E \cdot F) + \mu(A(E + F) \cdot \emptyset E \cdot \emptyset F);
\mu(A(E + F)) = \mu(A(E + F) \cdot E \cdot F) + \mu(A(E + F) \cdot E \cdot \emptyset F) + \mu(A(E + F) \cdot \emptyset E \cdot F) + \mu(A(E + F) \cdot \emptyset E \cdot \emptyset F).
\]

$A(E + F) \cdot E \cdot F = A \cdot E \cdot F$

$A(E + F) \cdot \emptyset E \cdot F = A \cdot \emptyset E \cdot F$

$A(E + F) \cdot \emptyset E \cdot \emptyset F = \emptyset$

\[\mu(A(E + F)) = \mu(A \cdot E \cdot F) + \mu(A \cdot E \cdot \emptyset F) + \mu(A \cdot \emptyset E \cdot F) + \mu(A \cdot \emptyset E \cdot \emptyset F).
\]

\[\mu(A) = \mu(A(E + F)) + \mu(A \cdot \emptyset E \cdot F) = \mu(A(E + F)) + \mu(A \cdot \emptyset (E + F)).
\]

1.41 If E_1, E_2, \ldots, E_n are measurable sets, then $\sum_{i=1}^{n} E_i$ is a measurable set.

Proof: By induction on n.

1. The conclusion is trivial of $n = 1$. By the preceding conclusion, it is true for $n = 2$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
2. Assume the conclusion is true for \(n = k \). Then if \(E_1, E_2, \ldots, E_k \) are measurable, \(\sum_{i=1}^{k} E_i \) is measurable. If \(E_{k+1} \) is measurable, then the truth of the assertion for \(n = 2 \) implies that \(\sum_{i=1}^{k} E_i + E_{k+1} \) is measurable, i.e. \(E_{k+1} \) is measurable. By induction the conclusion is true for all values of \(n \).

1.42 If \(E \) and \(F \) are measurable sets, then \(E \cdot F \) is a measurable set.

Proof: \(E \cdot (E \cdot F) = E \cdot F \). \(E \) and \(F \) are measurable by 1.38. \(E \cdot F \) is measurable. Thus \((E \cdot F) \) is measurable. This implies \(E \cdot (E \cdot F) = E \cdot F \) is measurable.

1.43 If \(E_1, E_2, \ldots, E_n \) are measurable sets, then \(\bigcap_{i=1}^{n} E_i \) is a measurable set.

Proof: Induction on \(n \).

1. Trivial for \(n = 1 \). True for \(n = 2 \) by 1.42.

2. Assume true for \(n = k \). Then, if \(E_1, E_2, \ldots, E_k \) are measurable, \(\bigcap_{i=1}^{k} E_i \) is measurable. If \(E_{k+1} \) is measurable, \(\bigcap_{i=1}^{k} E_i \cdot E_{k+1} \) is measurable, i.e. \(E_{k+1} \) is measurable. Thus, the conclusion is true for all values of \(n \).

1.44 If \(E \) and \(F \) are measurable sets, then \(E - F \) is a measurable set.

Proof: \(E - F = E \cdot F \), which is measurable.

1.45 If \(\{E_n\} \) is a sequence of measurable sets, such that \(E_m \cdot E_n = \emptyset \) if \(m \neq n \), then \(\bigcup_{n=1}^{\infty} E_n \) is a measurable set.

Proof: We must show that if \(A \) is any set, then \(\mu^*(A) = \mu^*(A \cdot \bigcup_{n=1}^{\infty} E_n) + \mu^*(A \cdot \bigcap_{n=1}^{\infty} E_n) \), i.e. \(\mu^*(A) = \mu^*(A \cdot Q) + \mu^*(A \cdot \emptyset) \), where \(Q = \bigcup_{n=1}^{\infty} E_n \).
If \(E_1 \) and \(E_2 \) are measurable sets, then for every set \(A \),

\[
\mu^*(A(E_1 \cup E_2)) = \mu^*(A \cdot E_1 \cdot E_2) + \mu^*(A \cdot E_1 \cdot \complement E_2) + \mu^*(A \cdot \complement E_1 \cdot E_2),
\]

an equation was developed as part of the proof of 1.40. But \(E_1 \cdot E_2 = \emptyset \), \(\therefore A \cdot E_1 \cdot E_2 = \emptyset \).

Hence \(\mu^*(A(E_1 \cup E_2)) = \mu^*(A \cdot E_1) + \mu^*(A \cdot E_2) \)

We assert next that

\[
\mu^*(A(E_1 \cup E_2 + \ldots + E_n)) = \mu^*(A \cdot E_1) + \mu^*(A \cdot E_2) + \ldots + \mu^*(A \cdot E_n)
\]

This statement is true for \(n = 1 \) and \(n = 2 \).

Suppose it is true for \(n = k \). Then

\[
\mu^*(A(E_1 \cup E_2 + \ldots + E_k)) = \mu^*(A \cdot E_1) + \mu^*(A \cdot E_2) + \ldots + \mu^*(A \cdot E_k)
\]

Thus, the assertion is true.

\[
\mu^*(A) = \mu^*(A(E_1 \cup E_2 + \ldots + E_m)) + \mu^*(A \cdot \complement (E_1 \cup E_2 + \ldots + E_m)) =
\]

\[
= \sum_{n=1}^{m} \mu^*(A \cdot E_n) + \mu^*(A \cdot \complement (E_1 \cup E_2 + \ldots + E_m)),
\]

since \(\sum_{n=1}^{m} E_n \subseteq \sum_{n=1}^{\infty} E_n \)

\[
\therefore \complement (\sum_{n=1}^{m} E_n) \supseteq \complement (\sum_{n=1}^{\infty} E_n)
\]

But \(\sum_{n=1}^{m} \mu^*(A \cdot E_n) = \lim_{m \to \infty} \sum_{n=1}^{m} \mu^*(A \cdot E_n) \)

\[
\therefore \mu^*(A) = \sum_{n=1}^{\infty} \mu^*(A \cdot E_n) + \mu^*(A \cdot \complement (\sum_{n=1}^{\infty} E_n))
\]

By 1.27 \(\mu^*(A \cdot \sum_{n=1}^{\infty} E_n) \leq \sum_{n=1}^{\infty} \mu^*(A \cdot E_n) \)

\[
\therefore \mu^*(A) = \sum_{n=1}^{\infty} \mu^*(A \cdot E_n) + \mu^*(A \cdot \sum_{n=1}^{\infty} E_n)\]
1.46 If \(\{E_n\} \) is a sequence of measurable sets, then \(\sum_{n=1}^{\infty} E_n \) is a measurable set.

Proof:
\[
\sum_{n=1}^{\infty} E_n = E_1 \bigoplus (E_2 - E_1) \bigoplus (E_3 - (E_1 \oplus E_2)) \bigoplus (E_4 - (E_1 \oplus E_2 \oplus E_3)) \oplus \ldots
\]

Each of the sets in the right-hand member of the above equation is measurable. Furthermore, each of the sets in the sum is disjoint with the other sets.

From the preceding conclusion, we see that \(\sum_{n=1}^{\infty} E_n \) is a measurable set.

1.47 If \(\{E_n\} \) is a sequence of measurable sets, then \(\prod_{n=1}^{\infty} E_n \) is a measurable set.

Proof: \(E_n \) is measurable for each \(n \).
\[
\therefore \sum_{n=1}^{\infty} E_n \text{ is measurable by 1.46.} \quad \sum_{n=1}^{\infty} E_n = E_1 \bigcap \bigcap_{n=1}^{\infty} E_n.
\]
\[
\therefore E_1 \bigcap \bigcap_{n=1}^{\infty} E_n = \prod_{n=1}^{\infty} E_n \text{ is measurable.}
\]

1.48 If \(R \in \mathcal{P} \), then \(R \) is a measurable set.

Proof: Let \(E \) be any set. We must show that \(\mu^*(E) \geq \mu^*(E \cdot R) + \mu^*(E \cdot \mathcal{P} \setminus R) \).

Case 1. If \(\mu^*(E) = +\infty \), the conclusion is immediate.

Case 2. Suppose \(\mu^*(E) \) is finite. Give \(\varepsilon > 0 \). There is a covering \(\{S_j\} \), such that \(E \subseteq \bigcup_{j=1}^{\infty} S_j \), \(S_j \in \mathcal{P} \) for each \(j \) and
\[
\sum_{j=1}^{\infty} \lambda(S_j) < \mu^*(E) + \varepsilon \text{ by 1.14.}
\]
\[E \cdot R \subseteq \sum_{j=1}^{\infty} S_j \cdot R. \quad S_j \cdot R \in \mathcal{P} \text{ for each } j \text{ from 1.2.} \]

\[E \cdot R \subseteq \sum_{j=1}^{\infty} S_j \cdot G \cdot R. \text{ From 1.3 } S_j \cdot G \cdot R = S_j - R = T_j + U_j + V_j + W_j, \]

where \(T_j, U_j, V_j, W_j \) are all disjoint.

\[E \cdot G \cdot R \subseteq \sum_{j=1}^{\infty} (T_j + U_j + V_j + W_j) = \sum_{j=1}^{\infty} T_j + \sum_{j=1}^{\infty} U_j + \sum_{j=1}^{\infty} V_j + \sum_{j=1}^{\infty} W_j. \]

\[S_j = S_j \cdot R + S_j \cdot G \cdot R = S_j \cdot R + T_j + U_j + V_j + W_j. \]

The sets in the sum on the right of the above equation are disjoint.

* by 1.7, \(A(S_j) = A(S_j \cdot R) + A(T_j) + A(U_j) + A(V_j) + A(W_j). \)

\[\mu^*(E \cdot R) = \sum_{j=1}^{\infty} A(S_j \cdot R) \text{ by 1.19 and 1.20.} \]

\[\mu^*(E \cdot G \cdot R) = \sum_{j=1}^{\infty} A(T_j) + \sum_{j=1}^{\infty} A(U_j) + \sum_{j=1}^{\infty} A(V_j) + \sum_{j=1}^{\infty} A(W_j). \]

\[\mu^*(E \cdot R) + \mu^*(E \cdot G \cdot R) = \sum_{j=1}^{\infty} A(S_j \cdot R) + \sum_{j=1}^{\infty} A(T_j) + \sum_{j=1}^{\infty} A(U_j) + \sum_{j=1}^{\infty} A(V_j) + \sum_{j=1}^{\infty} A(W_j) = \]

\[A(S_j) \leq \mu^*(E) + \epsilon. \]

We conclude that

\[\mu^*(E) \geq \mu^*(E \cdot R) + \mu^*(E \cdot G \cdot R). \]

1.49 If \(R \in \mathcal{P} \) and if \(S \) is such that \(R^0 \subseteq S \subseteq \overline{R} \), then \(S \) is a measurable set

and \(\mu^*(R^0) = \mu^*(\overline{R}) = \mu^*(R) = \mu^*(S). \)

Proof: \(\overline{R} \) is a closed oriented rectangle.

Let \(s_1 = \text{left side of } \overline{R}, \mu^*(s_1) = 0 \) by 1.31.

Let \(s_2 = \text{bottom side of } \overline{R}, \mu^*(s_2) = 0. \)

Let \(s_3 = \text{right side of } \overline{R}, \mu^*(s_3) = 0. \)

Let \(s_4 = \text{top side of } \overline{R}, \mu^*(s_4) = 0. \)

\(R^0 \uplus s_1 \cup s_2 = R. \) \(R^0 \) is measurable.
\[\mu*(R) = \mu*(R^0) + \mu*(s_1) + \mu*(s_2) = \mu*(R^0) \]

\[R^0 \subseteq R, \quad \therefore \mu*(R^0) = \mu*(R) \quad \therefore \mu*(R) = \mu*(R) \]

\[\bar{R} = R + s_3 + s_4 \ldots \bar{R} \text{ is measurable.} \]

\[\mu*(\bar{R}) = \mu*(R) + \mu*(s_3) + \mu*(s_4) = \mu*(R) \quad R \subseteq \bar{R} \]

\[\therefore \mu*(R) = \mu*(\bar{R}) = \mu*(R) \]

\[R^0 \subseteq S \subseteq \bar{R} \]

\[S = R^0 + B, \text{ where } \mu*(B) = 0. \quad \therefore S \text{ is measurable.} \]

\[\mu*(S) = \mu*(R^0) + \mu*(B) = \mu*(R^0) \]

But \[\mu*(R^0) = \mu*(S) \]

\[\mu*(R^0) = \mu*(S) = \mu*(R) \]

1.50 If G is any open set, then there is a countable sequence of open squares, \(\{s_n\} \), such that \(G = \sum_{n=1}^{\infty} S_n \).

Proof: Let \(\mathcal{U} \) be the collection of all open squares having centers with both coordinates rational and half-side length equal to \(\frac{1}{n} \) where \(n \) is a positive integer. \(\mathcal{U} \) is a countable collection.

We shall show \(G = \sum_{S \in \mathcal{U}} S \).

1. Suppose \(p \in S \). Then \(p \in S_0 \) for some set \(S_0 \), where \(S_0 \subseteq G \), and \(S_0 \in \mathcal{U} \).

Hence, \(p \in G \). \(\therefore G \supset \sum_{S \in \mathcal{U}} S \).

2. Suppose \(p \in G \). There exists \(l > \epsilon > 0 \) such that \(N(p, \epsilon) \subseteq G \).

Let \(q \) be a point having rational coordinates such that \(d(p, q) < \frac{\epsilon}{4} \).

Let \(n \) be such that \(\frac{\epsilon}{4} < \frac{1}{n} < \frac{\epsilon}{2} \).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Let \(S \) be the square having \(q \) as center and \(\frac{1}{n} \) as half-side length, \(\forall \epsilon > 0 \), \(d(p,q) < \frac{1}{n} \).

\[p \in S \text{. Let } r \in S \text{. Then } d(q,r) < \frac{\epsilon}{n} < \frac{\sqrt{2} \epsilon}{2} \text{.} \]

\[d(p,q) < \frac{\epsilon}{4} \text{. } d(p,r) < \frac{\epsilon}{4} + \frac{\sqrt{2} \epsilon}{2} < \epsilon \text{. } r \in N(p, \epsilon) \]

\(r \in G \implies S \subseteq G \text{. } G = \sum_{S \subseteq G} S \]

Hence, \(G = \sum_{S \subseteq G} S \)

\[1.51 \text{ In view of the preceding conclusion, we immediately conclude that every open set is measurable.} \]

\[1.52 \text{ Every closed set is measurable.} \]

\[1.53 \text{ Definition. The class of Borel sets in the plane is the smallest class of sets containing the open sets and closed under countable sums and countable products. Let } \mathcal{B} \text{ denote this class.} \]

\[1.54 \text{ If } E \in \mathcal{B} \text{, then } E \text{ is a measurable set.} \]

To summarize then,

\[1.55 \text{ Definition. Let } \mathcal{L} \text{ denote the collection of all Lebesgue measurable sets.} \]

\[1.56 \text{ If } E \in \mathcal{L} \text{, then } E \in \mathcal{L} \text{.} \]

\[1.57 \text{ If } E_n \in \mathcal{L} \text{ for each } n \text{, then } \sum_{n=1}^{\infty} E_n \in \mathcal{L} \text{ and } \prod_{n=1}^{\infty} E_n \in \mathcal{L} \text{.} \]
1.58 If E is open or if E is closed, then $E \in \mathcal{L}$.

1.59 If $\mu^*(E) = 0$, then $E \in \mathcal{L}$. Also if $\mu^*(E) = 0$, and $F \subset E$, then $F \in \mathcal{L}$.

1.60 Definition. If $E \in \mathcal{L}$, then we define $\mu(E) = \mu^*(E)$ and $\mu(E)$ is called the Lebesgue measure of E.

1.61 If $E \in \mathcal{L}$, then $\mu(E) \leq 0$, and $\mu(E) \leq +\infty$.

1.62 If $E \in \mathcal{L}$ and if $F \in \mathcal{L}$, and if $E \subset F$, then $\mu(E) \leq \mu(F)$.

1.63 If $\{E_n\}$ is a sequence of disjoint sets, such that $E_n \in \mathcal{L}$ for each n, then $\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n)$.

Proof: From the proof of 1.45, if A is any set $\mu^*(A) = \mu^*(A \cdot E_1) + \mu^*(A \cdot E_2) + \cdots$.

Let $A = \bigcup_{n=1}^{\infty} E_n$. $E_n \cdot \bigcup_{n=1}^{\infty} E_n = E_n$.

$\mu^*(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu^*(E_n) = \sum_{n=1}^{\infty} \mu^*(E_n)$.

But, we always have $\mu^*(\bigcup_{n=1}^{\infty} E_n) \leq \mu^*(E_n)$, (1.27).

$\therefore \mu^*(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu^*(E_n)$ and $\mu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \mu(E_n)$.

1.64 Definition. A sequence of sets $\{A_n\}$ is called an increasing sequence if, for each n, $A_n \subset A_{n+1}$.

1.65 Definition. A sequence of sets $\{A_n\}$ is called a decreasing sequence if
1.66 If \(\{ A_n \} \) is an increasing sequence of measurable sets, then

\[
\mu \left(\lim_{n \to \infty} A_n \right) = \lim_{n \to \infty} \mu(A_n)
\]

Proof: Let \(B_1 = A_1 \); \(B_2 = A_2 - A_1 \); \(B_3 = A_3 - (A_1 + A_2) \); \(\ldots \);
\[
B_n = A_n - (A_1 + A_2 + \ldots + A_{n-1}) \ldots
\]

\(B_n \subseteq A_n \) for each \(n \). \(B_n \) is a measurable set for each \(n \) from 1.41 and 1.44.

\(B_n \cap B_m = \emptyset \), if \(m \neq n \).

\[
\mu \left(\sum_{n=1}^{\infty} B_n \right) = \mu \left(\sum_{n=1}^{\infty} A_n \right) = \lim_{k \to \infty} \mu \left(\sum_{n=1}^{k} B_n \right) = \mu(\sum_{n=1}^{\infty} B_n).
\]

We shall show that \(\sum_{n=1}^{\infty} B_n = A_k \).

1. Suppose \(x_0 \in A_k \).

\(x_0 \in B_n, n \leq k \); \(x_0 \in A_n, n \leq k \); \(A_n \subseteq A_k \)

\(\therefore x_0 \in A_k \) and \(\sum_{n=1}^{\infty} B_n \subseteq A_k \).

2. Suppose \(x_0 \in A_k \). Let \(n \) be the smallest integer such that \(x_0 \in A_n, n \leq k \).

a. If \(n = 1 \), then \(x_0 \in B_1 \), \(x_0 \in B_1 \), \(x_0 \in \sum_{n=1}^{k} B_n \) and \(A_k \subseteq \sum_{n=1}^{k} B_n \).

b. If \(n > 1 \), then \(x_0 \in A_n, x_0 \notin A_m \) if \(m < n \).

\(x_0 \in B_n; x_0 \in \sum_{n=1}^{k} B_n \) and \(A_k \subseteq \sum_{n=1}^{k} B_n \).

\(\therefore \mu \left(\sum_{n=1}^{k} B_n \right) = \mu(A_k) \).

\(\lim_{k \to \infty} \mu \left(\sum_{n=1}^{k} B_n \right) = \lim_{k \to \infty} \mu(A_k) \).

1.67 If \(\{ A_n \} \) is a decreasing sequence of measurable sets, and if \(\mu(A_1) < \infty \), then \(\mu \left(\lim_{n \to \infty} A_n \right) = \lim_{n \to \infty} \mu(A_n) \).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Proof: Let \(B_n = A_1 \cdot B \cdot A_n = A_1 \cdot A_n \) for each \(n \).

\(B_n \) is a measurable set, for each \(n \).

\[
A_n \cup A_{n+1} \cdot B \cdot A_{n+1} \cdot B = A_1 \cdot B \cdot A_n \cdot A_1 \cdot B \cdot A_{n+1} = B_{n+1}.
\]

\(\{ B_n \} \) is an increasing sequence of measurable sets.

From 1.66, \(\mu(\sum\limits_{n=1}^\infty B_n) = \lim_{n \to \infty} \mu(B_n) \). \(A_1 = A_1 \cdot B \cdot A_n \cap A_1 \cdot A_n = B_n \cap A_1 \).

\[
\mu(A_1) = \mu(B_n) + \mu(A_n) \text{ from 1.63, } \mu(A_1) - \mu(B_n) = \mu(A_n).
\]

\[
A_1 = A_1 \cdot \sum\limits_{n=1}^\infty A_n \cap A_1 \cdot \sum\limits_{n=1}^\infty A_n = \sum\limits_{n=1}^\infty A_1 \cdot B \cdot A_n \cap \sum\limits_{n=1}^\infty A_n = \sum\limits_{n=1}^\infty B_n \cap A_1 \cdot \sum\limits_{n=1}^\infty A_n \text{ from 1.63.}
\]

\[
\mu(A_1) - \mu(\sum\limits_{n=1}^\infty B_n) = \mu(\sum\limits_{n=1}^\infty A_n).
\]

\[
\lim_{n \to \infty} \mu(A_n) = \mu(A_1) - \lim_{n \to \infty} \mu(B_n) = \mu(A_1) - \mu(\sum\limits_{n=1}^\infty B_n) = \mu(\sum\limits_{n=1}^\infty A_n).
\]

1.68 Definition. If \(\{ E_n \} \) is a sequence of sets, we define the limit inferior (lim inf) of \(\{ E_n \} \) as follows:

Let \(C_k = \prod_{n=k}^\infty E_n \). Then \(\lim \inf_{n \to \infty} E_n = \bigcup_{k=1}^\infty C_k \).

It may be noticed that the limit inferior of \(\{ E_n \} \) is the set of all points which belong to all but a finite number of the sets \(E_n \).

1.69 Definition. If \(\{ E_n \} \) is a sequence of sets, we define the limit superior (lim sup) of \(\{ E_n \} \) as follows:

Let \(B_k = \bigcup_{n=k}^\infty E_n \). Then \(\lim \sup_{n \to \infty} E_n = \bigcap_{k=1}^\infty B_k \).

It may be noticed that the limit superior of \(\{ E_n \} \) is the set of all points which belong to \(E_n \) for infinitely many values of \(n \).
1.70 If \(\{ E_n \} \) is a sequence of measurable sets, then
\[
\lim_{n \to \infty} \mu(E_n) = \liminf_{n \to \infty} \mu(E_n).
\]
Proof: \(\liminf E_n = \bigcap_{k=1}^{\infty} C_k \), where \(C_k = \liminf_{n \to \infty} E_n \)

\(C_k \subseteq C_{k+1} \subseteq \ldots \)

\[
\lim_{k \to \infty} \mu(C_k) = \mu(\bigcap_{k=1}^{\infty} C_k) = \mu(\liminf_{n \to \infty} E_n) \text{ by 1.66.}
\]

\[
\lim_{k \to \infty} \mu(E_k) = \mu(C_k) \text{ by 1.20... \: } \liminf_{k \to \infty} \mu(E_k) = \liminf_{k \to \infty} \mu(C_k).
\]

\[
\lim_{n \to \infty} \mu(E_n) = \lim_{k \to \infty} \mu(C_k) = \mu(\liminf_{n \to \infty} E_n).
\]

1.71 If \(\{ E_n \} \) is a sequence of measurable sets such that \(\mu(\sum_{n=1}^{\infty} E_n) < +\infty \), then
\[
\mu(\limsup_{n \to \infty} E_n) = \lim_{n \to \infty} \mu(E_n).
\]
Proof: From 1.20 \(\mu(E_k) = \mu(B_k) \), where \(B_k = \limsup_{n \to k} E_n \).

\[
\limsup_{k \to \infty} \mu(E_k) = \limsup_{k \to \infty} \mu(B_k) =
\]

\[
\limsup_{k \to \infty} \mu(B_k) = \mu(\bigcup_{k=1}^{\infty} B_k) = \mu(\limsup_{n \to \infty} E_n) \text{ from 1.67.}
\]

1.72 If \(E \) is measurable, \(\mu(E) < +\infty \), and if \(\varepsilon > 0 \), then there exists an open set \(G \) such that \(G \supseteq E \) and such that \(\mu(G) < \mu(E) + \varepsilon \).

Proof: \(\mu(E) = \mu(E) \).
There exists \(\{ R_n \} \) such that \(R_n \in \mathcal{P} \) for each \(n, \ E \subseteq \bigcup_{n=1}^{\infty} R_n \)
and such that \(\sum_{n=1}^{\infty} \mu(R_n) = \sum_{n=1}^{\infty} \mu(R_n) < \mu(E) + \frac{\varepsilon}{2} = \mu(E) + \frac{\varepsilon}{2} \) from 1.14.

Let \(\{ S_n \} \) be a sequence of open rectangle such that \(R_n \subseteq S_n \) for each \(n \)
and such that \(\mu(S_n) < \mu(R_n) + \frac{\varepsilon}{2n+1} \)

Let \(G = \bigcup_{n=1}^{\infty} S_n. \quad E \subseteq G, \mu(G) = \mu(\bigcup_{n=1}^{\infty} S_n) \leq \mu(E) + \frac{\varepsilon}{2} \).
CHAPTER II

THE LEBESGUE INTEGRAL AND LEBESGUE MEASURABLE AND SUMMABLE FUNCTIONS

Suppose that \(f(p) \) is a real-valued function defined on a measurable set \(E \) of finite measure. Suppose further that there exist numbers \(m \) and \(M \) such that \(p \in E \) implies \(m \leq f(p) \leq M \).

2.1 Definition. A measurable partition \(P \) of \(E \) means a finite collection of disjoint measurable sets \(E_1, E_2, \ldots, E_n \) such that \(E = E_1 \uplus E_2 \uplus \ldots \uplus E_n \). Such a partition will be denoted by \(P[E_1, E_2, \ldots, E_n] \).

2.2 Definition. If \(P[E_1, E_2, \ldots, E_n] \) is a measurable partition of \(E \), let \(M_1 = \text{l.u.b.} f(p) \), Let \(M_2 = \text{l.u.b.} f(p), \ldots, M_n = \text{l.u.b.} f(p) \).

Let \(S(P) = \sum_{i=1}^{n} M_i \mu(E_i) \). \(S(P) \) is called the upper sum for the partition \(P \).

Let \(m_1 = \text{g.l.b.} f(p), \ldots, m_n = \text{g.l.b.} f(p) \).

Let \(s(P) = \sum_{i=1}^{n} m_i \mu(E_i) \). \(s(P) \) is called the lower sum for the partition \(P \).

2.3 If \(P[E_1, E_2, \ldots, E_n] \) is a measurable partition of \(E \), if \(S(P) = \sum_{i=1}^{n} M_i \mu(E_i) \), \(s(P) = \sum_{i=1}^{n} m_i \mu(E_i) \), then

\[m \leq s(P) \leq S(P) \leq M \mu(E). \]

Proof: \(m \leq m_i \leq M_i \leq M \) for each \(i \).

\(M_i = \text{l.u.b.} f(p) \) and \(m_i = \text{g.l.b.} f(p) \). For each \(i \), \(M_i \geq m_i \).
But for each \(i \), \(\sum M_i \mu(E_i) = \sum m_i \mu(E) \) and \(\sum m_i \mu(E_i) = \sum m_i \mu(E) \).

\[\mu(E) = s(P) \leq S(P) \leq M \mu(E). \]

2.4 Definition. The lower Lebesgue integral of \(f(p) \) on \(E \) is denoted by \(\int_E f(p) \, d\mu \). It is defined as follows.

\[\int_E f(p) \, d\mu = \inf \{\sum f(a) \mid a \text{ is measurable, } a \subseteq E \} \]

where \(\inf \) is taken with respect to all measurable partitions \(P \) of \(E \).

2.5 Definition. The upper Lebesgue integral of \(f(p) \) on \(E \) is denoted by \(\int_E f(p) \, d\mu \). It is defined as follows.

\[\int_E f(p) \, d\mu = \sup \{\sum f(a) \mid a \text{ is measurable, } a \subseteq E \} \]

where \(\sup \) is taken with respect to all measurable partitions \(P \) of \(E \).

2.6 Suppose that \(P \) and \(Q \) are measurable partitions of \(E \). Then \(Q \) is a refinement of \(P \) if each \(F_i \) is a subset of some \(E_j \).

2.7 If \(Q \) is a refinement of \(P \), then \(S(Q) \leq S(P) \) and \(s(Q) \geq s(P) \).

Proof: \(E_j = \sum_{F_i \subseteq E_j} F_i \) for each \(j \).

\[\mu(E_j) = \sum_{F_i \subseteq E_j} \mu(F_i) \] for each \(j \).

If \(F_i \subseteq E_j \), then \(\bar{F_i} = \sup_{p \in F_i} f(p) \leq \sup_{p \in E_j} f(p) \) for each \(i \).
\(g.l.b.f(p) \geq g.l.b.f(p) \)
\(p \in F_i \), \(p \in E_j \)

\[
S(P) = \sum_{p \in E_j} M_j \mu(E_j), \text{ where } M_j = \text{l.u.b.f.}(p)
\]

\[
S(Q) = \sum_{p \in F_i} \mu(F_i), \text{ where } \bar{M}_1 = \text{l.u.b.f.}(p)
\]

\[
\sum_{F_i \in E_j} \bar{M}_1 \mu(F_i) \leq \sum_{F_i \in E_j} M_j \mu(F_i) = M_j \sum_{F_i \in E_j} \mu(F_i) = M_j \mu(E_j) \quad \text{for each } j.
\]

\[
S(Q) = \sum_{p \in F_i} \bar{M}_1 \mu(F_i) = \sum_{j=1}^{n} \sum_{F_i \in E_j} \bar{M}_1 \mu(F_i) = \sum_{j=1}^{n} \bar{M}_1 \mu(E_j) = S(P)
\]

\[
s(P) = \sum_{p \in E_j} m_j \mu(E_j), \text{ where } m_j = \text{g.l.b.f.}(p)
\]

\[
s(Q) = \sum_{p \in F_i} \bar{m}_1 \mu(F_i), \text{ where } \bar{m}_1 = \text{g.l.b.f.}(p)
\]

\[
\sum_{F_i \in E_j} \bar{m}_1 \mu(F_i) \leq \sum_{F_i \in E_j} m_j \mu(F_i) = m_j \sum_{F_i \in E_j} \mu(F_i) = m_j \mu(E_j) \quad \text{for each } j.
\]

\[
s(Q) = \sum_{j=1}^{n} \sum_{F_i \in E_j} \bar{m}_1 \mu(F_i) = \sum_{j=1}^{n} \bar{m}_1 \mu(E_j) = s(P)
\]

2.8 Suppose \(P \{E_1, E_2, \ldots, E_n\} \) and \(Q \{F_1, F_2, \ldots, F_m\} \) are measurable partitions of \(E \). Then there is a partition \(R \) of \(E \) such that \(R \) is a refinement of \(P \) and a refinement of \(Q \).

Proof: Let \(R \) be the collection of sets
\(E_j \cdot F_i, j = 1, 2, \ldots, n, i = 1, 2, \ldots, m. \ E_j \cdot F_i \subseteq E_j, E_j \cdot F_i \subseteq F_i \).

Each set \(E_j \cdot F_i \) is measurable since both \(E_j \) and \(F_i \) are measurable. From the disjointness of the sets \(F_i \) and the sets \(E_j \), we see that \((E_j \cdot F_i) \cdot (E_k \cdot F_i) = \emptyset \), unless \(j = k \) and \(i = 1 \).

\[
\sum_{j=1}^{n} E_j \cdot F_i = E_j \cdot \sum_{i=1}^{m} F_i = E_j \cdot E = E_j. \quad \sum_{j=1}^{n} \sum_{i=1}^{m} E_j \cdot F_i = \sum_{j=1}^{n} E_j = E
\]

Thus we see that \(R \) is a measurable partition of \(E \) and is a refinement of both \(P \) and \(Q \).
2.9 For every measurable partition P of E, $\int f(p) d\mu \leq S(P)$ and $\int f(p) d\mu \geq s(P)$. The proof of this assertion is immediate from the definitions of the upper and lower Lebesgue integrals, respectively.

2.10 If $\varepsilon > 0$, there is a measurable partition P_1 of E such that $S(P_1) < \int f(p) d\mu + \varepsilon$. Also, if $\varepsilon > 0$, there is a measurable partition P_2 such that $s(P_2) > \int f(p) d\mu - \varepsilon$. Both these conclusions follow directly from definition.

2.11 $\int f(p) d\mu = \int f(p) d\mu$.

Proof: Deny the conclusion. Suppose $\int f(p) d\mu = \int f(p) d\mu + \varepsilon$, where $\varepsilon > 0$. There is a measurable partition P_1 such that $s(P_1) < \int f(p) d\mu + \varepsilon/2$. Also, there is a measurable partition P_2 such that $s(P_2) > \int f(p) d\mu - \varepsilon/2$. Let R be a common refinement of P_1 and P_2. Then $S(R) \leq S(P_1)$ and $s(R) \geq s(P_2)$. But we notice that $S(P_1) < s(P_2)$. \therefore $S(R) < s(R)$.

This, of course, is a contradiction and we conclude that $\int f(p) d\mu = \int f(p) d\mu$.

2.12 Definition. With the above restrictions on $f(p)$ and E, if $\int f(p) d\mu = \int f(p) d\mu$, then we say that $f(p)$ is Lebesgue integrable.
on E, and $\int_E f(p) \, d\mu$ denotes the common value of $\int_E f(p) \, d\mu$ and $\int_E f(p) \, d\mu$ and is called the Lebesgue integral of $f(p)$ on E. We note that $m(E) = \int_E f(p) \, d\mu = M\mu(E)$.

2.13 If $m \leq f(p) \leq M$ and if $E = \mathbb{R}^d$, i.e. E is a closed rectangle, and if $f(p)$ is Riemann integrable on E, then $f(p)$ is Lebesgue integrable on E and $(R) \int_E f(p) \, dA = (L) \int_E f(p) \, d\mu$, where $(R) \int_E f(p) \, dA$ denotes the Riemann integral of $f(p)$ on E and $(L) \int_E f(p) \, d\mu$ denotes the Lebesgue integral of $f(p)$ on E.

Proof: Suppose $f(p)$ is Riemann integrable on E. Then $(R) \int_E f(p) \, dA = (R) \int_E f(p) \, dA$. Give $\varepsilon > 0$.

There is a Riemann partition P_1 of E (i.e. P_1 is a partition of E into closed rectangles two of which may have a side in common) such that

$s(P_1) > (R) \int_E f(p) \, dA - \varepsilon$. To form the corresponding Lebesgue measurable partition Q_1, we remove from any closed rectangle in P_1 its upper and/or right sides, depending upon whether the rectangle is bordered above or on the right by another rectangle. This will give a disjoint measurable partition of E. If $P_1 = P_1 [R_1, R_2, \ldots, R_n]$ and if $Q_1 = Q_1 [S_1, S_2, \ldots, S_n]$, then $R_i \supseteq S_i$ for each i and $s(P_1) = \sum_{i=1}^{n} m_i A(R_i)$,

$m_i = g.l.b. f(p), \quad s(Q_1) = \sum_{p \in R_i} l_i \mu(S_i), \quad l_i = g.l.b. f(p)$

But $A(R_i) = \mu(R_i) = \mu(S_i)$ and $m_i \leq l_i$ for each i. (1.19, 1.23)

$\therefore s(P_1) \leq s(Q_1) \leq (L) \int_E f(p) \, d\mu$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
We conclude that
\[
\int_E f(p) dA - \epsilon < \int_E f(p) d\mu. \quad \text{(R)}
\]

As before we can find a Riemann partition \(P_2(T_1, T_2, \ldots, T_n) \) of \(E \) such that \(S(P_2) < \int_E f(p) dA + \epsilon \). There exists a corresponding Lebesgue measurable partition \(Q_2(U_1, U_2, \ldots, U_n) \) of \(E \) formed as before. \(T_i \supset U_i \) for each \(i \).

\[S(P_2) = \sum_{i=1}^{n} M_i \mu(T_i), \quad M_i = \text{l.u.b.} f(p), \quad \mu(T_i) = \mu(U_i) \]

and \(L_i \leq M_i \) for each \(i \). Hence, \(\int_E f(p) d\mu = S(Q_2) = S(P_2) \).

We conclude that
\[
\int_E f(p) d\mu = \int_E f(p) dA. \quad \text{(R)}
\]

Combining the above inequalities \(\int_E f(p) dA \leq \int_E f(p) d\mu \leq \int_E f(p) dA \).

But \(\int_E f(p) dA = \int_E f(p) dA. \quad \text{(L)} \)

We conclude that \(f(p) \) is Lebesgue integrable on \(E \) and
\[
\int_E f(p) d\mu = \int_E f(p) dA. \quad \text{(L)}
\]

2.14 Definition. Let \(E \) be a measurable set, and let \(f(p) \) be a function defined on \(E \). \(f(p) \) is said to be a measurable function on \(E \), if for every real number \(a \), the set of points \(p \) of \(E \) for which \(f(p) > a \) is a measurable set.
2.15 Definition. Suppose \(f(p) \) is defined on \(E \). If \(p_0 \in E \), then we say that \(f(p) \) is continuous at \(p_0 \) if, for every \(\varepsilon > 0 \), there is a \(\delta > 0 \) such that if \(d(p, p_0) < \delta \), and if \(p \in E \) then \(|f(p) - f(p_0)| < \varepsilon \).

2.16 If \(f(p) \) is a continuous function on a measurable set \(E \), then \(f(p) \) is a measurable function on \(E \).

Proof: Let \(a \) be a real number. Let \(E_a \) be the set of points \(p \) in \(E \) for which \(f(p) > a \). Suppose \(p_0 \in E_a \). Then \(p_0 \in E \) and \(f(p_0) > a \). Let \(f(p_0) - a = \varepsilon > 0 \). There is a \(\delta > 0 \) such that if \(d(p, p_0) < \delta \) and \(p \in E \), then \(|f(p) - f(p_0)| < \varepsilon \), i.e. \(f(p) < f(p_0) + \varepsilon \). But \(f(p_0) - \varepsilon = a \).

Hence if \(d(p, p_0) < \delta \) and \(p \in E \), then \(f(p) > a \). Let \(G_{p_0} = N(p_0, \delta) \). \(G_{p_0} \) is an open set and \(p_0 \in G_{p_0} \).

\[
G_{p_0} \cdot E \subset E_a \quad p_0 \in G_{p_0} \cdot E \subset E_a \quad \sum_{p_0 \in E_a} p_0 \subset \sum_{E_a} \sum_{p_0 \in G_{p_0}} E = \sum_{p_0 \in E_a} G_{p_0} \cdot E = E \cdot \sum_{p_0 \in E_a} G_{p_0}.
\]

But the set on the right is a measurable set. (1.42, 1.51), We conclude that \(E_a \) is measurable, i.e. that \(f(p) \) is a measurable function.

2.17 Given \(f(p) \) on a measurable set \(E \). Let \(N \) be the set of points of \(E \) where \(f(p) \) is discontinuous. Suppose \(\mu(N) = 0 \). Then \(f(p) \) is a measurable function on \(E \).

Proof: Let \(E_a \) be the set of points \(p \in E \) for which \(f(p) > a \). Consider \(E - N \). Let \(N_a = N \cdot E_a \). Let \(H_a = E_a - N_a \). \(E_a - H_a = N_a \subset N \). Let \(p_0 \in H_a \).

Then \(p_0 \in E_a - N_a \). Hence \(p_0 \in E \), \(f(p_0) > a \). \(p_0 \notin N \). \(\therefore f(p) \) is continuous at \(p_0 \). Let \(f(p_0) - a = \varepsilon > 0 \). There is a \(\delta > 0 \) such that if \(d(p, p_0) < \delta \)

and if \(p \in E \), then \(|f(p) - f(p_0)| < \varepsilon \), i.e. \(f(p) > a \). Let \(G_{p_0} = N(p_0, \delta) \). \(p_0 \in G_{p_0} \cdot E \subset E_a \).
Let $M = \sum_{p \in Ha} G_p \cdot E$. $Ha = \sum_{p \in Ha} Po \subseteq \sum_{p \in Na} G_p \cdot E = M \subseteq E_a$.

$Ha \subseteq M \subseteq E_a$. $E_a - M \subseteq E_a - Ha = Na \subseteq N$.

\[\mu(N) = 0, \quad \mu*(N) = 0, \quad \mu*(E_a-M) = 0. \quad E_a - M \text{ is measurable}. \]

(1.37, 1.44). M is measurable. $E_a = M + (E_a - M)$. \therefore E_a is measurable.

2.18 Definition.

Let $E_p \{ p \in E, f(p) > a \}$ denote the set of points p in E for which $f(p) > a$.

Let $E_p \{ p \in E, f(p) = a \}$ denote the set of points p in E for which $f(p) \geq a$.

Let $E_p \{ p \in E, f(p) < a \}$ denote the set of points p in E for which $f(p) < a$.

Let $E_p \{ p \in E, f(p) = a \}$ denote the set of points p in E for which $f(p) \leq a$.

2.19 If $f(p)$ is a measurable function on a measurable set E, then for every a, the set $E_p \{ p \in E, f(p) \geq a \}$ is a measurable set.

Proof: Let m be a positive integer. We shall show that

\[\bigcap_{m=1}^{\infty} E_p \{ p \in E, f(p) > a - \frac{1}{m} \} = E_p \{ p \in E, f(p) \geq a \}. \]

(1.47)

The set on the left is a countable product of measurable sets and hence is measurable.

Suppose $P_o \in E_p \{ p \in E, f(p) \geq a \}$, i.e. $P_o \in E$, $f(P_o) \geq a$.

For every m, $f(P_o) > a - \frac{1}{m}$. $P_o \in E_p \{ p \in E, f(p) > a - \frac{1}{m} \}$ for each m.

or $P_o \in \bigcap_{m=1}^{\infty} E_p \{ p \in E, f(p) > a - \frac{1}{m} \} \cap E_p \{ p \in E, f(p) \geq a \}$.

Suppose $P_o \in \bigcap_{m=1}^{\infty} E_p \{ p \in E, f(p) > a - \frac{1}{m} \}$ for each m.

Then $P_o \in E$, $f(P_o) > a - \frac{1}{m}$ for each m. $f(P_o) \geq a$. $P_o \in E_p \{ p \in E, f(p) \geq a \}$.

\[\prod E_p \{ p \in E, f(p) > a - \frac{1}{m} \} \subseteq E_p \{ p \in E, f(p) \geq a \}. \]
This implies that $E_p[p \in E, f(p) \geq a]$ is a measurable set.

2.20 If $f(p)$ is a measurable function on a measurable set E, then for every a, the set $E_p[p \in E, f(p) \leq a]$ is a measurable set.

Proof: We shall show that

$E_p[p \in E, f(p) \leq a] = E \cdot \cap \ E_p[p \in E, f(p) > a]$.

The set on the right is the product of a measurable set and the complement of a measurable set (2.14) and hence is measurable.

Suppose $p_o \in E_p[p \in E, f(p) \leq a]$, $p_o \in E$, $f(p_o) \leq a$,

$E_p[p \in E, f(p) > a]$. $p_o \in E \cdot \cap \ E_p[p \in E, f(p) > a]$.

$E_p[p \in E, f(p) \leq a] \subset E \cdot \cap \ E_p[p \in E, f(p) > a]$.

Suppose $p_o \in E \cdot \cap \ E_p[p \in E, f(p) > a]$. $f(p_o) \leq a$.

$E \cdot \cap \ E_p[p \in E, f(p) > a] \subset E_p[p \in E, f(p) \leq a]$.

This implies that $E_p[p \in E, f(p) \leq a]$ is a measurable set.

2.21 If $f(p)$ is a measurable function on a measurable set E, then for every real number a the set $E_p[p \in E, f(p) < a]$ is measurable.

Proof: In an argument similar to that used in the preceding conclusion we can show that $E_p[p \in E, f(p) < a] = E \cdot \cap \ E_p[p \in E, f(p) \geq a]$.

The set on the right is again seen to be measurable. (2.19)
2.22 If \(f(p) \) is a measurable function on a measurable set \(E \), then
\[
\mathbb{P}\left[p \in E, a \leq f(p) < b \right]
\]
is a measurable set.

Proof: We notice that
\[
\mathbb{P}\left[p \in E, a \leq f(p) < b \right] = \mathbb{P}\left[p \in E, f(p) \leq a \right] \cdot \mathbb{P}\left[p \in E, f(p) < b \right].
\]
The set on the right is measurable. (2.19, 2.21)

2.23 If \(f(p) \) is a measurable function on a measurable set \(E \), \(\mu(E) < \infty \),
and if \(m \leq f(p) < M \), then \(f(p) \) is Lebesgue integrable on \(E \).

Proof: We must show that
\[
\int_E f(p) \, d\mu = \sum_{i=1}^{(M-M)/N} \sum_{j=1}^{(M-M)/N} f(p) \, d\mu.
\]
Choose an integer \(N \) such that \(\frac{1}{N} < \varepsilon \). We may suppose that \(M \) and \(m \)
are integers.

Let \(E_0 = m, E_1 = m + \frac{1}{N}, \ldots, E_i = m + \frac{i}{N}, \ldots, E_k = m + \frac{k}{N} \),
\[
E = \bigcup_{i=1}^{(M-M)/N} E_i.
\]
i = 1, \ldots, \((M-M)/N \). \(E_i \) is a measurable set for each \(i \). (2.22).

Let \(E_i \cap E_j = \emptyset \) if \(i \neq j \). \(E = \sum_{i=1}^{(M-M)/N} E_i \). Thus, we have a measurable
partition \(P(E_1, \ldots, E(M-M)/N) \) of \(E \). \(S(P) = \sum_{i=1}^{(M-M)/N} M_i \mu(E_i) \),
where \(M_i = \text{l.u.b. } f(p) \).

\[
s(P) = \sum_{i=1}^{(M-M)/N} m_i \mu(E_i), \quad \text{where } m_i = \text{g.l.b. } f(p).
\]
\[
m_i \geq i-1 \Rightarrow s(P) \geq \sum_{i=1}^{(M-M)/N} i-1 \mu(E_i), \quad M_i = i
\]
\[
S(P) - s(P) \leq \sum_{i=1}^{(M-M)/N} (i-1) \mu(E_i) = \sum_{i=1}^{(M-M)/N} \frac{i}{N} \mu(E_i) = \sum_{i=1}^{(M-M)/N} \frac{i}{N} \mu(E_i) = \frac{\mu(E)}{N} \leq \varepsilon. \quad S(P) < s(P) + \varepsilon.
\]
\[
\int_E f(p) \, d\mu = S(p) + \epsilon = \int_E f(p) \, d\mu + \epsilon.
\]
Since \(\epsilon \) is arbitrary and since we always have
\[
\int_E f(p) \, d\mu = \int_E f(p) \, d\mu,
\]
we conclude \(\int_E f(p) \, d\mu = \int_E f(p) \, d\mu \), and that \(f(p) \) is Lebesgue integrable on \(E \).

2.24 Definition. A condition is said to hold almost everywhere on a set \(E \), if the subset \(F \) of \(E \) on which it does not hold is such that \(\mu(F) = 0 \).

2.25 Suppose \(f(p) \) is measurable on a measurable set \(E \),
\(\mu(E) < +\infty \), \(0 < f(p) < M \). Then
\[
\int_E f(p) \, d\mu = 0 \text{ if and only if } f(p) = 0 \text{ almost everywhere on } E.
\]

Proof: 1. Suppose \(f(p) = 0 \) almost everywhere on \(E \). Let \(N \) be the set of points of \(E \) for which \(f(p) \neq 0 \), that is \(N = E - E, f(p) > 0 \).
\(\mu(N) = 0 \). \(N \) is a measurable set. \(E-N \) is also measurable. \(N + (E-N) = E \).
\(N \) and \(E-N \) form a measurable partition \(P \) of \(E \). \(\mu^*(P) = 0 \). \(\mu(E-N) = 0 \)
\[
\int_E f(p) \, d\mu = 0 \leq \int_E f(p) \, d\mu. \quad \int f(p) \, d\mu = 0. \quad (2.4, 2.11)
\]

2. Define \(N \) as above. Suppose \(\mu(N) > 0 \), i.e. that it is not true that \(f(p) = 0 \) almost everywhere on \(E \).
We shall show that the following identity holds.
\[
N = E_p[p \in E, f(p) > 0] = E_p[p \in E, f(p) > 1] + \sum_{n=1}^{\infty} E_p[p \in E, \frac{1}{n+1} < f(p) \leq \frac{1}{n}].
\]
Suppose \(p_o \in E_p[p \in E, f(p) > 0] \).

Case 1. If \(f(p_o) > 1 \), then \(p_o \in E_p[p \in E, f(p) > 1] \).

Case 2. If \(0 < f(p) \leq 1 \), then there is an integer \(n \) such that
\[
\frac{1}{n+1} < f(p) \leq \frac{1}{n}.
\]
Suppose \(p_0 \in E \) \(\left[p \in E, f(p) > 1\right] \). Then
\[
\sum_{n=1}^{\infty} E \left[p \in E, \frac{1}{n^2} < f(p) \leq \frac{1}{n}\right] = \sum_{n=1}^{\infty} E \left[p \in E, \frac{1}{n+1} < f(p) \leq \frac{1}{n}\right].
\]

Case 1. Suppose \(p_0 \in E \) \(\left[p \in E, f(p) > 1\right] \). Then
\[
P_0 \in E \left[p \in E, f(p) > 0\right].
\]

Case 2. Suppose \(p_0 \in E \) \(\left[p \in E, f(p) > 0\right] \) for some \(n \). Then
\[
P_0 \in E \left[p \in E, f(p) > 0\right].
\]

This verifies the above identity.

Let \(F_0 = E \left[p \in E, f(p) > 1\right], \ F_n = E \left[p \in E, \frac{1}{n+1} < f(p) \leq \frac{1}{n}\right] \) for each \(n \). Then \(N = \sum_{n=0}^{\infty} F_n; \ 0 \leq \mu(N) = \sum_{n=0}^{\infty} \mu(F_n). \)

There exists an integer \(j \) such that \(\mu(F_j) > 0 \).

\(F_j \) is a measurable set. \(E - F_j \) is also a measurable set.

\(F_j \) and \(E - F_j \) form a measurable partition \(P \) of \(E \).

\[
s(P) = (g.l.b. f(p)) \mu(F_j) + (g.l.b. f(p)) \mu(E - F_j)
\]

\[
s(P) = \frac{1}{j+1} \mu(F_j) + 0 = \frac{\mu(F_j)}{j+1} > 0.
\]

\[
\int_{E} f(p) d\mu > 0 \quad \text{and} \quad \int_{E} f(p) d\mu > 0
\]

We conclude that if \(\int_{E} f(p) d\mu = 0 \), then \(\mu(N) = 0 \).

2.26 Suppose we have \(\{f_n(p)\} \) defined on a measurable set \(E \) and \(f_n(p) \) is measurable for each \(n \). Suppose \(\lim_{n \to \infty} f_n(p) = f(p) \) on \(E \). Then \(f(p) \) is measurable on \(E \).

Proof: Let \(a \) be any real number. We must show that \(E \left[p \in E, f(p) > a\right] \) is a measurable set. If we can establish the following identity the proof will be complete, since the set on the right is measurable. (2.14, 1.46, 1.47).

\[
E \left[p \in E, f(p) > a\right] = \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} E \left[p \in E, f_n(p) > a + \frac{1}{m}\right].
\]
Suppose \(p_0 \in \sum \sum \sum \prod \mathbb{P}_p \left[p \in E, f_n(p) > a + \frac{1}{m} \right] \). Then there is an \(m \) such that \(p_0 \in \sum \sum \sum \prod \mathbb{P}_p \left[p \in E, f_n(p) > a + \frac{1}{m} \right] \).

There is an \(m \) and a \(k \) such that \(p_0 \in \prod \mathbb{P}_p \left[p \in E, f_n(p) > a + \frac{1}{m} \right] \).

\(\therefore \) If \(n \geq k \), then \(p_0 \in \mathbb{P}_p \left[p \in E, f_n(p) > a + \frac{1}{m} \right] \).

If \(n \geq k \),

\[
f_n(p_0) > a + \frac{1}{m} \quad \lim_{n \to \infty} f_n(p_0) = f(p_0)
\]

\(\therefore \) \(f(p_0) \geq a + \frac{1}{m} \) \(\quad \therefore \) \(p_0 \in \mathbb{P}_p \left[p \in E, f(p) > a \right] \).

\[
\sum \sum \sum \prod \mathbb{P}_p \left[p \in E, f_n(p) > a + \frac{1}{m} \right] \mathbb{P}_p \left[p \in E, f(p) > a \right]
\]

Suppose \(p_0 \in \mathbb{P}_p \left[p \in E, f(p) > a \right] \). \(f(p_0) > a \). There is an integer \(m \) such that \(f(p_0) > a + \frac{1}{m} \), \(\lim_{n \to \infty} f_n(p_0) = f(p_0) \). There is an integer \(k \) such that if \(n \geq k \), then \(f_n(p_0) > a + \frac{1}{m} \). There is an integer \(m \) and an integer \(k \) such that if \(n \geq k \), then \(p_0 \in \mathbb{P}_p \left[p \in E, f_n(p) > a + \frac{1}{m} \right] \).

\(\therefore \)

\[
p_0 \in \sum \sum \sum \prod \mathbb{P}_p \left[p \in E, f(p) > a + \frac{1}{m} \right]
\]

\[
\mathbb{P}_p \left[p \in E, f(p) > a \right] \subset \sum \sum \sum \prod \mathbb{P}_p \left[p \in E, f(p) > a + \frac{1}{m} \right]
\]

\[
\therefore \mathbb{P}_p \left[p \in E, f(p) > a \right] = \sum \sum \sum \prod \mathbb{P}_p \left[p \in E, f(p) > a + \frac{1}{m} \right]
\]

2.27 If \(f(p) \) is a measurable function on a measurable set \(E \), and if\(g(p) = -f(p) \), then \(g(p) \) is a measurable function on \(E \).

Proof: Let \(a \) be any real number. We must show that \(\mathbb{P}_p \left[p \in E, g(p) > a \right] \) is a measurable set. We shall verify the following identity.

\[
\mathbb{P}_p \left[p \in E, g(p) > a \right] = \mathbb{P}_p \left[p \in E, f(p) < -a \right].
\]

The set on the right is measurable (2.21); therefore, this will establish the conclusion.

Suppose \(p_0 \in \mathbb{P}_p \left[p \in E, g(p) > a \right] \).
\[p_0 \in \mathbb{E}; g(p_0) > a; -f(p_0) > a; f(p_0) < -a. \]

\[\therefore p_0 \in \mathbb{E}_p \left[p \in \mathbb{E}, f(p) < -a \right]. \]

Suppose \(p_0 \in \mathbb{E}_p \left[p \in \mathbb{E}, f(p) < -a \right]. \)

\[p_0 \in \mathbb{E}; f(p) < -a, -f(p_0) > a, g(p_0) > a \ldots p_0 \in \mathbb{E}_p \left[p \in \mathbb{E}, g(p) > a \right]. \]

Thus, the conclusion is established.

2.28 If \(f(p) \) and \(g(p) \) are measurable functions on a measurable set \(\mathbb{E} \)
and if \(h(p) = f(p) \pm g(p) \), then \(h(p) \) is a measurable function on \(\mathbb{E} \).

Proof: Let \(\{r_n\} \) be a sequence containing all of the rational numbers. Let \(a \) be any real number. We must show that \(\mathbb{E}_p \left[p \in \mathbb{E}, h(p) > a \right] \) is a measurable set. We shall establish the following identity.

\[\mathbb{E}_p \left[p \in \mathbb{E}, h(p) > a \right] = \sum_{n=1}^{\infty} \mathbb{E}_p \left[p \in \mathbb{E}, f(p) > r_n \right] \cdot \mathbb{E}_p \left[p \in \mathbb{E}, g(p) > a - r_n \right]. \]

The set on the right is obviously measurable and this will establish the conclusion.

Suppose \(p_0 \in \sum_{n=1}^{\infty} \mathbb{E}_p \left[p \in \mathbb{E}, f(p) > r_n \right] \cdot \mathbb{E}_p \left[p \in \mathbb{E}, g(p) > a - r_n \right]. \)

There is an integer \(n \) such that

\(p \in \mathbb{E}_p \left[p \in \mathbb{E}, f(p) > r_n \right] \cdot \mathbb{E}_p \left[p \in \mathbb{E}, g(p) > a - r_n \right], \)

\(g(p_0) > a - r_n, h(p_0) = f(p_0) \pm g(p_0) > r_n + a - r_n = a. \)

\(p_0 \in \mathbb{E}_p \left[p \in \mathbb{E}, h(p) > a \right] \).

\[\mathbb{E}_p \left[p \in \mathbb{E}, f(p) > r_n \right] \cdot \mathbb{E}_p \left[p \in \mathbb{E}, g(p) > a - r_n \right] \subset \mathbb{E}_p \left[p \in \mathbb{E}, h(p) > a \right]. \]

Suppose \(p_0 \in \mathbb{E}_p \left[p \in \mathbb{E}, h(p) > a \right]. \)

\(p_0 \in \mathbb{E}_p \left[p \in \mathbb{E}, h(p) > a \right], f(p_0) \pm g(p_0) > a, f(p_0) \pm a - g(p_0), \)

\(f(p_0) \pm g(p_0) = a + \epsilon, \epsilon > 0, f(p_0) \pm \epsilon. \)

There is an integer \(n \) such that

\(f(p_0) > r_n \), \(f(p_0) - \epsilon, -f(p_0) > -r_n, g(p_0) = a + \epsilon, -f(p_0) > a - r_n, \)

\(g(p_0) > a - r_n, p_0 \in \mathbb{E}_p \left[p \in \mathbb{E}, f(p) > r_n \right], p_0 \in \mathbb{E}_p \left[p \in \mathbb{E}, g(p) > a - r_n \right]. \)

\[\therefore p_0 \in \mathbb{E}_p \left[p \in \mathbb{E}, f(p) > r_n \right] \cdot \mathbb{E}_p \left[p \in \mathbb{E}, g(p) > a - r_n \right]. \]

\[\mathbb{E}_p \left[p \in \mathbb{E}, h(p) > a \right] \subset \mathbb{E}_p \left[p \in \mathbb{E}, f(p) > r_n \right] \cdot \mathbb{E}_p \left[p \in \mathbb{E}, g(p) > a - r_n \right]. \]

This establishes the identity.
2.29 If \(f(p) \) and \(g(p) \) are measurable functions on a measurable set \(E \), and if \(k(p) = f(p) - g(p) \), then \(k(p) \) is a measurable function on \(E \).

Proof: \(k(p) = f(p) + (-g(p)) \). \(-g(p)\) is measurable by an earlier conclusion (2.27) and the sum of two measurable functions is a measurable function (2.28).

2.30 If \(f(p) \) is a measurable function on a measurable set \(E \), and if \(c \) is a constant, and if \(\phi(p) = cf(p) \), then \(\phi(p) \) is measurable on \(E \).

Proof: 1. Suppose \(c = 0 \). Then \(\phi(p) = 0 \) on \(E \). \(\phi(p) \) is measurable on \(E \).
2. Suppose \(c > 0 \). Let \(a \) be any real number. Consider the following identity, which we shall establish: \(E_p \{ p \in E, \phi(p) > a \} = E_p \{ p \in E, f(p) > \frac{a}{c} \} \).

Suppose \(p_0 \in E_p \{ p \in E, \phi(p) > a \} \), \(p_0 \in E, \phi(p_0) > a, \phi(p_0) = cf(p_0) > a, f(p_0) > \frac{a}{c} \).

\(p_0 \in E_p \{ p \in E, f(p) > \frac{a}{c} \} \). Thus \(E_p \{ p \in E, \phi(p) > a \} \subseteq E_p \{ p \in E, f(p) > \frac{a}{c} \} \).

The opposite relationship may be shown by reversing the steps above. Since the set on the right is measurable, the conclusion is established.
3. Suppose \(c < 0 \). Then \(\phi(p) = -|c|f(p) \).

But \(g(p) = |c|f(p) \) is a measurable function by Case 2. and
\(-g(p) = -|c|f(p) = \phi(p) \) is measurable by 2.27.

2.31 If \(f(p) \) is a measurable function on a measurable set \(E \) and if \(g(p) = (f(p))^2 \), then \(g(p) \) is a measurable function.

Proof: Let \(a \) be a real number.
1. Suppose \(a < 0 \). \(E_p \{ p \in E, g(p) > a \} = E \), since \(g(p) = (f(p))^2 \leq 0 \) on \(E \). \(E \) is a measurable set.
2. Suppose \(a \geq 0 \).
2.32 If \(f(p) \) and \(g(p) \) are measurable functions on a measurable set \(E \), and if \(\Theta(p) = f(p)g(p) \), then \(\Theta(p) \) is measurable on \(E \).

Proof: \(\Theta(p) = f(p)g(p) = \frac{1}{4}(f(p) + g(p))^2 - \frac{1}{4}(f(p) - g(p))^2 \).

The function on the right is measurable from preceding conclusions (2.27-2.31); therefore, the conclusion is established.

2.33 If \(f(p) \) is a measurable function on a measurable set \(E \), then \(|f(p)| \) is a measurable function.

Proof: Case 1. If \(a < 0 \), then \(E_p [|f(p)| > a] = E \).

Case 2. If \(a \geq 0 \), then \(E_p [|f(p)| > a] = E_p [f(p) > a] + E_p [f(p) < -a] \).

This identity is readily established, and since the sets on the right are measurable, the conclusion follows.

2.34 If \(f(p) \) and \(g(p) \) are measurable functions on a measurable set \(E \), \(\mu(E) < +\infty \) and if \(m \leq f(p) \leq M, 1 \leq g(p) \leq N \), then

\[
\int_E (f(p) + g(p))d\mu = \int_E f(p)d\mu + \int_E g(p)d\mu.
\]

Proof: Give \(\epsilon > 0 \). There is a measurable partition \(P_1 \) of \(E \) such that \(s^f(P_1) > \int_E f(p)d\mu - \epsilon \), where \(s^f(P_1) \) denotes the lower sum of the partition \(P_1 \) with respect to the function \(f(p) \). (2.4, 2.12.) There is a
measurable partition P_2 of E, such that $S^f(P_2) < \int_E f(p) \, d\mu + \epsilon$,

where $S^f(P_2)$ denotes the upper sum of the partition P_2 with respect to the function $f(p)$. (2.5, 2.12.) Let P be a measurable partition of E which is a refinement of both P_1 and P_2. Then, in similar notation

$s^f(P) > \int_E f(p) \, d\mu - \epsilon$, $s^f(P) < \int_E f(p) \, d\mu + \epsilon$. (2.7) There is a partition Q_1 of E such that $s^g(Q_1) > \int_E g(p) \, d\mu - \epsilon$, where again $s^g(Q_1)$ denotes the lower sum of the partition Q_1 with respect to the function $g(p)$. There is a partition Q_2 of E such that $S^g(Q_2) < \int_E g(p) \, d\mu + \epsilon$. $S^g(Q_2)$ is the upper sum of the partition Q_2 with respect to the function $g(p)$. Let Q be a measurable partition of E which is a refinement of Q_1 and Q_2.

Then $s^g(Q) > \int_E g(p) \, d\mu - \epsilon$ and $s^g(Q) < \int_E g(p) \, d\mu + \epsilon$.

Let R be a partition which is a refinement of both P and Q. Then the following relationships hold. (2.7)

$s^f(R) > \int_E f(p) \, d\mu - \epsilon$, $s^f(R) < \int_E f(p) \, d\mu + \epsilon$,
$s^g(R) > \int_E g(p) \, d\mu - \epsilon$, $s^g(R) < \int_E g(p) \, d\mu + \epsilon$.

Let $R = R [E_1, E_2, \ldots, E_n]$.

$s^f(R) = \sum_{i=1}^{n} M_i^f \mu(E_i)$, $M_i^f = l.u.b. f(p)$,

$s^g(R) = \sum_{i=1}^{n} M_i^g \mu(E_i)$, $M_i^g = l.u.b. g(p)$.

$s^{f+g}(R) = \sum_{i=1}^{n} M_i^{f+g} \mu(E_i)$, $M_i^{f+g} = l.u.b. f(p) + g(p)$.

$s^f(R) + s^g(R) = \sum_{i=1}^{n} (M_i^f + M_i^g) \mu(E_i)$.

Give $\delta > 0$. There is a $p_1 \in E_1$ such that
-46-

\[M_i^{f+g} = \delta < f(p_i) + g(p_i) \leq M_i^{f+M_i g}. \]
Since \(\delta \) is arbitrary we conclude \(M_i^{f+g} \leq M_i^{f+M_i g} \) for each \(i \). \(s^f + g(R) \leq s^f(R) + S^g(R). \)

\[s^f(R) = \sum_{i=1}^{n} m^f_1 \mu(E_i), \quad m^f_1 = \text{g.l.b.} f(p). \]
\[s^g(R) = \sum_{i=1}^{n} m^g_1 \mu(E_i), \quad m^g_1 = \text{g.l.b.} g(p). \]
\[s^{f+g}(R) = \sum_{i=1}^{n} m^{f+g}_1 \mu(E_i), \quad m^{f+g}_1 = \text{g.l.b.} f(p) + g(p). \]
\[s^f(R) + s^g(R) = \sum_{i=1}^{n} (m^f_1 + m^g_1) \mu(E_i). \]

Give \(\eta > 0 \). There is a \(p_1 \in E_i \) such that \(m^f_1 + m^g_1 < f(p_1) + g(p_1) < m^f_1 + g(R) + \eta. \)
Since \(\eta \) is arbitrary, we conclude that \(m^f_1 + m^g_1 \leq m^f_1 + g(p) \) for each \(i \).

\[s^f + g(R) \leq s^f(R) + s^g(R). \]

\[\int_E (f(p) + g(p)) d\mu \leq \int_E f(p) d\mu + \int_E g(p) d\mu + 2\epsilon. \]
\[\int_E (f(p) + g(p)) d\mu \leq \int_E f(p) d\mu + \int_E g(p) d\mu - 2\epsilon. \]
\[\int_E f(p) d\mu + \int_E g(p) d\mu - 2\epsilon \leq \int_E (f(p) + g(p)) d\mu \leq \int_E f(p) d\mu + \int_E g(p) d\mu + 2\epsilon, \]
\[\int_E f(p) d\mu + \int_E g(p) d\mu = \int_E f(p) d\mu + \int_E g(p) d\mu. \]

2.35 If \(m \leq f(p) \leq M \) and if \(1 \leq g(p) \leq M \) are functions defined on a measurable set \(E \) of finite measure, and if \(f(p) \) and \(g(p) \) are Lebesgue integrable on \(E \), and if \(f(p) \leq g(p) \) for all \(p \) in \(E \), then \(\int_E f(p) d\mu \leq \int_E g(p) d\mu. \)

Proof: Let \(P = \{E_1, E_2, ..., E_n\} \) be any measurable partition of \(E \).

\[s^f(P) = \sum_{i=1}^{n} m^f_1 \mu(E_i), \quad m^f_1 = \text{g.l.b.} f(p); \]
\[s^g(P) = \sum_{i=1}^{n} l^g_1 \mu(E_i), \quad l^g_1 = \text{g.l.b.} g(p). \]

\(m^f_1 \leq l^g_1 \) for each \(i \). \(s^f(P) \leq s^g(P). \) Give \(\epsilon > 0 \). There is a measurable partition \(Q \) of \(E \) such that
$s^f(Q) > \int_E f(p) d\mu - \varepsilon. \ (2.4). \ s^f(Q) \leq s^g(Q).$

$\int_E g(p) d\mu \geq s^g(Q) > \int_E f(p) d\mu - \varepsilon.$

Since ε is arbitrary, $\int_E g(p) d\mu \geq \int_E f(p) d\mu.$

2.36 Let c be any real number. If $f(p)$ is a bounded measurable function on a measurable set E of finite measure, then $cf(p)$ is Lebesgue integrable on E and \[\int_E cf(p) d\mu = c \int_E f(p) d\mu. \]

Proof: Case 1. Suppose $c = 0$; then the conclusion is obvious.

Case 2. Suppose $c > 0$. $f(p)$ is integrable on E, (2.23).

\[c \int_E f(p) d\mu = c g.l.b. S(P), = g.l.b. cS(P), \] where $g.l.b.$ is taken with respect to all measurable partitions P of E. Let $P(E_1, E_2, \ldots, E_n)$ be any measurable partition of E.

\[S(P) = \sum_{i=1}^n M_i \mu(E_i), M_i = l.u.b. f(p). \]

\[cS(P) = c \sum_{i=1}^n M_i \mu(E_i) = \sum_{i=1}^n cM_i \mu(E_i), cM_i = l.u.b. cf(p) \]

If $g(p) = cf(p)$, then $cS(P) = S^g(P)$, since $cM_i = l.u.b. g(p)$, where $S^g(P)$ denotes the upper sum of the partition P with respect to $g(p)$.

\[\therefore c \int_E f(p) d\mu = \int_E g(p) d\mu = \int_E cf(p) d\mu. \]

Similarly, $c \int_E f(p) d\mu = \int_E g(p) d\mu = \int_E cf(p) d\mu.$

Case 3. Suppose $c < 0$. Let $g(p) = cf(p)$. Let $P[E_1, E_2, \ldots, E_n]$ be any measurable partition of E. If E_i is any set in P, and if M_i and m_i denote, respectively, the l.u.b. $f(p)$ on E_i and g.l.b. $f(p)$ on E_i, then cM_i and cm_i are respectively, the g.l.b. $g(p)$ on E_i and l.u.b. $g(p)$ on E_i.

\[S(P) = \sum_{i=1}^n M_i \mu(E_i); cS(P) = c \sum_{i=1}^n M_i \mu(E_i) = \sum_{i=1}^n cM_i \mu(E_i) = s^g(P). \]
\[s(P) = \sum_{i=1}^{n} m_i \mu(E_i); \quad cs(P) = c \sum_{i=1}^{n} m_i \mu(E_i) = \sum_{i=1}^{n} cm_i \mu(E_i) = Sg(P). \]

Since \(P \) is arbitrary, we conclude that

\[
\begin{align*}
\int_E f(p) \, d\mu &= \int_E g(p) \, d\mu = \int_E cf(p) \, d\mu \quad \text{and} \\
\int_E f(p) \, d\mu &= \int_E g(p) \, d\mu = \int_E cf(p) \, d\mu.
\end{align*}
\]

But \(\int_E f(p) \, d\mu = \int_E f(p) \, d\mu = \int_E f(p) \, d\mu. \)

\[
\int_E cf(p) \, d\mu = \int_E cf(p) \, d\mu.
\]

We conclude that \(f(p) \) is integrable and

\[
\int_E f(p) \, d\mu = \int_E cf(p) \, d\mu.
\]

2.37 If \(m \leq f(p) \leq M \) and \(1 \leq g(p) \leq N \) are functions defined on a measurable set \(E, \mu(E) < \infty \), then \(f(p) - g(p) \) is Lebesgue integrable on \(E \) and

\[
\int_E (f(p) - g(p)) \, d\mu = \int_E f(p) \, d\mu - \int_E g(p) \, d\mu.
\]

Proof: From 2.36 we see by letting \(c = -1 \) that

\[
\int_E g(p) \, d\mu = \int_E -g(p) \, d\mu.
\]

\[
\int_E (f(p) - g(p)) \, d\mu = \int_E (f(p) + (-g(p))) \, d\mu = \int_E f(p) \, d\mu + \int_E -g(p) \, d\mu = \int_E f(p) \, d\mu - \int_E g(p) \, d\mu. \quad (2.34)
\]

2.38 If \(f(p) \) is a measurable function on a measurable set \(E \) of finite measure and if \(f(p) = g(p) \) almost everywhere on \(E \), then \(g(p) \) is measurable on \(E \).

Proof: Let \(a \) be any real number. We must show that \(E \{ \{ p \in E \mid g(p) > a \} \} \) is a measurable set. The following identity will be established.
(1. E_p \{ p \in E, g(p) > a \} = E_p \{ p \in E, f(p) \neq g(p), g(p) > a \} + E_p \{ p \in E, f(p) = g(p) \} \cdot E_p \{ p \in E, f(p) > a \} \cdot E_p \{ p \in E, f(p) > a \} \text{ is a measurable set.} E_p \{ p \in E, f(p) \neq g(p) \} \text{ is by hypothesis a measurable set of measure 0.}

E_p \{ p \in E, f(p) \neq g(p), g(p) > a \} \subseteq E_p \{ p \in E, f(p) \neq g(p) \} . . . \text{ The set on the left is measurable. (1.16, 1.20, 1.37).}

E_p \{ p \in E, f(p) = g(p) \} = E - E_p \{ p \in E, f(p) \neq g(p) \} . . . \text{ the set on the left of this relationship is measurable (1.37, 1.44). These statements imply that the set on the right of the identity (1) is measurable. (1.40, 1.42)}

Suppose p_o \in E_p \{ p \in E, g(p) > a \} . \text{ There are two cases here.}

Case 1. f(p_o) \neq g(p_o), p_o \in E_p \{ p \in E, f(p) \neq g(p), g(p) > a \} .

Case 2. f(p_o) = g(p_o), \therefore p_o \in E_p \{ p \in E, f(p) = g(p) \} , f(p_o) > a , \therefore p_o \in E_p \{ p \in E, f(p) > a \} . \text{ This shows that}

E_p \{ p \in E, g(p) > a \} \subseteq E_p \{ p \in E, f(p) \neq g(p), g(p) > a \} + E_p \{ p \in E, f(p) = g(p) \} \cdot E_p \{ p \in E, f(p) = g(p) \} \cdot E_p \{ p \in E, f(p) > a \} .

Suppose p_o \in E_p \{ p \in E, f(p) \neq g(p), g(p) > a \} + E_p \{ p \in E, f(p) = g(p) \} \cdot E_p \{ p \in E, f(p) > a \} .

There are two cases here also.

Case 1. P_o \in E_p \{ p \in E, f(p) \neq g(p), g(p) > a \}
P_o \in E, f(p_o) \neq g(p_o), g(p_o) > a . . . P_o \in E_p \{ p \in E, g(p) > a \} .

Case 2. P_o \in E_p \{ p \in E, f(p) = g(p) \} \cdot E_p \{ p \in E, f(p) > a \} .
P_o \in E, f(p_o) = g(p_o), f(p_o) > a . . . g(p_o) > a , P_o \in E_p \{ p \in E, g(p) > a \} .

E_p \{ p \in E, g(p) > a \} \supseteq E_p \{ p \in E, f(p) \neq g(p), g(p) > a \} + E_p \{ p \in E, f(p) = g(p) \} \cdot E_p \{ p \in E, f(p) > a \} .

This establishes the identity, and we conclude that E_p \{ p \in E, g(p) > a \} \text{ is a measurable set, and hence that g(p) is a measurable function.}

2.39 \text{ If } f(p) \text{ is a bounded function on a measurable set } E \text{ of finite}
measure, and if \(f(p) \) is Lebesgue integrable on \(E \), then \(f(p) \) is measurable on \(E \).

Proof: There is a measurable partition \(P_1 \{ E_1', E_2', \ldots, E_{n_1}' \} \) of \(E \) such that \(s(P_1) > \int_E f(p) d\mu - 1 \), and such that \(S(P_1) < \int_E f(p) d\mu + 1 \) (2.4, 2.5). If \(p \in E_k' \), let \(f_1(p) = \text{g.l.b. } f(p) = m_k' \);
\(g_1(p) = \text{l.u.b. } f(p) = M_k' \).

\(s^f(P_1) = \sum_{k=1}^{n_1} m_k' \mu(E_k') \), \(S^f(P_1) = \sum_{k=1}^{n_1} M_k' \mu(E_k') \). \(f_1(p) \) is a measurable function, since if \(a \) is any real number, \(E_p \{ p \in E, f_1(p) > a \} = \sum E_k' \), summation extended over those integers \(k \) for which \(m_k' > a \) and each set \(E_k' \) is measurable. \(f_1(p) \leq f(p) \) for each \(p \) from the definition of \(f_1(p) \).

\[
\therefore \int_E f_1(p) d\mu = \int_E f(p) d\mu \quad (2.35).
\]

\(s^f_1(P_1) = m_1' \mu(E_1') + m_2' \mu(E_2') + \ldots + m_{n_1}' \mu(E_{n_1}') = \sum_{k=1}^{n_1} m_k' \mu(E_k') = s^f(P_1) \)

\(S^f_1(P_1) = m_1' \mu(E_1') + m_2' \mu(E_2') + \ldots + m_{n_1}' \mu(E_{n_1}') = \sum_{k=1}^{n_1} M_k' \mu(E_k') = S^f_1(P_1) \).

\[
\therefore \int_E f_1(p) d\mu = s^f_1(P_1) > \int_E f(p) d\mu - 1.
\]

There is a measurable partition \(Q_2 \) of \(E \) such that

\[
s^f(Q_2) > \int_E f(p) d\mu - \frac{1}{2}, \quad s^f(Q_2) < \int_E f(p) d\mu + \frac{1}{2}.
\]

Let \(P_2 \{ E_1^2, E_2^2, \ldots, E_{n_2}^2 \} \) be a measurable partition of \(E \) which is a refinement of both \(P_1 \) and \(Q_2 \).

\[
s^f(P_2) > \int_E f(p) d\mu - \frac{1}{2}, \quad S^f(P_2) < \int_E f(p) d\mu + \frac{1}{2}.
\]

If \(p \in E_k^2 \), let \(f_2(p) = \text{g.l.b. } f(p) \). By the same reasoning as for
$f_1(p)$, we see that $f_2(p)$ is a measurable function on E, and further $f_2(p) \leq f(p)$, $f_1(p) \leq f_2(p)$. As before we observe that $s^{f_2}(p_2) = s^f(p_2)$ and $S^{f_2}(P_2) = S^f(P_2)$.

\[
\int_E f(p) d\mu - \frac{1}{2} \leq s^{f_2}(p_2) = \int_E f_2(p) d\mu = \int_E f(p) d\mu.
\]

Construct in a similar manner a measurable function $f_3(p)$ such that $f_2(p) \leq f_3(p) \leq f(p)$, and such that $\int_E f(p) d\mu - \frac{1}{3} \leq \int_E f_3(p) d\mu = \int_E f(p) d\mu$.

Continuing this process we obtain a sequence of functions $\{f_n(p)\}$ where $f_n(p)$ is a measurable function for each n, and such that $f_1(p) \leq f_2(p) \leq f_3(p) \leq \ldots \leq f_n(p) \leq f_{n+1}(p) \leq \ldots$ where $f_n(p) \leq f(p)$ for each n.

\[
\int_E f(p) d\mu - \frac{1}{n} \leq \int_E f_n(p) d\mu = \int_E f(p) d\mu.
\]

$\{f_n(p)\}$ converges, since if $p_0 \in E$, we have $\{f_n(p_0)\}$, where $f_1(p_0) \leq f_2(p_0) \leq \ldots \leq f_n(p_0) \leq \ldots = f(p_0)$.

Let $g(p_0) = \lim f_n(p_0)$. Let $g(p) = \lim f_n(p)$. $g(p)$ is a measurable function since it is the limit of a sequence of measurable functions. (2.26)

\[
f_n(p) \leq g(p) \leq f(p) \text{ for each } n. \quad \int_E f_n(p) d\mu = \int_E g(p) d\mu = \int_E f(p) d\mu. \tag{2.35}
\]

By similar reasoning we can construct a decreasing sequence of measurable functions $\{g_n(p)\}$, i.e.

$g_1(p) \geq g_2(p) \geq \ldots \geq g_n(p) \geq \ldots \geq f(p)$, such that

\[
\int_E f(p) d\mu + \frac{1}{n} < \int_E f(p) d\mu.
\]

This sequence will converge...
to some function \(h(p) \), where \(f(p) \leq h(p) \leq g_n(p) \) and \(h(p) \) is measurable.

\[
\int_E f(p) \, d\mu = \int_E h(p) \, d\mu = \int_E g_n(p) \, d\mu.
\]

\[
\int_E h(p) \, d\mu = \int_E f(p) \, d\mu = \int_E g(p) \, d\mu,
\]

\(g(p) \leq f(p) \leq h(p) \).

Since \(g(p) \) and \(h(p) \) are measurable functions and \(g(p) \leq h(p) \), then

\[
\int_E (h(p) - g(p)) \, d\mu = \int_E h(p) \, d\mu - \int_E g(p) \, d\mu = 0.
\]

We know \(h(p) - g(p) \geq 0 \), \(\therefore \) \(h(p) - g(p) = 0 \) almost everywhere on \(E \), or \(h(p) = g(p) \) almost everywhere on \(E \), \(\therefore \) \(f(p) = g(p) \) almost everywhere on \(E \) and since \(g(p) \) is measurable on \(E \), we conclude, by 2.38, that \(f(p) \) is measurable on \(E \).

2.40 Definition. If \(f(p) \) is a non-negative measurable function on a measurable set \(E \), let \(f_N(p) = \begin{cases} f(p) & \text{if } 0 \leq f(p) < N \\ N & \text{if } f(p) \geq N, \end{cases} \)

where \(N \) is a positive integer.

2.41 Definition. If \(f(p) \) is a negative measurable function on a measurable set \(E \), let \(f_N(p) = \begin{cases} f(p) & \text{if } 0 > f(p) > -N \\ -N & \text{if } f(p) \leq -N, \end{cases} \)

where \(N \) is a positive integer.

2.42 If \(f(p) \) is a non-negative, measurable function on a measurable set \(E \), then for each \(N \), \(f_N(p) \) is a bounded, non-negative function on \(E \). The proof of this assertion is immediate from the definition of \(f_N(p) \).

2.43 If \(f(p) \) is a negative, measurable function on a measurable set \(E \),
then for each N, $f_{-N}(p)$ is a bounded negative function on E.

Again, the truth of this assertion follows directly from the definition of $f_{-N}(p)$.

2.44 If $f(p)$ is a non-negative, measurable function on a measurable set E, then for each N, $f_N(p) \leq f(p)$.

Proof: The proof follows from the definition of $f_N(p)$.

2.45 If $f(p)$ is a negative, measurable function on a measurable set E, then for each N, $f_{-N}(p) \geq f(p)$.

Proof: The proof follows immediately from the definition of $f_{-N}(p)$.

2.46 If $f(p)$ is a non-negative, measurable function on a measurable set E, then for each N, $f_N(p)$ is a non-negative measurable function on E.

Proof: From a previous conclusion (2.42), we see that $f_N(p)$ is non-negative and bounded. Let a be any real number. We must show that for each N, $E_p \{ p \in E, f_N(p) > a \}$ is a measurable set. Let N be any positive integer.

Case 1. If $a \geq N$, then let $E_p \{ p \in E, f_N(p) > a \} = \emptyset$, which is a measurable set.

Case 2. If $a < N$, then $E_p \{ p \in E, f_N(p) > a \} = E_p \{ p \in E, f(p) > a \}$.

We must establish this identity.

1. Suppose $p_0 \in E_p \{ p \in E, f_N(p) > a \}$, $p_0 \in E$, $f_N(p_0) > a$, $f(p_0) > a$, ..., $p_0 \in E_p \{ p \in E, f(p) > a \}$.

2. Suppose $p_0 \in E_p \{ p \in E, f(p) > a \}$, $p_0 \in E$, $f(p_0) > a$.

a. If $f(p_0) \geq N$, then $f_N(p_0) = N > a$, $p_0 \in E_p \{ p \in E, f_N(p) > a \}$.

b. If $f(p_0) < N$, then $f_N(p_0) = f(p_0) > a$, $p_0 \in E_p \{ p \in E, f_N(p) > a \}$.
Thus, the identity is established, and since \(f(p) \) is a measurable function, it follows that
\[
E_p \left\{ p \in E, f(p) > a \right\}
\]
is a measurable set. (2.14) Hence,
\[
E_p \left\{ p \in E, f_N(p) > a \right\}
\]
is a measurable set and \(f_N(p) \) is a measurable function on \(E \).

2.47 If \(f(p) \) is a negative, measurable function on a measurable set \(E \), then for each \(N \), \(f_{-N}(p) \) is a negative, bounded, measurable function on \(E \).

Proof: The proof to this conclusion is similar to that of 2.46.

2.48 If \(f(p) \) is a non-negative, measurable function on a measurable set \(E \), and if \(N < M \), then \(f_N(p) \leq f_M(p) \).

Proof: If \(f(p) < N \), then \(f_N(p) = f_M(p) = f(p) \). (2.40).
If \(f(p) \geq N \), then \(f_N(p) = N \) and either \(f_M(p) = f(p) \geq f_N(p) \) or \(f_M(p) = M > N = f_N(p) \). In each of these situations \(f_N(p) \leq f_M(p) \).

2.49 If \(f(p) \) is a negative, measurable function on a measurable set \(E \), and if \(-M < -N \), then \(f_{-M}(p) \leq f_{-N}(p) \).

Proof: The proof of this theorem is similar to that of 2.48.

2.50 Definition. Let \(f(p) \) be a non-negative, measurable function on a measurable set \(E \), \(\mu(E) < \infty \). For each positive integer \(N \), consider \(f_N(p) \). \(f_N(p) \) is a non-negative, bounded, measurable function on \(E \). Therefore, \(f_N(p) \) is Lebesgue integrable on \(E \), for each \(N \). If \(N < M \), then \(f_N(p) \leq f_M(p) \) and hence
\[
\int_E f_N(p) d\mu \leq \int_E f_M(p) d\mu.
\]

Consider \(\left\{ \int_E f_N(p) d\mu \right\} \). This sequence is an increasing sequence of real numbers. If \(\left\{ \int_E f_N(p) d\mu \right\} \) is an unbounded sequence, we say that \(f(p) \) is not a summable function on \(E \).
If \(\left\{ \int_E f_N(p) \, d\mu \right\} \) is a bounded sequence, then suppose
\[
\lim_{N \to \infty} \int_E f_N(p) \, d\mu = a.
\]
Then we say that \(f(p) \) is Lebesgue summable on \(E \), and we write
\[
\int_E f(p) \, d\mu = a = \lim_{N \to \infty} \int_E f_N(p) \, d\mu.
\]

2.51 Definition. Let \(f(p) \) be a negative, measurable function on a measurable set \(E \) of finite measure. For each positive integer \(N \), consider \(f_{-N}(p) \). \(f_{-N}(p) \) is a negative, bounded, measurable function on \(E \). Therefore, \(f_{-N}(p) \) is Lebesgue integrable on \(E \), for each \(N \). If \(-M < -N \), then
\[
f_{-M}(p) \leq f_{-N}(p) \quad \text{and hence} \quad \int_E f_{-M}(p) \, d\mu \leq \int_E f_{-N}(p) \, d\mu.
\]
Consider \(\left\{ \int_E f_{-N}(p) \, d\mu \right\} \). This sequence is a decreasing sequence of real numbers. If \(\left\{ \int_E f_{-N}(p) \, d\mu \right\} \) is an unbounded sequence, then we say that \(f(p) \) is not a summable function on \(E \).

If \(\left\{ \int_E f_{-N}(p) \, d\mu \right\} \) is a bounded sequence, then suppose that
\[
\lim_{N \to \infty} \int_E f_{-N}(p) \, d\mu = -a.
\]
Then we say that \(f(p) \) is Lebesgue summable on \(E \), and we write
\[
\int_E f(p) \, d\mu = -a = \lim_{N \to \infty} \int_E f_{-N}(p) \, d\mu.
\]

2.52 Definition. Let \(f(p) \) be a measurable function on a measurable set \(E \) of finite measure. Let \(P = E_p[p \in E, f(p) \geq 0] \) and let \(N = E_p[p \in E, f(p) < 0] \).
Then clearly \(E = P + N \) and \(P \cdot N = \emptyset \). If \(f(p) \) is a Lebesgue summable function on both \(P \) and \(N \), and if \(\int_P f(p) \, d\mu = a \) and \(\int_N f(p) \, d\mu = -b \), then we say that \(f(p) \) is Lebesgue summable on \(E \) and we write
\[
\int_E f(p) \, d\mu = a - b.
\]
2.53 If \(f(p) \) and \(g(p) \) are non-negative, measurable functions on a measurable set \(E \) of finite measure, and if \(f(p) \) and \(g(p) \) are summable, and if \(h(p) = f(p) + g(p) \), then \(h(p) \) is summable on \(E \), and

\[
\int_E h(p) \, d\mu = \int_E f(p) \, d\mu + \int_E g(p) \, d\mu .
\]

Proof: \(h(p) \) is non-negative and measurable.

Let \(h_N(p) = \begin{cases} h(p) & \text{if } 0 \leq h(p) < N \\ N & \text{if } h(p) \geq N. \end{cases} \)

\[f_N(p) = \begin{cases} f(p) & \text{if } 0 \leq f(p) < N \\ N & \text{if } f(p) \geq N. \end{cases} \]

\[g_N(p) = \begin{cases} g(p) & \text{if } 0 \leq g(p) < N \\ N & \text{if } g(p) \geq N. \end{cases} \]

Since \(f(p) \) and \(g(p) \) are summable, \(\lim_{N \to \infty} \int_E f_N(p) \, d\mu = \int_E f(p) \, d\mu \) and

\[\lim_{N \to \infty} \int_E g_N(p) \, d\mu = \int_E g(p) \, d\mu . \]

We shall show that for each \(N \), \(h_N(p) = f_N(p) + g_N(p) \).

Let \(N \) be any positive integer; suppose \(p_0 \in E \).

Case 1. Suppose \(0 \leq h(p_0) < N \). Then

\[h_N(p_0) = h(p_0). \] Then \(0 \leq f(p_0) < N \). Then \(f_N(p_0) = f(p_0) \).

Then \(0 \leq g(p_0) < N \). Then \(g_N(p_0) = g(p_0) \).

\[\therefore h_N(p_0) = f_N(p_0) + g_N(p_0). \]

Case 2. Suppose \(h(p_0) \geq N \) and

a. suppose \(f(p_0) \geq N \). Then \(h_N(p_0) = N \),

\[f_N(p_0) = N \text{ and } g_N(p_0) = 0. \]

\[\therefore h_N(p_0) = f_N(p_0) + g_N(p_0). \] A similar argument gives the same result if \(g(p_0) \geq N \).
b. Suppose $f(p_0) < N$ and $g(p_0) < N$.

Then $h_N(p_0) = N = h(p_0)$, $f_N(p_0) = f(p_0)$, and $g_N(p_0) = g(p_0)$.

We have $h_N(p_0) = N = h(p_0) = f(p_0) + g(p_0) = f_N(p_0) + g_N(p_0)$.

Thus, in any possible case we see that $h_N(p) \leq f_N(p) + g_N(p)$. This implies that for each N,

\[
\int_E h_N(p) \, d\mu = \int_E (f_N(p) + g_N(p)) \, d\mu = \int_E f_N(p) \, d\mu + \int_E g_N(p) \, d\mu = \int_E f(p) \, d\mu + \int_E g(p) \, d\mu.
\]

Therefore, \(h(p) \) is summable on \(E \), since \(\{ \int_E h_N(p) \, d\mu \} \) is an increasing sequence bounded above by \(\int_E f(p) \, d\mu + \int_E g(p) \, d\mu \) and furthermore

\[
\int_E h(p) \, d\mu = \lim_{N \to \infty} \int_E h_N(p) \, d\mu = \int_E f(p) \, d\mu + \int_E g(p) \, d\mu.
\]

Hence this limit exists.

We shall next show that for each N, $h_{2N}(p) \geq f_N(p) + g_N(p)$. Suppose N is any positive integer and $p_0 \in E$.

Case 1. Suppose $0 \leq f(p_0) < N$ and $0 \leq g(p_0) < N$.

Then $0 \leq h(p_0) < 2N$, $f_N(p_0) = f(p_0)$, and $g_N(p_0) = g(p_0)$.

Hence, $h_{2N}(p_0) = h(p_0)$ and $h_{2N}(p_0) = f_N(p_0) + g_N(p_0)$.

Case 2. Suppose $f(p_0) \geq N$ and $g(p_0) \geq N$.

Then $h(p_0) = f(p_0) + g(p_0) \geq 2N$.

$f_N(p_0) = N$ and $g_N(p_0) = N$, \(h_{2N}(p_0) = 2N \).

Case 3. Suppose $f(p_0) \geq N$ and $g(p_0) < N$ and

a. suppose $h(p_0) \geq 2N$. $f_N(p_0) = N$, \(g_N(p_0) = g(p_0) < N \), $h_{2N}(p_0) = 2N > f_N(p_0) + g_N(p_0)$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
2.54 Suppose $f(p)$ is a bounded, integrable function on a measurable set E of finite measure. Suppose that G is a measurable subset of E. Then $f(p)$ is integrable on G.

Proof: $f(p)$ is measurable on E. We shall first show that $f(p)$ is measurable on G.

To do this we shall establish the following identity.

Let a be any real number.

$$E_p \left[p \in G, f(p) > a \right] = G \cdot E_p \left[p \in E, f(p) > a \right] .$$

The set on right is
measurable since \(f(p) \) is a measurable function on the set \(E \) and since \(G \) is measurable by hypothesis.

Suppose \(p_o \in \mathcal{E}_p \left[p \in G, f(p) > a \right] \). Then \(p_o \in G, f(p_o) > a, \) \(p_o \in \mathcal{E}, \) \(\vdots \) \(p_o \in G \cdot \mathcal{E}_p \left[p \in E, f(p) > a \right] \).

Suppose \(p_o \in \mathcal{G} \cdot \mathcal{E}_p \left[p \in E, f(p) > a \right], \) \(p_o \in G, p_o \in \mathcal{E}, \)
\(f(p_o) > a, \) \(\vdots \) \(p_o \in \mathcal{E}_p \left[p \in G, f(p) > a \right] \).

Thus the identity is established. We conclude that \(\mathcal{E}_p \left[p \in G, f(p) > a \right] \) is a measurable set and hence that \(f(p) \) is a measurable function on the set \(G \).

Since \(f(p) \) is bounded on \(E \), it follows that it is bounded on the subset \(G \).

Therefore, \(f(p) \) is Lebesgue integrable on \(G \). (2.23)

2.55 If \(f(p) \) is a bounded, measurable function on a measurable set \(E \) of finite measure and if \(E = E_1 \cup E_2, \) \(E_1 \cdot E_2 = \emptyset \) and \(E_1 \) and \(E_2 \) are measurable sets, then \(f(p) \) is Lebesgue integrable on \(E_1 \) and on \(E_2 \), and

\[
\int_E f(p) \, d\mu = \int_{E_1} f(p) \, d\mu + \int_{E_2} f(p) \, d\mu.
\]

Proof: The fact that \(f(p) \) is Lebesgue integrable on \(E_1 \) and on \(E_2 \) is immediate from the preceding conclusion.

Give \(\varepsilon > 0 \). There is a measurable partition \(\mathcal{P}_1 \left[F_2, \ldots, F_n \right] \) of \(E_1 \) such that \(s(\mathcal{P}_1) > \int_E f(p) \, d\mu - \varepsilon \). (2.4) There is a measurable partition
\[
\mathcal{P}_2 \left[G_1, G_2, \ldots, G_m \right] \text{ of } E_2 \text{ such that } s(\mathcal{P}_2) > \int_{E_2} f(p) \, d\mu - \varepsilon.
\]
Then \(\mathcal{P} \left[F_1, F_2, \ldots, F_n, G_1, G_2, \ldots, G_m \right] \) is a measurable partition of \(E \).

\[
s(\mathcal{P}_1) = \sum_{k=1}^{n} m^1_k \mu(F_k);
\]
\[
s(\mathcal{P}_2) = \sum_{k=1}^{m} m^2_k \mu(G_k);
\]
\[
s(p) = s(\mathcal{P}_1) + s(\mathcal{P}_2);
\]
\[
m^1_k = \text{g.l.b. } f(p); \quad m^2_k = \text{g.l.b. } f(p);
\]
\[\int_E f(p) \, d\mu = s(P) > \int_{E_1} f(p) \, d\mu + \int_{E_2} f(p) \, d\mu - \varepsilon. \tag{2.9} \]

Since \(\varepsilon \) is arbitrary, \(\int_{E_1} f(p) \, d\mu + \int_{E_2} f(p) \, d\mu \geq \int_E f(p) \, d\mu. \)

There is a measurable partition \(Q_1 \left[H_1, H_2, \ldots, H_r \right] \) of \(E \), such that
\[S(Q_1) < \int_{E_1} f(p) \, d\mu + \frac{\varepsilon}{2}. \tag{2.5} \]

There is a measurable partition \(Q_2 \left[J_1, J_2, \ldots, J_s \right] \) such that \(S(Q_2) < \int_{E_2} f(p) \, d\mu + \frac{\varepsilon}{2}. \)

\(Q \left[H_1, H_2, \ldots, H_r, J_1, J_2, \ldots, J_s \right] \) is a measurable partition of \(E \).

\[S(Q_1) = \sum_{k=1}^{r} \mu(H_k), \quad M_k = \text{u.b.} f(p) \]
\[S(Q_2) = \sum_{k=1}^{s} \mu(J_k), \quad M_k = \text{u.b.} f(p), \quad S(Q) = S(Q_1) + S(Q_2); \]

\[\int_E f(p) \, d\mu \leq S(Q) < \int_{E_1} f(p) \, d\mu + \int_{E_2} f(p) \, d\mu + \varepsilon. \tag{2.9} \]

Since \(\varepsilon \) is arbitrary, \(\int_{E_1} f(p) \, d\mu + \int_{E_2} f(p) \, d\mu \geq \int_E f(p) \, d\mu. \)

The opposite relationship having already been established, we conclude that
\[\int_{E_1} f(p) \, d\mu + \int_{E_2} f(p) \, d\mu = \int_E f(p) \, d\mu. \]

2.56 If \(m \leq f(p) \leq M \) on \(E \) if \(E \) is a measurable set of finite measure, and if \(f(p) \) is measurable on \(E \), then \(m \cdot \mu(E) \leq \int_E f(p) \, d\mu = M \cdot \mu(E). \)

Proof: Consider the measurable partition \(P \) of \(E \) consisting of the set \(E \) alone.

\[\int_E f(p) \, d\mu \leq S(P) = (\text{u.b.} f(p)) \cdot \mu(E) \leq M \cdot \mu(E). \tag{2.9} \]
\[\int_E f(p) \, d\mu \geq S(P) = (\text{g.l.b.} f(p)) \cdot \mu(E) \geq m \cdot \mu(E). \tag{2.9} \]
2.57 If $f(p)$ is a non-negative, measurable and summable function on a measurable set E of finite measure, and if $E = E_1 + E_2$, $E_1 \cdot E_2 = \emptyset$ and E_1 and E_2 are measurable sets, then $f(p)$ is summable on E_1 and E_2,
\[
\int_{E_1} f(p) \, d\mu + \int_{E_2} f(p) \, d\mu = \int_E f(p) \, d\mu,
\]
and
\[
\int_{E_1} f(p) \, d\mu = \int_{E_1} f(p) \, d\mu \quad \text{and} \quad \int_{E_2} f(p) \, d\mu = \int_{E_2} f(p) \, d\mu.
\]

Proof: Let $f_N(p)$ be defined as before.

We know that
\[
\int_{E_1} f_N(p) \, d\mu \leq \int_{E_1} f(p) \, d\mu \leq \int_E f(p) \, d\mu,
\]
and
\[
\int_{E_1} f_N(p) \, d\mu \leq \int_{E_1} f(p) \, d\mu \quad \text{and} \quad \lim_{N \to \infty} \int_{E_1} f_N(p) \, d\mu = \int_{E_1} f(p) \, d\mu.
\]

Hence, \{\int_{E_1} f_N(p) \, d\mu\} is a bounded, increasing sequence and hence $f(p)$ is summable on E_1.

\[
\int_{E_1} f(p) \, d\mu = \lim_{N \to \infty} \int_{E_1} f_N(p) \, d\mu.
\]

From symmetry in the definitions of E_1 and E_2, we see that $f(p)$ is summable on E_2 and
\[
\int_{E_1} f(p) \, d\mu = \int_{E_2} f(p) \, d\mu.
\]

We know that
\[
\int_{E_1} f_N(p) \, d\mu = \int_{E_1} f(p) \, d\mu + \int_{E_2} f(p) \, d\mu \quad \text{for each } N.
\]
Taking limits as N becomes infinite, we obtain
\[
\int_{E_1} f(p) \, d\mu = \int_{E_1} f(p) \, d\mu + \int_{E_2} f(p) \, d\mu.
\]

2.58 If $f(p)$ is a negative, measurable and summable function on a measurable set E of finite measure and if $E = E_1 + E_2$, where $E_1 \cdot E_2 = \emptyset$ and E_1 and E_2 are measurable sets, then $f(p)$ is summable on E_1 and E_2,
\[
\int_{E_1} f(p) \, d\mu + \int_{E_2} f(p) \, d\mu = \int_E f(p) \, d\mu,
\]
and
\[
\int_{E_1} f(p) \, d\mu \quad \text{and} \quad \int_{E_2} f(p) \, d\mu = \int_{E} f(p) \, d\mu.
\]
The proof of this theorem is similar to that of 2.57.

2.59 If \(f(p) \) is a measurable and summable function on a measurable set \(E \) of finite measure, if \(E = E_1 + E_2 \), \(E_1 \cdot E_2 = \emptyset \), and if \(E_1 \) and \(E_2 \) are measurable sets, then \(\int_{E} f(p) \, d\mu = \int_{E_1} f(p) \, d\mu + \int_{E_2} f(p) \, d\mu \).

Proof: Let \(N = E_p \left[p \in E, f(p) < 0 \right] \).

Let \(P = E_p \left[p \in E, f(p) = 0 \right] \). \(E = N + P \). Since \(f(p) \) is a measurable function, \(N \) and \(P \) are measurable sets. (2.19, 2.21)

\(N \subseteq E = E_1 + E_2 \) . \(N = N \cdot E_1 + N \cdot E_2 \); \((N \cdot E_1) \cdot (N \cdot E_2) = \emptyset \).

Similarly \(P = P \cdot E_1 + P \cdot E_2 \); \((P \cdot E_1) \cdot (P \cdot E_2) = \emptyset \).

\[
\int_{E} f(p) \, d\mu = \int_{N} f(p) \, d\mu + \int_{P} f(p) \, d\mu \quad (2.58)
\]

\[
\int_{P} f(p) \, d\mu = \int_{N \cdot E_1} f(p) \, d\mu + \int_{P \cdot E_1} f(p) \, d\mu \quad (2.57)
\]

2.60 If \(f(p) \) is a bounded, measurable function on a measurable set \(E \) of finite measure and if \(\varepsilon > 0 \), then there is a \(\delta > 0 \), such that if \(G \) is a measurable subset of \(E \) and if \(\mu(G) < \delta \), then

\[
\left| \int_{G} f(p) \, d\mu \right| < \varepsilon .
\]

Proof: Since \(f(p) \) is bounded, we can find a positive real number \(M \) such that \(-M \leq f(p) \leq M \) on \(E \). If \(G \) is any subset of \(E \), then certainly
-M ≤ f(p) ≤ M on G. Let \(\delta = \frac{\varepsilon}{M} \). Then \(\delta > 0 \). Suppose that G is a measurable subset of E and that \(\mu(G) < \delta \). Then

\[
-\varepsilon = -M \cdot \frac{\varepsilon}{M} < -M \cdot \mu(G) \leq \int f(p) d\mu = M \cdot \mu(G) < M \cdot \frac{\varepsilon}{M} = \varepsilon
\]

or in other words \(\left| \int f(p) d\mu \right| < \varepsilon \).

2.61 If \(f(p) \) is a non-negative, measurable and summable function on a measurable set E of finite measure, and if \(\varepsilon > 0 \), then there is \(\delta > 0 \) such that if G is a measurable subset of E and if \(\mu(G) < \delta \), then

\[
\int f(p) d\mu < \varepsilon.
\]

Proof:

\[
\int f(p) d\mu = \lim_{N \to \infty} \int f_N(p) d\mu.
\]

For each N, \(\int f_N(p) d\mu \leq \int f(p) d\mu \) \((2.35) \),

\[
\int f(p) d\mu - \int f_N(p) d\mu = 0.
\]

Choose an integer N such that \(0 < \int f(p) d\mu - \int f_N(p) d\mu < \varepsilon/2 \).

\(f_N(p) \) is a bounded, non-negative, measurable function on E. There is a \(\delta > 0 \) such that if G is any measurable subset of E and if \(\mu(G) < \delta \), then

\[
\left| \int f_N(p) d\mu \right| = \int f_N(p) d\mu < \frac{\varepsilon}{2}(2.60) \]

Let G be a measurable subset of E such that \(\mu(G) < \delta \).

\[
\int f(p) d\mu = \int f(p) d\mu + \int f(p) d\mu \quad (2.57) \text{ and}
\]

\[
\int f_N(p) d\mu = \int f_N(p) d\mu + \int f_N(p) d\mu \quad \text{for each N} \quad (2.55)
\]

\[
\int f(p) d\mu - \int f_N(p) d\mu = \int f(p) d\mu - \int f_N(p) d\mu +
\]

\[
\int f(p) d\mu - \int f_N(p) d\mu.
\]
By similar reasoning to that used above,
\[\int_{E-G} f(p) \, d\mu = \lim_{N \to \infty} \int_{E-G} f_N(p) \, d\mu. \]
\[\int_{E-G} f(p) \, d\mu - \int_{E-G} f_N(p) \, d\mu \geq 0 \]
\[0 \leq \int_{E-G} f(p) \, d\mu - \int_{E-G} f_N(p) \, d\mu \leq \int_{E-G} f(p) \, d\mu - \int_{E-G} f_N(p) \, d\mu < \frac{\varepsilon}{2} \]
\[\int_{E-G} f(p) \, d\mu < \int_{E-G} f_N(p) \, d\mu + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \]

2.62 If \(f(p) \) is a negative, measurable and summable function on a measurable set \(E \) of finite measure, and if \(\varepsilon > 0 \), then there is a \(\delta > 0 \) such that if \(G \) is a measurable subset of \(E \) and if \(\mu(G) < \delta \), then
\[\int_{G} f(p) \, d\mu > -\varepsilon. \]

The proof of this theorem is similar to that of 2.61.

2.63 If \(f(p) \) is a measurable and summable function on a measurable set \(E \) of finite measure, and if \(\varepsilon > 0 \), then there is a \(\delta > 0 \) such that if \(G \) is a measurable subset of \(E \) and if \(\mu(G) < \delta \), then
\[\left| \int_{G} f(p) \, d\mu \right| < \varepsilon. \]

Proof: Let \(N = E_p \left[p \in E, f(p) < 0 \right] \). Let \(P = E_p \left[p \in E, f(p) = 0 \right] \).
\[\int_{E} f(p) \, d\mu = \int_{E} f(p) \, d\mu + \int_{P} f(p) \, d\mu. \]
There is a \(\delta_1 > 0 \) such that \(G \subset P, G \) measurable, \(\mu(G) < \delta \) implies
\[\left| \int_{G} f(p) \, d\mu \right| < \frac{\varepsilon}{2}, \quad (2.61), \]

There is a \(\delta_2 > 0 \) such that \(G \subset N, G \) measurable \(\mu(G) < \delta_2 \) implies
\[\left| \int_{G} f(p) \, d\mu \right| < \frac{\varepsilon}{2}. \quad (2.62), \]

Let \(\delta = \min. \delta_1, \delta_2 \). Then if \(G \subset E, G \) is measurable, \(\mu(G) < \delta \), it follows that.
2.64 If \(f(p) \) is a measurable, summable function on a measurable set \(E \) of finite measure, and if \(B \) is any measurable subset of \(E \), then \(f(p) \) is measurable and summable on \(B \).

Proof: The fact that \(f(p) \) is measurable on \(B \) is obvious.

Let \(P = E_p \left\{ p \in E, f(p) \geq 0 \right\} \).

By 2.57 and 2.58

\[
\int_{E-P} f_N(p) \, d\mu \leq \int_{E-P} f(p) \, d\mu \leq \sum f(p) \, d\mu \quad \text{for each } N.
\]

\[
\int_{E-M} f_N(p) \, d\mu \geq \int_{E-M} f(p) \, d\mu \geq \sum f(p) \, d\mu \quad \text{for each } N.
\]

\(\left\{ \int_{E-P} f_N(p) \, d\mu \right\} \) is an increasing sequence bounded above, and hence

\[
\lim_{N \to \infty} \int_{E-P} f_N(p) \, d\mu = \int_{E-P} f(p) \, d\mu \quad \text{exists,}
\]

\(\left\{ \int_{E-M} f_N(p) \, d\mu \right\} \) is a decreasing sequence bounded below and hence

\[
\lim_{N \to \infty} \int_{E-M} f_N(p) \, d\mu = \int_{E-M} f(p) \, d\mu \quad \text{exists,}
\]

Therefore, \(f(p) \) is summable on \(B \).

2.65 Let \(f(p) \) be a measurable, summable function on a measurable set \(E \) of finite measure. If \(A_1 \) and \(A_2 \) are disjoint, measurable subsets of \(E \), then

\[
\int_{A_1 + A_2} f(p) \, d\mu = \int_{A_1} f(p) \, d\mu + \int_{A_2} f(p) \, d\mu.
\]

Proof: Let \(B = A_1 + A_2; \quad B \subseteq E; \quad B \) is a measurable set

\[
\mu(B) < +\infty. \quad f(p) \text{ is a measurable, summable function on } b. \quad (2.64)
\]

\[
\int_{A_1} f(p) \, d\mu + \int_{A_2} f(p) \, d\mu = \int_{A_1 + A_2} f(p) \, d\mu. \quad (2.59)
\]
2.66 If \(f(p) \) is a measurable, summable function on a measurable set \(E \) of finite measure, and if \(A_1, A_2, \ldots, A_n \) are disjoint, measurable subsets of \(E \), then
\[
\int f(p) \, d\mu = \sum_{i=1}^{n} \int_{A_i} f(p) \, d\mu.
\]

Proof: By induction on the number of sets \(A_n \). The assertion is true if \(n = 1 \) or \(n = 2 \). (2.65)

Assume it is true when \(n = k \). Suppose \(A_1, A_2, \ldots, A_{k+1} \) are disjoint measurable subsets of \(E \).

\[
\int f(p) \, d\mu = \int_{A_1} f(p) \, d\mu + \sum_{i=1}^{k} \int_{A_i} f(p) \, d\mu + \int_{A_{k+1}} f(p) \, d\mu = \sum_{i=1}^{k} \int_{A_i} f(p) \, d\mu.
\]
The first equality holds since the assertion is true when \(n = 2 \). Thus, the truth of the assertion for \(n = k \) implies it for \(n = k+1 \); hence it is true for all positive integral values of \(n \).

2.67 Let \(f(p) \) be a measurable summable function on a measurable set \(E \) of finite measure. If \(\{ A_i \} \) is a sequence of disjoint measurable subsets of \(E \), then
\[
\int f(p) \, d\mu = \sum_{i=1}^{\infty} \int_{A_i} f(p) \, d\mu.
\]

Proof: Let \(A = \sum_{i=1}^{\infty} A_i \). Let \(R_n = \sum_{i=1}^{n} A_i \) for each \(n \).

\[
A = \sum_{i=1}^{\infty} A_i + R_n. \quad \int f(p) \, d\mu = \sum_{i=1}^{n} \int_{A_i} f(p) \, d\mu + \int_{R_n} f(p) \, d\mu. \quad (2.59)
\]

\[
\sum_{i=1}^{\infty} \int_{A_i} f(p) \, d\mu = \lim_{n \to \infty} \sum_{i=1}^{n} \int_{A_i} f(p) \, d\mu, \text{ provided that this limit exists.}
\]

\[
\left| \int_{A} f(p) \, d\mu - \sum_{i=1}^{n} \int_{A_i} f(p) \, d\mu \right| = \left| \int_{R_n} f(p) \, d\mu \right|; \quad \mu(A) = \sum_{i=1}^{\infty} \mu(A_i).
\]

Given \(\varepsilon > 0 \). There is a \(\delta > 0 \) such that if \(G \) is any measurable subset of \(E \), and if \(\mu(G) < \delta \), then
\[
\left| \int_{G} f(p) \, d\mu \right| < \varepsilon. \quad (2.63)
\]
There is an integer \(M \) such that if \(n > M \), then
\[
\sum_{i=1}^{\delta} \mu(A_i) < \delta \text{ and } \sum_{i=1}^{\delta} \mu(A_i) = \mu(R_n). \quad \text{If } n > M, \quad \mu(R_n) < \delta,
\]
and therefore, if \(n > M \), \(\left| \int f(p) d\mu \right| < \varepsilon \). If \(n > M \),
\[
\left| \sum_{i=1}^{n} f(p) d\mu \right| < \varepsilon. \quad \text{Since } \varepsilon \text{ is arbitrary,}
\]
\[
\sum_{i=1}^{n} f(p) d\mu = \lim_{n \to \infty} \sum_{i=1}^{n} f(p) d\mu = \int f(p) d\mu = \int f(p) d\mu.
\]

2.68 If \(g(p) \) is a bounded, Lebesgue integrable function on a measurable set \(E \) of finite measure, then
\[
\left| \int g(p) d\mu \right| \leq \int |g(p)| d\mu.
\]
Proof: \(g(p) \) is a measurable function. Let \(E_1 = E_p \{ p \in E, g(p) > 0 \} \).
Let \(E_2 = E_p \{ p \in E, g(p) < 0 \} \). \(E_1 \) and \(E_2 \) are measurable sets.
\(E_1 \cdot E_2 = \emptyset \), \(E_1 + E_2 = E \).

\[
\int g(p) d\mu = \int g(p) d\mu + \int g(p) d\mu, \quad (2.55) \quad g(p) = |g(p)|
\]
if \(p \in E_1 \); \(g(p) = -|g(p)| \) if \(p \in E_2 \).
\[
\int g(p) d\mu = \int |g(p)| d\mu + \int -|g(p)| d\mu =
\int g(p) d\mu - \int |g(p)| d\mu \quad (2.36). \int g(p) d\mu = \int |g(p)| d\mu.
\int -g(p) d\mu = \int |g(p)| d\mu - \int |g(p)| d\mu.
\int |g(p)| d\mu = \int g(p) d\mu - \int g(p) d\mu.
\int g(p) d\mu \leq \int |g(p)| d\mu - \int g(p) d\mu.
\int g(p) d\mu \leq \int g(p) d\mu - \int |g(p)| d\mu.
\int g(p) d\mu \leq \int g(p) d\mu - \int |g(p)| d\mu.
\int g(p) d\mu \leq \int |g(p)| d\mu.
2.69 If E is a measurable set of finite measure, if $\{f_n(p)\}$ is a sequence of bounded, measurable functions on E, and if $f_n(p)$ converges uniformly to $f(p)$ on E, and if $f(p)$ is bounded on E, then $f(p)$ is integrable on E and \[
\lim_{n \to \infty} \int_E f_n(p) \, d\mu = \int_E f(p) \, d\mu.\]

Proof: $f(p)$ is measurable and bounded on E. (2.26) $f(p)$ is Lebesgue integrable on E. Give $\varepsilon > 0$.

\[\left| \int_E (f_n(p) - f(p)) \, d\mu \right| = \left| \int E f_n(p) \, d\mu - \int E f(p) \, d\mu \right| ; \quad (2.37)\]
\[\left| \int_E (f_n(p) - f(p)) \, d\mu \right| \leq \int_E |f_n(p) - f(p)| \, d\mu. \quad (2.69)\]

There exists an integer M such that if $n > M$, then
\[\left| f_n(p) - f(p) \right| < \frac{\varepsilon}{\mu(E)} \text{ for all points } p \text{ in } E.\]
\[\int_E \left| f_n(p) - f(p) \right| \, d\mu < \int_E \frac{\varepsilon}{\mu(E)} \, d\mu = \frac{\mu(E) \varepsilon}{\mu(E)} = \varepsilon.\]

2.70 If E is a measurable set of finite measure, if $f_n(p)$ is a bounded, measurable function on E for each positive integer n, if $f(p)$ is a bounded, measurable function on E, if $\lim_{n \to \infty} f_n(p) = f(p)$ on E, and if $\varepsilon > 0$, then there exists a measurable set F such that $F \subset E$, $\mu(F) < \varepsilon$, and such that $\lim_{n \to \infty} f_n(p) = f(p)$ uniformly on $E - F$.

Proof: Let $E_{mn} = \left\{ p \in E, \left| f_n(p) - f(p) \right| < \frac{1}{2^m} \right\}$.

Let $G_{mk} = \prod_{n=k}^{\infty} E_{mn}$ for fixed m. Let $E_m = \sum_{k=1}^{\infty} G_{mk} = \prod_{n=k}^{\infty} E_{mn}$.

Then $E_m = \liminf_{n \to \infty} E_{mn} = E$ since $f_n(p)$ converges to $f(p)$ at every point of E. (1.68) $\mu(E) = \liminf_{n \to \infty} \mu(E_{mn})$. (1.70). $\{G_{mk}\}$ is an increasing sequence of sets for fixed m. $E = \sum_{k=1}^{\infty} G_{mk} \cdot \lim_{k \to \infty} \mu(G_{mk}) = \mu(E)$. (1.66).
Choose an integer k_m such that $\mu(G_{mk_m}) > \frac{\varepsilon}{2^m}$.

Let $F_m = E - G_{mk_m}$. Then $F_m + G_{mk_m} = E$. $\mu(F_m) < \frac{\varepsilon}{2^m}$. Let $F = \sum_{m=1}^{\infty} F_m$.

Then $\mu(F) < \varepsilon$. F is a measurable set. $F \subseteq E$. Give $\delta > 0$. We must find an integer L such that if $n > L$, then $\left| f_n(p) - f(p) \right| < \delta$ if $p \in E - F$.

Choose m so that $\frac{1}{m} < \delta$. Then $E - F \subseteq E - F_m \subseteq G_{mk_m}$. Let $L = k_m$.

If $n \geq L$ and if $p \in E - F$, then $p \in G_{mk_m}$.

$$G_{mk_m} = \bigcap_{n=k_m}^{\infty} E_{mn}, \quad p \in E_{mn} \quad \Rightarrow \quad \left| f_n(p) - f(p) \right| < \frac{1}{2^m} < \delta.$$

2.71 If E is a measurable set of finite measure, if $f_n(p)$ is a bounded, measurable function on E for each n, if $f(p)$ is a bounded measurable function on E, if $\lim_{n \to \infty} f_n(p) = f(p)$, if $0 \leq f_n(p) \leq K$ on E for each N, then

$$\lim_{n \to \infty} \int_{E} f_n(p) d\mu = \int_{E} f(p) d\mu.$$

Proof: Give $\varepsilon > 0$. We must find an integer L such that if $n > L$, then $\left| \int_{E} f_n(p) d\mu - \int_{E} f(p) d\mu \right| < \varepsilon$. $0 \leq f(p) \leq K$ on E. Choose $\delta > 0$ such that $\delta < \frac{\varepsilon}{2K}$. Choose F such that F is a measurable set, $F \subseteq E$, $\mu(F) < \delta$, and $\lim_{n \to \infty} f_n(p) = f(p)$ uniformly on $E - F$. (2.70)

$$\left| \int_{E} f_n(p) d\mu - \int_{E} f(p) d\mu \right| = \left| \int_{F} (f_n(p) - f(p)) d\mu \right| \leq$$

$$\int_{E} \left| f_n(p) - f(p) \right| d\mu + \int_{E-F} \left| f_n(p) - f(p) \right| d\mu$$

(2.37, 2.68). Choose L such that if $n > L$ and if $p \in E - F$, then

$$\left| f_n(p) - f(p) \right| < \frac{\varepsilon}{2K}. \quad \text{If } n > L, \text{ then } \left| \int_{E} f_n(p) d\mu - \int_{E} f(p) d\mu \right| < \frac{\varepsilon}{2^L} \mu(F) + K \mu(F) \frac{\varepsilon}{2K} + K \delta \frac{\varepsilon}{2K} \leq \varepsilon. \quad (2.55, 2.68, 2.39)$$
2.72 If E is a measurable set of finite measure, if $f(p)$ is measurable on E, if $f_n(p)$ is non-negative, bounded and measurable on E for each n, if $\lim_{n \to \infty} f_n(p) = f(p)$ on E, and if $\int_E f_n(p) \, d\mu \leq Q$ for each n, then $f(p)$ is summable on E and $\int_E f(p) \, d\mu = Q$.

Proof: Let $f^N(p) = \begin{cases} f(p) & \text{if } f(p) \leq N \\ N & \text{if } f(p) > N \end{cases}$

Let $f^N_N(p) = \begin{cases} f_n(p) & \text{if } f_n(p) \leq N \\ N & \text{if } f_n(p) > N \end{cases}$. We must show that

$$\lim_{n \to \infty} \int_E f^N(p) \, d\mu$$

exists. $f(p) \geq 0$ on E. Consider $f^N(p)$ and $\{f^N_N(p)\}_{n=1}^{\infty}$ for fixed N, $\lim_{n \to \infty} f^N_N(p) = f^N(p)$. Then $\lim_{n \to \infty} \int_E f^N_N(p) \, d\mu = \int_E f^N(p) \, d\mu$ by 2.71, but $\int_E f(p) \, d\mu \leq Q$ for each n. Thus $\int_E f^N(p) \, d\mu \leq Q$ and $\int_E f^N_N(p) \, d\mu \leq Q$.

$\therefore \lim_{n \to \infty} \int_E f^N(p) \, d\mu = Q$ and hence $f(p)$ is summable on E and $\int_E f(p) \, d\mu = Q$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
CHAPTER III

RECTANGLE FUNCTIONS AND DERIVATIVES

3.1 Definition: A rectangle function is a real-valued function whose domain of definition is \(\mathcal{P} \), the class of all oriented half-open rectangles.

3.2 Definition: A rectangle function \(\phi \) will be said to be finitely additive if \(R_1, R_2, \ldots, R_n \) belonging to \(\mathcal{P} \) and \(R_i \cdot R_j = \emptyset \) if \(i \neq j \) imply that

\[
\phi \left(\sum_{i=1}^{n} R_i \right) = \sum_{i=1}^{n} \phi (R_i), \text{ provided of course that } \sum_{i=1}^{n} R_i \in \mathcal{P}.
\]

3.2 Definition: A rectangle function \(\phi \) will be said to be countably additive if \(R_1, R_2, \ldots \) belonging to \(\mathcal{P} \) and \(R_i \cdot R_j = \emptyset \) if \(i \neq j \) imply that

\[
\phi \left(\sum_{i=1}^{\infty} R_i \right) = \sum_{i=1}^{\infty} \phi (R_i), \text{ provided that } \sum_{i=1}^{\infty} R_i \in \mathcal{P}.
\]

3.4 Definition: A rectangle function \(\phi \) is said to be of Type A if \(\phi \) is non-negative and if

\[
\sum_{i=1}^{n} R_i \subseteq R, \text{ } R_i \cdot R_j = \emptyset \text{ if } i = j \text{ imply that } \sum_{i=1}^{n} \phi (R_i) \leq \phi (R).
\]

3.5 If \(\phi \) is a finitely additive and non-negative rectangle function, then \(\phi \) is of Type A. That is, if \(\sum_{i=1}^{n} R_i \subseteq R, \text{ } R_i \cdot R_j = \emptyset \text{ if } i \neq j \), then

\[
\sum_{i=1}^{n} \phi (R_i) \leq \phi (R).
\]

Proof: If \(\sum_{i=1}^{n} R_i = R \), then \(\sum_{i=1}^{n} \phi (R_i) = \phi (R) \) and we are finished.

Suppose \(\sum_{i=1}^{n} R_i \neq R \). \(R = R_1 + \sum_{j=1}^{k} S_j \) where \(S_j \in \mathcal{P}, \text{ } R_i \cdot S_j = \emptyset, \text{ } S_i \cdot S_j = \emptyset \).
if $i \neq j$. \(\emptyset (R) = \emptyset (R_1) + \sum_{j=1}^{k} \emptyset (S_j) \), since \(\emptyset \) is finitely additive.

\[
\sum_{i=1}^{n} R_i \leq R-R_1, \quad \sum_{j=1}^{k} S_j = R-R_1.
\]

\[
(\sum_{i=1}^{n} R_i) (\sum_{j=1}^{k} S_j) = \sum_{i=1}^{n} R_i \sum_{j=1}^{k} R_j S_j = \sum_{i=1}^{n} \sum_{j=1}^{k} R_i S_j
\]

\[
S_j \sum_{i=1}^{n} R_i \leq S_j, \quad \sum_{i=2}^{n} R_i S_j \leq S_j.
\]

The conclusion will be proved by induction. It is trivial in case \(n = 1 \). We shall assume its truth for all integers less than \(n \).

Then \(\sum_{i=2}^{k} \emptyset (R_i S_j) \leq \emptyset (S_j) \).

\[
\sum_{j=1}^{k} R_i S_j = R_1 \sum_{j=1}^{k} S_j = R_1 (R-R_1) = R_1, \text{ since } R_1 \leq R-R_1.
\]

\(\therefore \) by finite additivity \(\emptyset (R_1) = \sum_{j=1}^{k} \emptyset (R_i S_j) \) for each \(i \).

\[
\emptyset (R) = \emptyset (R_1) + \sum_{j=1}^{k} \emptyset (R_i S_j) = \emptyset (R_1) + \sum_{i=2}^{n} \sum_{j=1}^{k} \emptyset (R_i S_j)
\]

\[
\emptyset (R_1) + \sum_{i=2}^{n} \emptyset (R_i) = \sum_{i=1}^{n} \emptyset (R_i).
\]

3.6 Definition. Suppose \(\emptyset \) is a rectangle function. Let \(S \in \mathcal{P} \), where \(S \) is a square. Then \(\lim_{p_0 \in S^o} \frac{\partial (S)}{A(S)} = \emptyset' \left(p_0 \right) \), provided this limit exists and is finite. \(\emptyset' \left(p_0 \right) \) is called the two-dimensional derivative of \(\emptyset \) at \(p_0 \). This definition implies that given any \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that if \(A(S) < \delta \) and if \(p_0 \in S^o \), then \(\left| \frac{\partial (S)}{A(S)} - \emptyset' \left(p_0 \right) \right| < \varepsilon \).

3.7 Definition: Let \(\overline{D} \left(\emptyset, p_0 \right) \) be the largest number \(l \) such that there exists a sequence \(S_n \) of oriented half-open squares, such that \(p_0 \in S_n^o \) for each \(n \), \(\lim_{n \to \infty} A(S_n) = 0 \) and \(\lim_{n \to \infty} \frac{\partial (S_n)}{A(S_n)} = 1 \). For the purpose of this discussion may be \(\pm \infty \). \(\overline{D} \left(\emptyset, p_0 \right) \) is called the upper derivative of \(\emptyset \) at \(p_0 \).
3.8 Definition: Let \(D(\emptyset, p_0) \) be the smallest number 1 such that there exists a sequence \(\{S_n\} \) of oriented half-open squares, such that \(p_0 \in S_n^o \) for each \(n \), \(\lim A(S_n) = 0 \) and \(\lim_{n \to \infty} \frac{\phi(S_n)}{A(S_n)} = 1 \). Again 1 may be \(\pm \infty \). \(D(\emptyset, p_0) \) is called the lower derivative of \(\emptyset \) at \(p_0 \).

3.9 \(-\infty \leq D(\emptyset, p_0) \leq \bar{D}(\emptyset, p_0) \leq +\infty \)

Proof: The proof follows immediately from the preceding definitions.

3.10 If \(\emptyset \) is of Type A, then \(0 \leq D \leq \bar{D} \leq +\infty \).

Proof: \(\emptyset(S) \geq 0 \) for all \(S \in \emptyset \). \(A(S) \geq 0 \).

\(\therefore \frac{\emptyset(S)}{A(S)} \geq 0 \) for all \(S \). Thus, it follows that \(D \geq 0 \).

3.11 \(\emptyset \) has a derivative \(\emptyset'(p_0) \) at \(p_0 \) if and only if, for every sequence \(\{S_n\} \) of squares such that \(p_0 \in S_n^o \) for each \(n \), and \(\lim A(S_n) = 0 \), then

\[\lim_{n \to \infty} \frac{\phi(S_n)}{A(S_n)} = \emptyset'(p_0). \]

Proof: 1. Suppose \(\emptyset \) has a derivative \(\emptyset'(p_0) \) at \(p_0 \). Suppose \(\{S_n\} \) is a sequence of squares such that \(p_0 \in S_n^o \) for each \(n \), and \(\lim A(S_n) = 0 \).

\[\lim_{n \to \infty} \frac{\phi(S_n)}{A(S_n)} = \emptyset'(p_0). \] Give \(\varepsilon > 0 \). There exists \(\varepsilon > 0 \) such that if \(A(S) < \varepsilon \), \(p_0 \in S^o \) then \(\left| \frac{\phi(S)}{A(S)} - \emptyset'(p_0) \right| < \varepsilon \). There exists an integer \(m \) such that if \(n > m \) then \(A(S_n) < \varepsilon \), \(p_0 \in S_n^o \). Then

\[\left| \frac{\phi(S_n)}{A(S_n)} - \emptyset'(p_0) \right| < \varepsilon . \] This implies that \(\lim_{n \to \infty} \frac{\phi(S)}{A(S)} \) exists and equals \(\emptyset'(p_0) \).

2. Suppose for every sequence \(\{S_n\} \) of squares such that \(p_0 \in S_n^o \) for each \(n \) and \(\lim A(S_n) = 0 \), then \(\lim_{n \to \infty} \frac{\phi(S_n)}{A(S_n)} = L \). Suppose \(\emptyset'(p_0) \neq L \).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
There exists $\epsilon_0 > 0$ such that no $\delta > 0$ works. In particular, $\frac{1}{n}$ does not work for each n.

There exists S_1 such that $A(S_1) < 1$, $p_0 \in S_1^o$ and $\left| \frac{\phi(S_1)}{A(S_1)} - L \right| \geq \epsilon_0$.

There exists S_2 such that $A(S_2) < \frac{1}{2}$, $p_0 \in S_2^o$ and $\left| \frac{\phi(S_2)}{A(S_2)} - L \right| \geq \epsilon_0$.

Continue this process.

There exists S_m such that $A(S_m) < \frac{1}{m}$, $p_0 \in S_m^o$ and $\left| \frac{\phi(S_m)}{A(S_m)} - L \right| \geq \epsilon_0$.

Continue indefinitely. We obtain a sequence $\{S_m\}$ such that $p_0 \in S_m^o$ for each m, $\lim A(S_m) = 0$, but $\lim \frac{\phi(S_m)}{A(S_m)} \neq L$. This contradicts the hypothesis and hence we conclude that $\emptyset'(p_0) = L$.

3.12 $\emptyset'(p_0)$ exists if and only if $D(\emptyset, p_0)$ and $D(\emptyset, p_0)$ are finite and equal.

Proof: 1. Suppose $\emptyset'(p_0)$ exists. Then for every sequence of squares $\{S_n\}$ such that $p_0 \in S_n^o$ for each n and $\lim A(S_n) = 0$, $\lim \frac{\phi(S_n)}{A(S_n)} = \emptyset'(p_0) < |N|$. Then by definition $D(\emptyset, p_0) = D(\emptyset, p_0) = \emptyset'(p_0)$ and is finite.

2. Suppose $D(\emptyset, p_0)$ and $D(\emptyset, p_0)$ are finite and equal. Let $\{S_n\}$ be such that $p_0 \in S_n^o$ for each n and $\lim A(S_n) = 0$. Suppose $\lim \frac{\phi(S_n)}{A(S_n)}$ does not exist. Let $q_n = \frac{\phi(S_n)}{A(S_n)}$ for each n. There exists a subsequence $\{q_{n_k}\}$ of $\{q_n\}$ such that $\lim q_{n_k} = r$. Since $\lim q_n$ does not exist there exists $\delta > 0$ such that infinitely many terms of $\{q_n\}$ do not belong to $N(r, \delta)$. These terms form a subsequence $\{q_{m_k}\}$ of $\{q_n\}$. There exists a subsequence $\{q_{m_{k_1}}\}$ of $\{q_{m_k}\}$ such that $\lim q_{m_{k_1}}$ exists but is different from r.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
from \mathbf{r}, \(\lim q_{m_{k_{1}}} = \mathbf{r} \), \(\lim q_{m_{k_{2}}} = t \) \(t \neq \mathbf{r} \). Since $D(\emptyset, P_{0})$ and $D(\emptyset, P_{0})$ are finite and equal to say Q, we know that $\mathbf{r} = t = Q$. This is a contradiction and we conclude that $\lim_{n \to \infty} \frac{\phi(S_{n})}{A(S_{n})}$ does exist.

3.13 Suppose \emptyset and λ are two rectangle functions. Let $K = \emptyset + \lambda$, and suppose $\emptyset'(P_{0})$ and $\lambda'(P_{0})$ exist, then $K'(P_{0}) = \emptyset'(P_{0}) + \lambda'(P_{0})$.

Proof: Give $\varepsilon > 0$. $\lim_{p_{0} \in S_{0}, A(S) \to 0} \frac{\phi(S)}{A(S)}$ exists and equals $\emptyset'(P_{0})$. There exists $\delta_{\emptyset} > 0$ such that if $A(S) < \delta_{\emptyset}$ and $p_{0} \in S_{0}$, then $\left| \frac{\lambda(S)}{A(S)} - \lambda'(P_{0}) \right| < \frac{\varepsilon}{2}$. Let $\delta = \min \delta_{\emptyset}$ and δ_{λ}. If $A(S) < \delta$,

then $\left| \frac{\lambda(S)}{A(S)} - \lambda'(P_{0}) \right| = \left| \frac{\phi(S)}{A(S)} + \frac{\lambda(S)}{A(S)} \right| - \left(\emptyset'(P_{0}) + \lambda'(P_{0}) \right) \leq \left| \frac{\phi(S)}{A(S)} - \emptyset'(P_{0}) \right| + \left| \frac{\lambda(S)}{A(S)} - \lambda'(P_{0}) \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.

3.14 Suppose \emptyset is a rectangle function. Let $\beta = a\emptyset$ where a is any real number, and suppose $\emptyset'(P_{0})$ exists. Then $\beta'(P_{0}) = a\emptyset'(P_{0})$.

Proof: Give $\varepsilon > 0$. There exists $\delta > 0$ such that if $A(S) < \delta$,

then $p_{0} \in S_{0}$, then $\left| \frac{\phi(S)}{A(S)} - \emptyset'(P_{0}) \right| < \frac{\varepsilon}{|a|}$. $\left| \frac{a\phi(S)}{A(S)} - a\emptyset'(P_{0}) \right| = |a| \left| \frac{\phi(S)}{A(S)} - \emptyset'(P_{0}) \right| < \varepsilon$.

3.15 If $\emptyset'(P_{0})$ exists, then $\lim_{p_{0} \in S_{0}, A(S) \to 0} \frac{\beta(S)}{A(S)} = 0$.

Proof: Give $\varepsilon > 0$. Suppose $\varepsilon_{\beta} = 1$. There exists $\delta_{\varepsilon} > 0$ such that
if \(A(S) < \delta \), and \(p_o \in S^o \), then \[\left| \frac{\phi(S)}{A(S)} - \phi'(p_o) \right| < 1 \]
i.e. \(A(S) (\phi'(p_o) - 1) < \phi(S) < A(S)(\phi'(p_o) + 1) \).

Let \(M = \max \left| \phi'(p_o) - 1 \right|, \left| \phi'(p_o) + 1 \right| \). Let \(\varepsilon = \min \delta, \frac{\varepsilon}{M} ; \varepsilon > 0 \). Suppose \(A(S) < \delta \), \(p_o \in S^o \), \(|\phi(S)| < \varepsilon \).

max. \(A(S) \left| \phi'(p_o) + 1 \right|, \ A(S) \left| \phi'(p_o) - 1 \right| = \)

\(A(S) \max. \left| \phi'(p_o) + 1 \right|, \left| \phi'(p_o) - 1 \right| = A(S) \cdot M \leq \frac{\varepsilon}{M} \cdot M = \varepsilon \).

\[\lim_{p_o \in S^o} \phi'(p_o) = 0. \]

3.16 If \(\phi'(p_o) \) and \(\lambda'(p_o) \) exist and if \(K = \partial: \lambda \), then \(k'(p_o) \) exists and \(k'(p_o) = 0 \).

Proof: \(\frac{K(S)}{A(S)} = \frac{\phi(S) \lambda(S)}{A(S)} = \phi(S) \cdot \frac{\lambda(S)}{A(S)} \).

The existence of \(\phi'(p_o) \) implies \(\lim_{p_o \in S^o} \phi(S) = 0. \)

\[\lim_{p_o \in S^o} \frac{K(S)}{A(S)} = \lim_{p_o \in S^o} \frac{\phi(S) \lambda(S)}{A(S)} = \lim_{p_o \in S^o} \phi(S) \lim_{p_o \in S^o} \frac{\lambda(S)}{A(S)} = 0 \lambda'(p_o) = 0. \]

3.17 Let \(\mathcal{B} \) denote the class of Borel sets in the plane. Let \(\mathcal{X} \) denote the class of Lebesgue measurable sets in the plane. Then \(\mathcal{B} \subset \mathcal{X} \).

Proof: By definition \(\mathcal{B} \) is the smallest class of sets in the plane which contains the open sets and which is closed under the formation of countable unions (sums) and countable intersections (products). Since \(\mathcal{X} \) contains the open sets and is also closed under the formation of countable unions and intersections, \((1.46, 1.47, 1.51) \), it follows that \(\mathcal{B} \subset \mathcal{X} \).

3.18 Definition. A function \(\phi \) defined on a set \(E \) will be said to be Borel
measurable on E if for every real number a the set of points $E_p \{ p \in E, \phi(p) > a \}$ is a Borel set.

3.19 The upper and lower derivatives are Borel measurable functions.

Proof: The proof will be given for the upper derivative. A similar proof will give the conclusion for the lower derivative.

Let a be any real number. Let S be a generic notation for an oriented square. For every pair of positive integers m and n, let E_{amn} be defined as follows.

$$E_{amn} = \sum S^0,$$

where the summation is extended over those squares S for which $A(S) < \frac{1}{n}$, and $\frac{\phi(S)}{A(S)} > \alpha + \frac{1}{n}$.

Let E_a denote the set of points p such that $\exists \epsilon > 0 \forall p \in E_a$.

We shall verify the following identity.

$$E_a = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} E_{amn}.$$

E_{amn} is an open set, since it is a sum of open sets. Thus E_a is a Borel set and the conclusion will follow.

Suppose $p \in E_a$. $D(\emptyset, p) > a$. There exists a sequence of oriented half-open squares $\{ S_i \}$ such that for each i, $p \in S_i^0$, $\lim_{i \to \infty} A(S_i) = 0$ and $\lim_{i \to \infty} \frac{\phi(S_i)}{A(S_i)} > a$. Choose an integer m so that $a - \frac{1}{m} < D(\emptyset, p)$. Let n be any positive integer. Then there exists an integer k such that if $i > k$, then $\frac{\phi(S_i)}{A(S_i)} > a + \frac{1}{m}$ and such that $A(S_i) < \frac{1}{n}$. Therefore we see that $p \in E_{amn}$ for a fixed m and any n.

$E_a \subset \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} E_{amn}.$

Suppose $p \in \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} E_{amn}$. There exists an integer m such that...
\[p \in \bigcup_{n=1}^{\infty} E_{amn}. \ p \in E_{am}, \] implies that there exists \(S \), such that \(A(S) < \frac{1}{m} \),
\[\frac{\phi(S)}{A(S)} > a + \frac{1}{m}, \] and \(p \in S^o \). Continue this process.

\[p \in E_{ami}, \] implies that there exists \(S_i \) such that \(A(S_i) < \frac{1}{i} \),
\[\frac{\phi(S_i)}{A(S_i)} > a + \frac{1}{m}, \] and \(p \in S_i^o \).

Continue this process indefinitely.

We obtain a sequence \(\{ S_i \} \) such that \(p \in S_i^o \) for each \(i \), \(\lim_{i \to \infty} A(S_i) = 0 \)
and \(\frac{\phi(S_i)}{A(S_i)} > a + \frac{1}{m} \) for each \(i \). There exists a subsequence \(\{ S_{i_k} \} \) of \(\{ S_i \} \)
such that \(\lim_{k \to \infty} \frac{\phi(S_{i_k})}{A(S_{i_k})} \geq a + \frac{1}{m} \) \(> a, p \in S_{i_k}^o \), and \(\lim_{k \to \infty} A(S_{i_k}) = 0 \).

\[\mathbb{D}(\emptyset, p) > a \] and \(p \in E_a. \)

We shall verify that \(\bigcup_{m=1}^{\infty} E_{amn} \subseteq E_a \) and hence \(E_a = \bigcup_{m=1}^{\infty} E_{amn} \).

3.20 Let \(R_o \) be a fixed, oriented half-open rectangle.

\(E_p \{ p \in R^o, \mathbb{D}(\emptyset, p) = \mathbb{D}(\emptyset, p) \} \) is a Borel set.

Proof: The following identity is easily verified.

\[E_p \{ p \in R^o, \mathbb{D}(\emptyset, p) = \mathbb{D}(\emptyset, p) \} = \bigcup_{n=1}^{\infty} E_p \{ p \in R^o, \mathbb{D}(\emptyset, p) \geq \mathbb{D}(\emptyset, p) - \frac{1}{n} \} = \]

If we can show that \(E_p \{ p \in R^o, \mathbb{D}(\emptyset, p) \geq \mathbb{D}(\emptyset, p) - \frac{1}{n} \} \) is a Borel set it will follow that \(\bigcup_{n=1}^{\infty} E_p \{ p \in R^o, \mathbb{D}(\emptyset, p) \geq \mathbb{D}(\emptyset, p) - \frac{1}{n} \} \) is a Borel set.

\[E_p \{ p \in R^o, \mathbb{D}(\emptyset, p) \geq \mathbb{D}(\emptyset, p) - \frac{1}{n} \} = E_p \{ p \in R^o, \mathbb{D}(\emptyset, p) \leq \mathbb{D}(\emptyset, p) + \frac{1}{n} \} \]

Let \(\{ r_k \} \) denote the sequence of rational numbers. Let \(a \) be any real number. If \(E_p \{ \mathbb{D}(\emptyset, p) - \mathbb{D}(\emptyset, p) > a \} \) is a Borel set, it is easy to show that \(E_p \{ \mathbb{D}(\emptyset, p) - \mathbb{D}(\emptyset, p) > a \} \) is also a Borel set.

We shall verify that \(E_p \{ p \in R^o, \mathbb{D}(\emptyset, p) - \mathbb{D}(\emptyset, p) > a \} = \sum_{k=1}^{\infty} E_p \{ p \in R^o, \mathbb{D}(\emptyset, p) > r_k \} \cdot E_p \{ \mathbb{D}(\emptyset, p) < r_k - a \}. \]

From the preceding theorem we know that for each \(k \), \(E_p \{ p \in R^o, \mathbb{D}(\emptyset, p) > r_k \} \)
and \(E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) < r_k - a \right] \) are Borel sets and hence that
\[
\sum_{k=1}^{\infty} E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) > r_k \right] \cdot E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) < r_k - a \right]
\]
is a Borel set.

Suppose \(p_o \in \sum_{k=1}^{\infty} E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) > r_k \right] \).

E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) < r_k - a \right]. Then for some \(k, p_o \in E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) > r_k \right] \)
\(p_o \in E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) < r_k - a \right] \). \(\overline{D}(\emptyset, p) \geq a - r_k, \overline{D}(\emptyset, p_o) \geq r_k \).
\(\overline{D}(\emptyset, p_o) - \overline{D}(\emptyset, p) > a; p_o \in E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) - \overline{D}(\emptyset, p) > a \right] \).
\[
\sum_{k=1}^{\infty} E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) > r_k \right] \cdot E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) < r_k - a \right]
\]
\(\subseteq \)
\[
E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) - \overline{D}(\emptyset, p) > a \right] \cdot \overline{D}(\emptyset, p) \geq \overline{D}(\emptyset, p) + a
\]
There exists a rational number \(r_k \) such that
\(\overline{D}(\emptyset, p_o) > r_k \geq a + \overline{D}(\emptyset, p_o). \overline{D}(\emptyset, p_o) > r_k, \overline{D}(\emptyset, p_o) < r_k - a \).
\(p_o \in E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) > r_k \right] \cdot E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) < r_k - a \right] \) for some \(k \).
\(\therefore E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) - \overline{D}(\emptyset, p) > a \right] \subseteq \sum_{k=1}^{\infty} E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) > r_k \right] \cdot E_p \left[p \in R_o^c, \overline{D}(\emptyset, p) < r_k - a \right] \)
Thus the identity is established.

3.21 If \(R_o \) is a fixed, oriented half-open rectangle, and if \(E \) is the set of points \(p \) of \(R_o^c \) for which the derivative \(\emptyset'(p) \) is defined, then \(E \) is a Borel set.

Proof: The set \(E \) is by definition the set of points \(p \) of \(R_o^c \) for which the following three conditions hold simultaneously.

1. \(-\infty < \overline{D}(\emptyset, p) < +\infty \)
2. \(-\infty < \underline{D}(\emptyset, p) < +\infty \)
3. \(\overline{D}(\emptyset, p) = \underline{D}(\emptyset, p) \)
Each of these three sets is a Borel set, hence E is the intersection of three Borel sets and is itself a Borel set. The set E may of course be empty, but \emptyset is a Borel set (an open set).

3.22 Definition. A family \mathcal{F} of closed oriented squares is said to be a Vitali covering of a set E, if $E \subseteq \sum_{G \in \mathcal{F}} G$, and if $p \in E$, there exists a sequence $\{S_n\}$ of squares of \mathcal{F} such that $p \in S_n$ for each n and $\lim_{n \to \infty} A(S_n) = 0$.

3.23 If E is a bounded measurable set and if \mathcal{F} is a Vitali covering of E, then there exists a countable sequence $\{S_n\}$ of disjoint squares of \mathcal{F} such that $\mu(E - \sum_{n=1}^{\infty} S_n) = 0$.

Proof: Let U be a bounded open set containing E. Discard from \mathcal{F} all sets not contained in U. Define $e(S) = \frac{1}{2}$ side of S for each set S in \mathcal{F}.

The sequence $\{S_n\}$ will be defined inductively. Choose S_1 arbitrarily. After having chosen the sets S_1, \ldots, S_p, it is possible that $\sum_{n=1}^{p} S_n$ contains all of E. In this case the proof is complete.

Otherwise, there will exist a point x_0 of E not in $\sum_{n=1}^{p} S_n$ which is a closed set, being a finite sum of closed sets. $x_0 \in \bigcap_{n=1}^{p} S_n$ which is open. There exists $\delta > 0$ such that $N(x_0, \delta) \subseteq \bigcap_{n=1}^{p} S_n$. There exists $\{S_n\}$ where $S_n' \in \mathcal{F}$ for each i such that $\lim_{n \to \infty} A(S_n') = 0$ and $x_0 \in S_n'$ for each n. All but a finite number of the squares of this sequence are contained in $N(x_0, \delta)$. Thus there exist infinitely many squares S_n' such that $S_n' \subseteq \sum_{n=1}^{\infty} S_n = \emptyset$. Let $p + 1$ be l.u.b. $e(S_n')$ for S_n'.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
fulfilling this condition. Choose \(S_{p+1} \) to be a set of \(\emptyset \) having no points in common with \(\sum_{n=1}^{p} S_n \) and such that \(e(S_{p+1}) > \frac{\varepsilon_{p+1}}{2} \). This inductively exhibits a countable sequence of sets \(\{ S_n \} \). We must show that this is the sequence which satisfies the conditions of the theorem.

\[
\sum_{n=1}^{\infty} S_n \subseteq U, \quad S_i \cap S_j = \emptyset \text{ if } i \neq j,
\]

from the method of selection of the sets of \(\{ S_n \} \). We must show that \(\mu(E - \sum_{n=1}^{\infty} S_n) = 0 \).

Deny this. Suppose \(\mu(E - \sum_{n=1}^{\infty} S_n) > 0 \). Let \(x_n \) be the center point of the square \(S_n \) for each \(n \). Consider the square \(S_n^* \) having center \(x_n \) and such that \(e(S_n^*) = 5e(S_n) \). \(\mu(S_n^*) = 5^2 \mu(S_n) \).

The series \(\sum_{n=1}^{\infty} \mu(S_n) \) converges, since \(\{ S_n \} \) is a sequence of disjoint closed sets all contained in a set \(U \) of finite measure.

\[
\therefore \sum_{n=1}^{\infty} \mu(S_n^*) \text{ also converges. Since } \mu(E - \sum_{n=1}^{\infty} S_n) > 0,
\]

there exists an integer \(N \) such that \(\sum_{n=N+1}^{\infty} \mu(S_n^*) < \mu \left(E - \sum_{n=1}^{N} S_n \right) \).

\[
\mu \left(\sum_{n=N+1}^{\infty} S_n^* \right) \leq \sum_{n=N+1}^{\infty} \mu(S_n^*) < \mu \left(E - \sum_{n=1}^{N} S_n \right). \quad (1.26)
\]

\[
\therefore E - \sum_{n=1}^{N} S_n \neq \sum_{n=N+1}^{\infty} S_n. \quad (1.20)
\]

There exists \(x_0 \) such that \(x_0 \in E - \sum_{n=1}^{N} S_n \) and \(x_0 \notin \sum_{n=N+1}^{\infty} S_n^* \). \(x_0 \notin \sum_{n=1}^{N} S_n \), \(x_0 \in E \).

As previously there exists \(\delta > 0 \) such that \(N(x_0, \delta) \cdot \sum_{n=1}^{N} S_n = \emptyset \).

Again we choose a set \(S \in \mathcal{F} \), such that \(x_0 \in S \) and such that

\[
S - \sum_{n=1}^{N} S_n = \emptyset.
\]
This leaves two cases; either the set S has a point in common with some S_n, $n > N$, or it has not.

Case 1. Suppose the set S has no point in common with any S_n. For each integer p, $S \sum_{n=1}^{p} S_n = \emptyset$. Let e_{p+1} be the l.u.b. of $e(S')$ for all $S' \subseteq A$ and such that $S' \sum_{n=1}^{p} S_n = \emptyset$. $e_{p+1} \geq e(S)$. By the law of formation of $\{S_n\}$, $e(S_{p+1}) > \frac{e(S)}{2}$.

$e(S_{p+1}) = 5e(S_{p+1}) > \frac{5e(S)}{2}$. The side of S_{p+1} is greater than $5e(S)$.

$\mu(S_{p+1}) > (5e(S))^2$. $(5e(S))^2$ is a positive number independent of p.

This is a contradiction since the series $\sum_{n=1}^{\infty} \mu(S_n)$ converges.

\[\mu \left(\bigcup_{n=1}^{\infty} S_n \right) = 0. \]

Case 2. Suppose there is an n such that S_n has a point in common with S.

Let $p+1$ be the least integer such that S_{p+1} and S have a point in common, let $x \in S \cdot S_{p+1}$. From the above $p+1$ cannot be any integer $1, 2, \ldots, N$, i.e. $p \geq N$.

Since $S \subseteq A$ and $S \sum_{n=1}^{p} S_n = \emptyset$, $e_{p+1} \geq e(S)$.

$e(S_{p+1}) > \frac{e(S)}{2}$. x and x_o both belong to S.

Let $x = (a, b)$ and $x_o = (a_o, b_o)$. Then $|a_o - a| \leq 2e(S)$ and $|b_o - b| \leq 2e(S)$. $x_1 \subseteq S_{p+1}$. If x_{p+1} is the center of S_{p+1} and $x_{p+1} = (a_{p+1}, b_{p+1})$, $|a - a_{p+1}| \leq e(S_{p+1})$ and $|b - b_{p+1}| \leq e(S_{p+1})$.

$|a_o - a_{p+1}| \leq |a_o - a| + |a - a_{p+1}| \leq 2e(S) + e(S_{p+1})$. $x_{p+1} = (a_{p+1}, b_{p+1}) < 5e(S_{p+1})$.
The last two inequalities imply that $x_0 \leq S_{p+1}^*$, but $p+1 > N$ and this contradicts a previous condition on x_0. Again $\mu(E - \sum_{n=1}^{\infty} S_n) = 0$.

3.24 If R_0 is an oriented half-open rectangle, and if ϕ is of type A in R_0, then its derivative $\phi'(p)$ exists almost everywhere in R_0 and is summable in R_0.

Furthermore, for every oriented rectangle $R \subset R_0$ we have the inequality $\int_{R} \phi'(p) d\mu \leq \phi(R)$.

Proof: The proof will be based on several preliminary statements.

(a) Let E be the subset of R_0° where $D(\phi, p) = \alpha$. Then $\mu(E) = \phi(R)$.

Proof: Let \mathcal{J} be the family of those oriented closed squares S that satisfy the following conditions: $S \subset R_0$, $\frac{\phi(S)}{A(S)} > \alpha$. It is clear that the squares of \mathcal{J} form a Vitali covering for E_α. (3.22) Hence there are a countable number of squares of \mathcal{J}, $\{S_n\}$ such that $S_i \cdot S_j = \emptyset$ if $i \neq j$ and $\mu(E - \sum_{n=1}^{\infty} S_n) = 0$. (3.23) Since ϕ is of type A, it follows that for every positive integer k the inequality $\phi(R_0) \geq \phi(S_1) + \phi(S_2) + \ldots + \phi(S_k) > \alpha (\mu(S_1) + \mu(S_2) + \ldots + \mu(S_k))$ holds. (3.4).

Since $\sum_{n=1}^{\infty} S_n$ and E_{α} are measurable sets, it follows that

$$
\mu(E_{\alpha}) = \mu(E_{\alpha} - \sum_{n=1}^{\infty} S_n) + \mu(E_{\alpha} \cap \sum_{n=1}^{\infty} S_n) =
\mu(E_{\alpha} - \sum_{n=1}^{\infty} S_n) = \mu(E_{\alpha} \cdot \sum_{n=1}^{\infty} S_n). (1.33)
$$
\[\sum_{n=1}^{\infty} \mu(S_n) = \sum_{n=1}^{\infty} \mu(E_\alpha \cap S_n) = \mu(E_\alpha) \]

\[\phi(R_o) = \sum_{n=1}^{\infty} \mu(S_n) = \mu(E_\alpha), \text{ which is obtained from the} \]

above by letting \(k \) tend to infinity.

(b) Since \(\phi \) is of type A in every oriented rectangle, \(R \subset R_o \) also, \((a) \) implies the inequality \(\alpha \mu(E_\alpha \cdot R) \leq \phi(R) \) for all such rectangles \(R \).

(c) Let \(E^* \) be the subset of \(R_o^0 \) where \(\overline{D}(\phi,p) = +\infty \). Then \(\mu(E^*) = 0 \). That is \(\overline{D}(\phi,p) < +\infty \) almost everywhere in \(R_o \).

Proof: \(E^* \subset E_\alpha \) for all \(\alpha > 0 \). \(\mu(E_\alpha) \leq \frac{\phi(R_o)}{\alpha} \) from (a).

Give \(\varepsilon > 0 \). Choose \(\alpha \) so that \(\alpha > \frac{\phi(R_o)}{\varepsilon} \). \(\mu(E^*) \leq \mu(E_\alpha) \leq \frac{\phi(R_o)}{\alpha} < \varepsilon \).

\[\mu(E^*) = 0. \]

(d) The subset \(E^\# \) of \(R_o^0 \) where \(D(\phi,p) < \overline{D}(\phi,p) \) is of measure zero.

Proof: Deny. Suppose \(\mu(E^\#) > 0 \). Then there exist rational numbers \(0 < x < y \) such that the subset \(E_{xy} \) of \(R_o \) where \(D(\phi,p) < x < y < \overline{D}(\phi,p) \) is of positive measure. Give \(\varepsilon > 0 \). There exists an open set \(G \) such that \(E_{xy} \subset G \subset R_o^0 \) and \(\mu(G) < \mu(E_{xy}) + \varepsilon \). \((1.72) \). Let \(\mathcal{F} \) denote the family of oriented closed squares \(S \) in \(G \) such that \(\emptyset(S)/A(S) < x \). Clearly, the squares constitute a Vitali covering of \(E_{xy} \). \((3.22) \) Hence \(\mathcal{F} \) contains a countable sequence \(\{S_n\} \) of disjoint squares such that \(\mu(E_{xy} - \sum_{n=1}^{\infty} S_n) = 0 \). \((3.23) \). We obtain the following inequalities.

\[\sum_{n=1}^{\infty} \emptyset(S_n) < x \sum_{n=1}^{\infty} \mu(S_n) = x \mu(G) < x (\mu(E_{xy}) + \varepsilon). \]

From (b) we have \(\sum_{n=1}^{\infty} \emptyset(S_n) \geq \sum_{n=1}^{\infty} \mu(E_{xy} \cdot S_n) = \sum_{n=1}^{\infty} \mu(E_{xy} \cdot S_n) = \sum_{n=1}^{\infty} \mu(E_{xy} \cdot S_n) = \mu(E_{xy}) \). We notice that while each square \(S_n \) was originally taken to be closed we may replace it by its corresponding half-
open square in the above inequalities, since this merely entails deleting
in each case a set of measure 0. Since ϵ was arbitrary it follows that
$\mu(E_{xy}) \geq y \mu(E_{xy})$. Since $\mu(E_{xy})$ was assumed to be positive, we have
$x = y$ which is a contradiction. Therefore, we conclude that $\mu(E_{xy}) = 0$,
and hence that $\mu(E_k) = 0$.

(c) and (d) together imply that $\varphi'(p)$ exists almost everywhere in R_0^o,
and this proves the first part of the theorem.

Let us denote, for each positive integer n and each point
$p = (u, v)$ in R_0, by \mathcal{K}_n the collection of all squares $S \subseteq R_0$ of the form
$(i-1)/n \leq u \leq i/n$, $(j-1)/n \leq v \leq j/n$ where i, j are integers (positive,
negative, or zero). For given n, the collection \mathcal{K}_n is finite, since R_0
is bounded. Let us replace each square $S_n \in \mathcal{K}_n$ by a somewhat smaller
oriented square S_{-n} having the same center, such that $\sum_{S_n \in \mathcal{K}_n} \mu(S_n) = \frac{1}{n}$.

Let G_n denote the set of interior points of all the squares S_{-n} for
given n. G_n is an open set and $\lim_{n \to \infty} \mu(R_0 - G_n) = 0$. We have a subsequence
$\{G_{n_k}\}$ such that $\lim_{k \to \infty} \mu(R_0 - G_{n_k}) = 0$. Let $F_m = \bigcap_{k=m}^{\infty} G_{n_k}$.

Then $\lim_{m \to \infty} \mu(R_0 - F_m) = 0$. Let us define for each positive integer k, a
function $g_k(p)$ in R_0 as follows. If p is an interior point of some square
S_{-n_k}, then $g_k(p) = \varphi(S_{-n_k}) / A(S_{-n_k})$. Otherwise $g_k(p) = 0$. Clearly, since
φ is of type A, $\int_{R_0} g_k(p) d\mu \leq \varphi(R_0)$.

Let m be a positive integer and let p be a point of F_m such that
$\varphi'(p)$ exists. Then $p \in G_{n_k}$ for $k \geq m$ and hence $g_k(p)$ is equal to a
quotient of the form $\varphi(S) / A(S)$ where S is one of the squares S_{-n_k} and
p is an interior point of S. Hence $\lim_{k \to \infty} g_k(p) = \varphi'(p)$. Since $\varphi'(p)$
exists almost everywhere in \(R^o \), it follows that \(\lim_{k \to \infty} g_k(p) = \varphi'(p) \)

almost everywhere on \(F_m, \) \(m = 1, 2, \ldots \). Since \(\lim_{m \to \infty} \mu(R_0 - F_m) = 0 \), it follows that \(\lim_{k \to \infty} g_k(p) = \varphi'(p) \) almost everywhere in \(R_0 \). Since \(g_k(p) \)
is a non-negative measurable function in \(R_0 \), from 2.72 we conclude that

\[
\int_{R_0} \varphi'(p) d\mu \leq \varphi(R_0).
\]

Since \(\varphi \) is of type \(A \) in every oriented half-open rectangle \(R \subset R_0 \), we can replace \(R_0 \) by any such rectangle \(R \) and the proof is complete.

The theory presented in this chapter does not depend upon the dimensionality involved. Whereas it has been presented in the two-dimensional case, it generalizes immediately to the one-dimensional case.

In this case we should consider interval functions, i.e. functions whose domain of definition is the class of half-open intervals of the form \(E_x[\{ a \leq x < b \}] \), indicated \([a, b) \).

We would define the one-dimensional derivative as follows. If \(I \) is a half-open interval, then \(\varphi'(x) = \lim_{x \to I^o} \varphi(I) \) provided that this limit exists, where \(\varphi \) is an interval function and \(l(I) \) denotes the length of \(I \).

If \(f(x) \) is an increasing function of a real variable, and if \(I = [a, b) \) then we can define a function \(\varphi(I) = f(b) - f(a) \). It is easily seen that an interval function thus defined is of type \(A \). We may apply 3.24 to conclude that if \(I_0 \) is a fixed half-open interval, then \(\varphi'(x) \) exists at almost every point \(x \) of \(I_0 \).

\(\varphi'(x) \) thus defined has a direct application to the ordinary derivative of differential calculus. \(\varphi'(x_o) \) is called the straddling derivative of
f(x) at \(x_0 \). We shall explicitly define the straddling derivative and then prove two theorems which will show its relationship to the ordinary derivative of calculus.

3.25 Definition. \(f_s'(x_0) \), the straddling derivative of \(f(x) \) at \(x_0 \) is defined as \[f_s'(x_0) = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_2 - x_1}, \] provided that this limit exists. \(f(x) \) is not here assumed increasing. It is easily seen that this definition is equivalent to that given above.

3.26 If \(f(x) \) has a derivative at \(x_0 \), then \(f(x) \) has a straddling derivative at \(x_0 \), and the two derivatives are equal.

Proof: Give \(\varepsilon > 0 \). Let \(f'(x_0) \) denote the derivative of \(f(x) \) at \(x_0 \). The derivative is independent of the manner in which \(x \) approaches \(x_0 \).

\[
\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{x_2 - x_0}{x_2 - x_1} \cdot \frac{f(x_2) - f(x_1)}{x_2 - x_1} + \frac{x_0 - x_1}{x_2 - x_1} \cdot \frac{f(x_1) - f(x_0)}{x_1 - x_0}
\]

Choose \(\delta > 0 \) so that \(0 < |x - x_0| < \delta \) implies \(\frac{|f(x) - f(x_0)|}{x - x_0} < \frac{\varepsilon}{2} \).

Then, if \(x_0 \leq x_2 \leq x_0 + \delta \), and if \(x_0 - \delta < x_1 < x_0 \), we have

\[
\left| \frac{f(x_2) - f(x_1)}{x_2 - x_1} - f'(x_0) \right| = \left| \frac{f(x_2) - f(x_0)}{x_2 - x_0} f'(x_0) \right| + \left| \frac{f(x_1) - f(x_0)}{x_1 - x_0} f'(x_0) \right| \leq \frac{\varepsilon}{2}.
\]

Note that \(\frac{x_2 - x_0}{x_2 - x_1} + \frac{x_0 - x_1}{x_2 - x_1} = 1 \), \(|\frac{x_2 - x_0}{x_2 - x_1}| < 1 \), and \(|\frac{x_0 - x_1}{x_2 - x_1}| < 1 \).
If \(f(x) \) has a straddling derivative at \(x_0 \) and is continuous at \(x_0 \), then \(f(x) \) has a derivative at \(x_0 \) and the derivatives are equal.

Proof: Give \(\epsilon > 0 \). There exists \(\delta > 0 \) such that if
\[
x_0 < x_1 < x_0 + \delta \quad \text{and} \quad x_0 - \delta < x_1 < x_0
\]
then
\[
\frac{f(x_1) - f(x_0)}{x_1 - x_0} - f'(x_0) \leq \epsilon.
\]
Let \(x = x_1 \). Then
\[
f'(x_0) - \epsilon < \frac{f(x_2) - f(x)}{x_2 - x} < f'(x_0) + \epsilon.
\]
Similarly, let \(x = x_2 \).

If \(q \neq x_0 \) and if \(|q - x_0| < \delta \), then
\[
\frac{f(q) - f(x_0)}{q - x_0} - f'(x_0) \leq \epsilon.
\]
and we see that this implies that
\[
\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \quad \text{exists and is equal to} \quad f'(x_0).
\]

If we restrict \(f(x) \) to be an increasing function and define \(\emptyset \) as before, we can obtain a final conclusion. It is known that if \(f(x) \) is defined on \([a, b]\), then \(f(x) \) is continuous at all but perhaps a countable set of points.\(^1\) Since the straddling derivative exists almost everywhere on \([a, b]\) and since the set of discontinuities is a set of measure 0, it follows that \(f(x) \) is differentiable at almost every point of \([a, b]\).

\(^1\) Kamke, E. Theory of Sets. (Dover; New York, 1950) p. 4.
BIBLIOGRAPHY

