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INTRODUCTION

A basic problem of elementary algebra is solving a 
system of two linear equations in two unknowns. The general 
problem involving a system of n-linear equations in n un­
knowns can be solved in a variety of ways. Direct methods 
of solution such as Cramer's rule, Gaussian elimination, or 
straight forward matrix inversion and multiplication may be 
employed. Also iterative methods such as the Jacobi, Gauss- 
Seidel, or overrelaxation techniques may be used to solve 
the system.

Non-linear systems of equations are usually studied 
as equations involving nonlinear operators on abstract 
spaces. For example, a system of three nonlinear homoge­
nous equations in three real unknowns can be thought of as 
the equation F (x) = 0, where F : R ^  R^ is composed of three 
nonlinear functions f^:R^-^R, i = 1, 2, 3. A solution x* 
to the equation F(x) = 0 is thus a solution to the system 
f (x) — 0, i — 1, 2, 3,

In chapter one, the concepts of functional analysis 
necessary for analyzing operator equations on eibstract
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2

spaces are developed, Newton's method and related iter­
ative techniques for nonlinear systems are examined for 
convergence using the unified approach of Rheinboldt and 
Ortega in chapter two. Finally, in chapter three conditions 
are found to insure the convergence of the extended 
Gauss-Seidel iterative technique in R^,

It is assumed that the reader has a modest 
knowledge of linear algebra, including the basic vector 
space properties found in Halmos 7 , chapters one and
two.
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CHAPTER 1

Concepts of Functional Analysis 
The subject matter collected under the title functional 

analysis includes major portions of analysis, topology, and 
linear algebra« The development of all the concepts to be 
used in this paper would provide ample material for a text­
book. Thus, only a few basic definitions are stated 
and the less common results, crucial in the examination of 
iterative techniques for nonlinear operator equations are 
developed detail.

We shall reserve R to denote the real number system, 
and begin with a listing of basic properties.

Definition 1,1; A vector space is a set V associated 
with a field (F, +, •) such that the operations *;VxV-̂  V and 
\|>:FxV— ►V, where * (x,y) is denoted x + y and *(o,x) is denoted 
by ax, satisfy the following:
1) (V,+) is a commutative group,
2) aeF, x,y eV implies that a(x+y) = ax + ay.
3) o,$eF, xeV implies that {o + 6)x = aX + 6x,
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4) o,6eF, xeV implies that {o6)x = a(Bx),
5) xeV implies that Ix = x*

If F = R, then V is said to be a real vector space »
Definition 1,2: A real vector space V is said to be

n-dimensional if there exists a set { x^, ,.,, x̂, )cV such 
that c^eR, i = 1, o o o , c^x^ = 0, implies that

c? = 0̂  and for any subset { , o.., ŷ ,̂ ) of V contain­
ing n + 1 elements, there exists d^eR, i = 1, , n + 1, 
such that = 0̂  and d| > 0, A vector space V is
said to be finite dimensional if there exists a positive 
integer n such that V is n-dimensional,

Definition 1,3; Suppose M and N are vector spaces 
associated with the same field F. Suppose T;M-^N, Then 
T is said to be a linear operator if T(ox + By) = oT(x) + 
BT(y) for all x,yeM, o,BeF, In the special case where 
N = F = R ,  T is said to be a linear functional*

Definition 1*4; A real vector space V is said to 
be normed if there exists * :V -*-R, where *(x) is denoted 
by ||x||, satisfying the following:
1) xeV implies that | |x|| > 0 and ||x|| = 0 if and only if
X = 0.
2) XEV, aeR implies that j|ax|| = la|Hxl|,
3) xeV, y eV implies that | |x + y|j;< |)x|) + ||y[|.

Definition 1,5: If M and N are real normed vector
spaces, and if T:M -►N is a linear operator, then T is said 
to be bounded if there exists Ke R, K> 0 such that
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(lo51) ||T{x)j| << k| |xj I for all xeM* The least such K sat­
isfying (lo51) is said to be the norm of T and is denoted 
by l|T|l .

Note that if ||xj| = 1, then (1,51) becomes [|t (x )||< N,
and hence ||t [| = sup f|T(x)|) ,x e M

l|x||=l
Definition 1*6:A real normed vector space V is said 

to be complete if whenever { x^}, a sequence in V, is such
that lim ||x̂  - x̂ || =0, then there exists an xcV such that

m,n^*
lim 11 x^ - xj| =s 0 o i,e«, A real normed vector space V is 
n-»-®
complete if every Cauchy sequence in V is convergent in V, 

Definitionl^: A complete real normed vector space 
is said to be a Banach space or simply a B-space,

Theorem 1o11 Suppose X and Y are B-spaces * Then we 
shall let Dc— denote the set of all bounded linear op­
erators mapping X into Y» If we define ||f|| as above,
(F + G)(x) = F(x) + G(x), and (aF)(x) = a(F(x)) for all F,
Ge [x—#-Y] ,aeR, and xcX, then [x -+Y] is a B-space,

Proof: Clearly [x +Y) is a real normed vector space*
Suppose { }  is a Cauchy sequence of elements of the space 
[ x —*-Ŷ 0 Then given e > 0, there exists an NeR'*’ such that 
n,m, > N implies ||Un - Û || < e. Thus for any fixed xeX, 
||Û (x) - Û (x)|) < e||x|l, and so the sequence {U^(x)} of elem­
ents of Y is Cauchy* Y is complete, hence there exists

ReprocJucecJ with permission of the copyright owner. Further reproctuction prohibitect without permission.



U(x) = lim Ü (x) for xcX<, U is linear because U(x + y) =

lim U (x + y) = lim (u (x) + U (y)j = U(x) + U(y) and U(ox)=
n-H» ^ n-̂«“ \ ̂  /
lim U (ax) = a/lim Û (̂x)\ = aU (x) , Also, |JU(x) - U^(x) || =
n+- ^ \n-̂«> /
lim ||Û (x) - Uĵ (x)|l̂  E ||x|| for m > N, so the operator V,
n-̂oB
where V(x) = U(x) - U^(x) for xe X, is an element of the
space [x—►y ) o Thus U = V + U^E (x—►y] , so ||u - U^ll^ e for
n > N and {U^} converges to Ue [X— ŷI » Therefore |X— ►y] is 
complete, and hence a B-space,

Remarks ; 1) In the particular case where Y = R,
^— -̂r] corresponds to the adjoint space X* of X, (See
Halmos [7]) a

2) If X is a B-space, then we may define
a second operation on as follows ; if U, Ve (x—+x| ,
then ÜV = W where W e |x— such that W(x) = U(V(x>) for all 
xcXa In this case ||W(x)|| = ||U(V(x) )||< || U|;||v(x)||< ||u|| ||v||||x|
so|Iw||̂  ||uj||(v|jo With the two operations defined on pC -*-3̂ ,
(X— becomes a ring over R or |x— ►x) is a real algebra.
In the general case, given Ue (y— >-x] and Ve jx— we shall 
again define ÜV = W where We [x— ►x] such that W(x) = U (V(x) ) 
for all xeX,

Theorem 1,2; (Banach) Let X be a B-space and let 
Ue |X— ►X] o If||ulU q < 1 then the operation (I - U)'̂  
exists and is an element of |X— , Further, |j(I - U)"̂ ||<

1
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Proof! Let le |x—+x| be the identity mapping and 
define U® = I, u” = U^“^U for n = 1, 2, In view of the
above remark, we havellû 'Ĥ  11̂11*̂ for n = 0, 1, “"°o Then V = 

is convergent since ||v||$ ||Û 1| < ||U||̂ <
I 'j- .o = 1 9 Further, V(I - U) = (X - U) =

r  -  q

= U® = I, and similarly (I - Ü)V = I* Hence
Q CT

V = (I - U)-l, so (I - U)"l exists and ||{I - 1 .
1 -  q

In view of the fact that every n-dimensional real 
vector space is isomorphic to (see Halmos p, 15, [?J ) , we 
shall pay particular attention to this spaceo If xeR^, then 

/x, \
X = I • and we shall define ||x|| = max ix.i , With this norm, 

\x„y i=l, n ,
usually called the Tchebycheff norm, R^ is a B-spacec, Recal­
ling that Te [r —̂ ►R^ implies that T may be represented by 
nxm matrix, (see Halmos 7 ) , we have ||T|| =

an

max laul
i=l, °”,n

a o o o a“i!
‘ni

Definition lo8; Suppose X and Y are B-spaces, A is
an open subset of X, x^eA, and T:A~-»-Yo Suppose that there
exists Ue +Y| such that for every xeX,
(lo81) lim T(Xo + tx) - T(xo) = U(x), Then the linear 

tH-o — -̂---r --------
operator U is said to be the Gateaux derivative of T at the
point Xq , denoted U = T '(x^)« The element U(x) is called

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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the Gateaux differentialo If the convergence relationship 
is satisfied uniformly for all xeX such that ||xj| = 1, then 
U and U(x) are called the Frechet derivative and Frechet 
differential respectively,

Theorem 1,3; The operator T has a Frechet deriva­
tive at the point Xq if and only if there exists Ue |̂ —»Y] 
such that for every e > 0, there exists a 6 >0, such that 
AXeX, ||ûx||< 6 implies ||T(Xo + Ax) - T(Xg) - U( Ax)|| < 
ellAx||o

Proofs Let Ax = tx where ||x|[ = 1, Then ||a x || = t 
and statement (lo81) is equivalent to
(1.82) lim T(xo + Ax) - T(x©) - U(Ax) = 0, Now statement 

||Ax||-o f|3T|]
(1.82) converges uniformly if and only if given e > 0 there 
exists a 6 >0 such that AxeX, ||Axj| < 6 implies
T(Xp + Ax) - T(x*) - U(Ax) ^ e, or [|t (X(, + Ax) - T(x^)

f[ïxjT
U ( Ax)| ej|Ax||, yielding the desired result.

Corollary 1,31s If the operator F has a Frechet 
derivative at the point Xq , then F is continuous at x^. 

Proofs FXgE [x— implies that there exists McR"̂  
such that ||FXq (x )H^ M||x[|for all xeX, Given e > 0, there 
exists 6 > 0 such that 6 < e , and AxeX, ||Ax||< 6

£ + M

implies ||F(Xq + a x) - F(Xq)(| - |1FXq (a x)||$ || F(x^ + Ax) -
F(Xq) - FXg (Ax)||$ £ II Ax||, Then ||F(Xg + Ax) - F(XQ)||<
£|jAx|| + m||ax|| = (e + M)||ax||$ £,
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A useful tool of real analysis is the mean value 
theorem for differential calculus» The next theorem gives 
the generalized form of this result.

Theorem 1,4; Suppose X and Y are B-spaces, F:X—  
and F is Gateaux differentiable on the convex subset A of X, 
Then if x, y e A,
(1,41) ||Fy - Fx||< ||y - x|| sup ||F {6x + (1 -e )y|),

0< 0< 1
Proof: Let g be any functional in Y* and let *(t) =

g^F(x + t(y - x)̂  , Then *(t) has a derivative in the inter­
val [o, l] because: lim *(t + At) - *(t) =

At-̂ o
lim g (f(x + t(y - x) + At(y - x)) - F(x + t(y - x) ) ) =
At^o [ "" At    ^-------;
g flim F(x + t(y - x) + At(y - x)) - F{x + t(y - x)) \ = 

^At-0 At ------  j
g^'(x + t(y - X) ) (y - x)̂  » i,e, (̂t) = g(p'(x + t(y - x)̂
for te [O, ^ ,

Now, applying the mean value theorem of differential
calculus to *(t), we get <j>(l) - *(0) = *^(6) for some 0,
0 < 6 < 1, Thus substituting we get g^F(y) - F(x)^ =
g(r'(x +e (y - x) ) (y - x)^ , so ] g (p(y) - F(x)̂ || ^
||9|| sup j|F (x + e (y - x))j|||y - x||. By invoking a corollary 

0<e<l
of the Hahn-Banach theorem (See Vainberg L12J , p. 11) we may
choose g to be that functional in Y* such that ||g|j *= 1 and
g^F(y) - F(x)^ =||F(y) - F(x)||, Then upon substitution we
obtain ||F(y) - F(x)|| ̂  ||y - x|| sup jjF (ax + (1 - 0)y|l»

0< e< 1
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Corollary 1q41; Suppose X and Y are B-spaces y F:D<=X
F is Gateaux differentiable on some convex set D^cD/

and 1|F̂ (x)||̂ y for xcDqo Then ||f(x) - F(y)||< y ||x - y|| for
all Xÿ y eÜQo

Proofs By the mean value theorem we know that
!|f (x) - F(y)ll̂  sup ||F^(ty + (1 - t)x)|jl|x - y||„ D.is a

0< t< 1
convex set, x, yeD^, thus ty + (1 - t)xeDgfor all t such
that 0 < t < 1* Therefore sup 11F ̂ (ty + (1 - t)x)||̂  y ,

0< t< 1
so II F(x) - F(y)||< y||x - y||o

To obtain conditions for convergence in chapter three
2 2we shall be dealing with F ^ i x )  where FsR — *-R « Therefore it 

is necessary to further investigate f'(xq) where FsR'^-^R^ »

Let X = f ;)eR^ and x« =( : JeR̂ 'o If FsR^— *-R̂ , and if { * ) =
\ v  W /  \ v

F(x) , then there exist i = 1, » «,, m̂  such that :R*̂ — *-R
and f ooo,ç„) for i = 1, , o «, m. If f'Cxq) exists
then F^(Xo)e |r^— ^R^ , and if F^(Xq)(x) = ^ then F ̂  (Xq)

may be represented by an n%m matrix /a„“°°a,Asuch that

v\î -f=i for i = 1, ooo, mo Now substituting into
lim F(Xq + tx) - F{Xq) = F^(xq)(x) we obtain 
t -̂ 0 t ..... .

lim (Sf) + t€. , + tCn) - n  ( k T ,  ««« ) = Ijl, au Kk
t^O
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for i = ly o o o f  and for all x = [  ̂ j eR^o If in particular
v J

we let be the vector with i-th component equal to one and
all other components equal to zero, for i = 1, 0 0 0 9  n, we find
that the functions * ,  i = 1, <,00, m have partial derivatives
with respect to i - 1, 000, n̂, Hence we have

= lim ((s:*, + (O, °°°.0,tgK .0.°°°.0))
3^k t*̂ 0 ti

- lim <{>; = a i ^  for i = 1, , m, k = 1, ,,,, n «t-̂ 0 t
ioOo, f '(Xq) is represented by the matrix of partials of 
4», , ooo»4>ff,o This matrix is called the Jacobi an matrix of F 
at xojjo

Recalling the definition of the Gateaux derivative, 
it is clear that if X and Y are B-spaces and F s X - * - Y  such that 
F exists on the open subset A of X, then F may be thought 
of as a mapping from A into (x o With this in mind we
make the following generalization»

Definition lp9; Suppose F:AcX— and F has a Gateaux 
derivative on A, where X and Y are B-spaces and A is an open 
subset of Xo Suppose XgeA and there exists Ue jx— ► [X—  
such that
d o 91) lim p/ (Xg + tx) - F^ (xo) = U(x) for all xeX* Then

t-+0 ' t
U is said to be the second Gateaux derivative of F at X q ,
denoted p''(x.} » Similarly if F has a Frechet derivative on
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12

A, and the convergence in (lo91) is uniform for all xeX 
of unit normp then U = F^^(Xq) is said to be the second 
Frechet derivative of F at Xg„

In order to examine elements of the space + |X—  
we introduce the concept of a bilinear operator, and show 
that any element of |x— ► may be regarded as a bounded
bilinear operatoro

Definition 1,10 : Suppose X and Y are B-spaces and
suppose T: XxX—»Yo Then T is said to be a bounded bilinear 
operator if;
1) Given Xi, Xg, Xj, Xg^^ and a,BeR, T(«xi + 6X2, z) =
aT(xi, z) + 6T(X2, z ) for all zeX and T(w, axi + 63C2 ) =
(%TIwy x^) + BTCw, Xg) for all wsX,
2) There exists an MeR, M > 0 such that | |T (x^, X2)l| <
m IIx JIIIx II for all Xj, x„eXoi 2 ^

As with linear operators, we define ||T||to be the 
least M satisfying 2) o If ||x̂|| = |[x̂ j| = 1, then ||T(Xj, X2)j|̂ Mo 
So ||T|] = sup I |T(X, ,x̂ )|| q Similarly, if we define

Xi, X2EX
ll*l|hl*2||-l

(Tj + Tj)(Xi, X2) = Ti(Xj, Xj) + TjCXj, x^) then [x^— =
{T |t is a bounded bilinear operator mapping X^ into Y) is a 
B-spaceo

In the finite dimensional case we find that a bilinear 
operator may be represented by a finite collection of matrices 
This can be seen by letting X and Y be B-spaces of dimension
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n and m respectively, and letting Te , Suppose x̂ ^̂ eX
has zero components, except for the i-th entry which is one, 
for i = l,ooo,n, and suppose T(x^,Xj) = (aj|| !?, o o o for i,j =
1,0 0 a,Ho Then for x = / Ç, \ eX, “  = /T  \eX we have T(x,x) =(0 (ij
(I ;i= , ~ I Â, j = i   ̂® S o  if T(x,x) — z.

where z = | j , then a for k = I,,.»,
'm;

Clearly, whatever collection of m, nxn matrices # i , j =
1,000,n, k = 1,o 0 o,m we consider, the operation T defined
above will be bilinearo Thus every bilinear operation may be
represented by a set of m matrices «

Using the Tchebycheff norm on X and Y we see that
Iyk I = Hi!, If.I aAf So if i|x|| = II X II = 1, then lŷ  | <
ill", iZi 1 and hence ||T11 = max I ̂'2, Li, jaijM ,

° k=l,,q,,m *
Theorem Ip5: There exists a norm preserving isomorph­

ism between |x— ► |c— ►Yj] and — >-yJ *
Proof: Define i p: §C— ► jX— ---► (x̂ — by ij>(U) = T

where Ue — *■ , and x'eX implies that U(x*) = Vx'egC— *-Y]
and T(x,x*) = Vx*(x)e[x^— o Clearly ip is additive and 
homogeneouso Suppose Te [x^— „ Then there exists T*c jx—  
such that T*x*(x) = T(x,x®) for x' fixed and for all xeX,
Let W(x’) = T*x* for all x® eX. Then ip(W) = T, so is onto» 
Now ||t (x ,x *)|| = II vx® (x)||< ||vx»[|||x||< II u||||x||||x'||, so ||t|L||u||,
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Alsop ||U(x')|| = sup ||vx'(x)|| - sup ||T(x,x')|l < I|t ||||x ®1|,
xeX xeX
l|xl|=l j|xl|=l

which implies j|u|| < ||T||o Hence j|U|[ = ||ij;(U)[|, and so ip is norm 
preserving and one-to-one. Therefore, is an isomorphism. 

Thereforef the second Gateaux derivative of an oper­
ator F mapping X into Y, being an element of ^ — ► |x— *-1̂  , may 
be thought of as an element of jx̂ — , Regarding F^^(xo) as a 
bilinear operator we find that for any x,x'eX,
(1,92) F^ (̂xo) (x,x" ) = lim F* (xo + tx®)x - F® (x^)x , As before,

t* 0 t
if the convergence in (1,92) is uniform, then f '̂ Ĉx q ) is the 
second Frechet derivative of F at x q , Again we are concern­
ed with the form of F^(xg) in the case where X and Y are fin­
ite dimensional.

Let F:X— ►Y where X and Y are B-spaces of dimension n 
and m respectively, and let F̂ '̂ Cxg) exist and be defined as a 
bilinear operator represented by the m matrices , i , j =
l,ooo,n, k = 1, , o , ,m. Further let x = / Ç, \eX,x“ = / S,® \ eX,

9j V ÿ o o o iand F(x) = ( î | eY, Then substituting our earlier
(C( ,oooyCn)

results for first derivatives into (1,92) we obtain:

%(1„93) l4„ai$CiEÿ = lim
t"̂ U

I 2̂1  ̂o 0 o , gj,̂) €/
■5TT

te,® +ooo+te„*)e*

for k = 1,00,,m. Now if we let
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X and X* be the elements with all zero entries except the 
i-th and j-th components respectively, which are equal to 
1, we find that k = 1, , « «, m have second order
partial derivatives, and
do 94) a M  = 9̂ <{>K(gr\ »oofCn*) for i, j = l, * « *, n, k = 1,

o o o , ro©

A final concept in the general theory of operators 
on B-spaces of which we shall make limited use is that of 
integrationo

Definition Ip 11; Suppose F: , ^ c R —►X, X a B-space,
and suppose a = t p < t ,  <tj^ " * "< t„ = b, |t*̂  , t^^,
k =  0, 1, 000, n - 1, and X = max Î k+i f K U then

k=0,e o o,n—1
r F(t)dt = lim I j?.! F ) (f KM - t K) if this limit exists*

'a. X -̂ 0
IINote that IF(t)dt

<L
= iim y F{Ç|̂ ) (t̂ f, - t̂ )||( 

X -►O 
b

iim nj' ||f (Ck )ll (tK+i - tK) = f ||F{t)||dt
X -►o 'o.

Definition 1 o 12 : Suppose T;D«=X— +Y where X and Y are
B-spaces and D is a convex subset of X* If X q , x ,e D, and 
tjj,Cj(., k = l #  o o o , n - l ,  are as in (1*11), we define: 

f  T ( x ) d x  = J^T(Xq + t(X^ - Xq))(Xi - Xg) dt 
<lol21) = lir^^;*jj T(Xq + - Xo))(xi - xg) (t,(+, - t^)

if this limit exists *
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Clearly if T is continuous the limit (lol21) exists
and the integral represents an element of Yo

With the above definition of integration we can derive
an analog of the fundamental theorem of calculus.

Theorem 1,6 s Suppose F:D<=X— ►¥ where X and Y are B-
spacesf and suppose F®(x) exists and is continuous on the

"■Xr ‘convex set Then for Xq, x^eDq, I F®(x)dx exists and
f7C,I F'(x)dx = F(x,) - F(X(j) o

Proof : Let x^ = x@ + t^(xi - xo) , 6X]̂  = (tjç+, - tĵ ) *
(xi - , x" = Xg + 4 Cxj- X q), and X = max

^ k=0,l,o,,,n-l
|t|(+i - tĵl o Then using definition 1,12 we have
||F(x̂ ) - F(Xq) - J  F® (X) dx II = II F(Xj) - F(Xg) -
lim I":! F® (Xĵ ) 6x̂ 11 = lim j| F(xi) - F(Xq) - I F®(x,^)AxJ|o 
X"̂ 0 X*̂ ”
Noting that F(xi) - F(Xq) = I "co^F(x^^, ) - F(xj^^we have
lim ||f (x i ) - F(xo) - F'(3Cĵ ) AXĵ ll =
X ”K)
limjl^Io F(x̂ ,̂) - F(Xĵ ) - F« (Xĵ ) AXĵ ll <
X-*"0

lim jjxi - X qII P"' - t^) sup ||F»(xk +6A x )
x-*-o o< e< 1 ^

- F®{ir )[j, making use of the mean value theorem. Now since
F® is continuous and lim sup || x, + OAx^ - x^ = 0 we have

X-K) 0<e<l>l ^ ^
lim sup i(F® (x. + 6AX, - x,|| = 0, giving the desired result,
X-̂ 0 0< 0< 1 I' ^

Finally, we use some of the concepts developed in this 
chapter to verify the following lemmas which will aid in
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investigating the convergence of iterative techniques in 
chapter 2 ^

Lemma 1 : Suppose X and Y are B-spaces, P:Dcx— "Y,
F is Gateaux differentiable on some convex set DgcD, and
|jF*(y) - F®(x )||^Y for x,yeDoo Then 11F (y) - F(x) - F® (z)
(y - x)|{ < Y||y - x|| for all x,y,z eD<, „

Proofs Using the mean value theorem we have
1|F(x) - F(y)|| 4 sup 11 F ® ( ty + (1 - t) x)||||x - y||o Also,

0< t< 1
F'(z)e[x— for all zeDqo Replacing F by F - F® (z) in the 
above inequality we get ||f (x ) - F(y) - F" (z) {y - x) || <
sup I/"f - F" (z) ® (ty + (1 - t) x)|IIIx - ylL Let w = ty +
0<t<l ' V  /
(1 - t)x, then ^F - F"{z)^»(w) = F®(w) - (f ®(z)^®(w ) direct­
ly from definition loS^ Further, since F®(z)e[x— ŷ] ^
^ ^ F ®  (z) y  ( w ) j  (Ç) =  l ilim F® (z) (w + tÇ) - F° (z) (w) = F® (z) (Ç)

t-K) — .....    I ...........
for all ÇeXo Thus ^F® (z)̂  ® (w) = F®(z) , so we have

l|F(x) - F (y) - F® (z) (y - x)|| ̂  sup 11F ( ty + (1 - t) x) -
0< t< 1

F® (z)|| Il X - y |j< Y||x - yjjo
Lemma 1o 2 s Suppose X and Y are B-spaces, F sDcX— ,

F has a Gateaux derivative on some convex set DqcD, and 
[|F® (y) - F® (x)|| $ Y||y “ x|| for x,yeDg « Then || F (y) - F(x)- 
F® (x) Cy - x)||^ *5Yl|y - x|| for all x,yeDOo

Proofs Clearly ||F® (y) - F®(x)||^ Y||y “ x|| implies
that F® is continuous on Dq o Thus F(y) - F(x) =
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r ï F “(x)dx = F®(0y + (1 - e ) x)(y - x)de o Therefore, 
||P(y) - F(x> - F® (x) (y - X)|| = Il [f® (6y + (1 -0)x)- F® (x)]
(y - x)de|U ||y - x|| r  ||F® (6y + (1 -6)x) - F® (x)||d8 

r  IY|t y - xjpj ede = *sY||y - x||'
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CHAPTER 2

Solving Nonlinear Operator Equations 
In this paper we are primarily concerned with oper­

ator equations of the form
(1) F(x) = 0 ,  where F:X— X and Y are B-spaces, As was 
noted in the introduction, if X and Y are of dimension n 
and m respectively, then a solution x* of F{x) = 0 may be 
regarded as a solution to a system of m equations in n un­
knowns o

Another equation of interest is
(2) T(x) - X, where TsX— ►X, X a B - s p a c e I f  x* is a solution 
to T(x) = X, then x* is said to be a fixed point of the op­
erator To Clearly, if a solution to the equation T(x) = x
is known, then a solution to F{x) is known, where F(x) = x - 
T(x)o Keeping this in mind we shall examine operator equat­
ions of forms (1) and (2)„

Suppose that X and Y are B-spaces and F:A^X—»Y, where 
A is an open subset of Xo Suppose further that F has a con­
tinuous Gateaux derivative in A, and there exists an element 
x*eA such that F(x*) = 0. Then for x^eA, F(Xq) = F(x q)- F(x *) 
can be approximated by F®(xo)(Xq - x*), so it is reasonable

19
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to assume that a solution to the equation F"(xq)(xo - x) = 
F(xq) is close to x*o If xi is such a solution and £f*(xq^ * 
exists^ we have x^ = x^ - [Ip® (x^^”* F(Xg) , Continuing this 
process^ assuming [j® CXj,^ ' exists, we obtain a sequence 
t Xjç. } defined by

(3) ]̂c+i “ " [5 * (x^ij * F (X}(̂) o This iteration process
for constructing x^ is called Newton®s method0 In practice 
|~~F® (xj,^ may be difficult to compute, or may not even 
existo For this reason a cruder sequence of approximation,
{x^}, to X* defined by
(4) 5cĵ +i “  ̂F* (x q^  P(Xĵ )̂  is often constructed « The
iterative method in (4) is called the modified Newton methodo 
A wealth of variations on Newton 's method have been pro­
posed o A few of these Newton like techniques have been 
studied by Dennis [s] , Altman |l], and Ben-Israel [2] ̂

If either the sequence (x̂ } or {3^} , constructed
above^converges to an element x*, and if F is continuous, 
then X* is a solution to F(x) = Oo We shall therefore 
devote the remainder of chapter two to determining con­
ditions which insure the convergence of sequences of iter­
ates constructed by (3), (4), or related techniqueso The 
general approach to the convergence of iterative techniques 
used in this chapter is essentially that of Rheinboldt [l̂  „ 

Definition 2^1: Suppose {x^} is a sequence in the
B-space Xo Then a real non-negative sequence {t^} is said
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to majorize { if 1 1 < ^k+1 ” k = 0^
If

Noting that any majorizing sequence is non-decreasing 
we make the following observation :

Theorem 2pl; If { tĵ }̂ majorizes a sequence { Xj,.} 
in a B-space X and if ( tĵ } is convergent, then {x̂ }̂ is con­
vergente

Proof: ||x„-x„||« ï|ln||Xj+i - Xjll <
% (tj+i - tj) = tjjj - tjjo Thus the convergence of 
{ tĵ } implies that {x%} is Cauchyo But X is complete, hence 
{ Xjç) is convergente

Definition 2 p 2 ; Suppose X is a B-space and D is a 
closed subset of X« Then T;D— is said to be a contrac­
tion mapping if there exists aeR, 0<a<l, such that 
||t(x) - T(x» ) II < ajjx - x*|| for all x, x ’cDo

Theorem 2,2; Suppose D is a closed subset of the 
B-space X, and TsD—^D is a contraction mapping» Then there 
exists a unique fixed point x* of T in Do

Proof : Choose XqcD and construct { xĵ } by the
successive approximations x̂ ^̂  ̂= T (x̂ )̂ » Let tg = 0 and 
tk = for k 5- 1, where a is as in defini­
tion (2e2) e We now show inductively that { t]̂ > majorizes 
{X](.} e If k = 1, then jjxj - XgH < ||x̂  - X(,|| = tj - t^ „
Assuming ||xĵ  - ^ t^ - t^_^ we find that
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X

r K+l f II
l r - \  « II
lim t. =
t-*-®

fell - l|F(Xkl - o ||Xk - -
' 11*1 - *oll - «*‘‘l|xi - Xoll) = n(»"''l|xi - XoHl =

K
I - "0" - =X, - XJI - of'llxi - Xoll = - tjço N O W

||xj - XqII o Therefore { Xĵ } converges, say1 -  a
to x*eDo Noting that T is a contraction map which implies
T is continuous we have 0 = lim ||x* - T(xĵ )|| =

k-*-»
(jx* - T(x*)|| o Therefore T(x*) = x*,

Suppose xeA and T(3c) = x. Then 11 x - x*|| =
I If (5c) - F(x*)|| ^  a||5c -  X* 11 which implies that
I |x - x*|| = 0 and x = x*o Hence x* is unique □

Corollary 2 ̂ 21 ; Suppose T;A<=X— where X is a B-space, 
and T has a Gateaux derivative on A qcA, a closed convex set* 
If
1) T(Aq)c Ag and
2) sup 1|t* (x )|| = a < 1, 

xeAo
then there exists a unique fixed point x* of T into A q o

Proofs Suppose X|, X2 eAg o Then by the mean value
theorem, ||T(x2) - T(x^)||< sup ||T' (Bx^ + (1 -e)xj)

0< e< 1

j|x2 - X||| < a||x2 - X|l|o So T is a contraction mapping and 
by theorem (2o2), T has a unique fixed point x*eAo

Recalling the relationship between equations (1) 
and (2) we obtain the following result,,
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Corollary 2^22: Suppose F : X— ►X, X a B-space, F con­
tinuous f and suppose T(x) = x - |f * (x^ * F(x) exists on A*=̂ X 
and satisfies the conditions of theorem (2,2)* Then there 
exists a unique x*eA such that F(x*) = 0,

Before the concept of majorizing sequences can be 
utilizedy a method is required to obtain a majorizing se- 
quencet t̂ } for a given sequence {Xĵ } , We have found such 
a majorizing sequence when {x^} is constructed by Xĵ ^̂  = 
G(Xj^), k = 0, o o oy and G is a contraction mapping^ in theorem 
2,2, We shall formulate two lemmas whose proof depends 
upon the construction of majorizing sequences in a more 
general setting. To simplify notation we make use of a 
definition of Rheinboldt |ll] ,

Definition 2,3: A function 4» is said to be
of class r^(Q) if it has the following properties :
1) The domain Q = x Jn where = [o, b ,
bj_ ^ », for i = Ip ooop n,
2) * is non-negative and isotone, i,e,, if , , , p U%*) eQp 
for i = Ip 2 f and U f o r  j = Ip ,,,, n^ then
0 ^  <()(Uĵ p ooop U||̂) < 4>(Ujp ooop Upj ) o

Lemma 2,1g Let X be a B-space and G be a continuous 
operator such that GsDcX— ►X, Suppose there exists a function

(0) and a point xqeD such that on some set DqcD 
l|G(y) “ G(x)|U * (||y - x|| p ||x - Xo||) =* (Upv) for all x ,  yeOo,
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Further suppose there exists a continuous function 
* : — ►R such that *(u - v, v) = it»(u) - *(v) , and let the
sequence ( t^} defined by = Y (t^) , k = 0, 1, «, «, tQ = 0,
t, = ||x% - XqII, exist and be such that tĵ +i tĵ , for k = 0,
]f » o o p and lim tĵ  = t*o Finally suppose that ?(Xg ,t*)cDQ. Thenk-—  '

o  o o 9 o

G has a unique fixed point x*e?(XQ,t*)„
Proofs Define { x̂ }̂ by ~ ^^k k = 0, 1

We shall show by induction that Xj^e5*(xQ, t*) and

ll̂ k " ’"k-ltl̂  ^k - for k = 1, 2,
For k = 1, |jx, - xolk ||Xj - Xoll - 0 = ti - to ^ t* ,

so xi E?(xo ÿ t*) and ||xi - xq ||̂  t^ -  to * Assume that
Xĵ e5‘(xo ,t*) and ||xjç̂ - Xĵ _ĵ || < t^ - ^k-l° Then X y ^ + i = Gx^ is 
defined, and ||xĵ ĵ̂  - Xĵ|| = ||GXĵ  - <|. (jjxĵ  - x^-lH'
n^k-1 " *oll) <  4) (t)̂  - tjç.l) = *(u - V, V), where u = t^
and V = so * (t̂  ̂- ^k-1^ = =
^ + 1  “ Thus |jxĵ 3̂̂  - Xxlk tk+i - Also,||Xj^+l - Xflll̂
Z/.JI*j+l - Xjll ̂  - tj = - to = tkn« t*. There-
fore, x^^^e3^(xo ,t*)* Hence, ( t^} majorizes {x̂ }̂ and
lim t^ = t*o Therefore, there exists x*eX such that 
k-»-»
lim X, = x*o Since X]^e?(Xo , t*) for k = 0, 1, ° ° , it follows 
k+«
that x * g 5 ’(xo , t*) , and the continuity of G implies that Gx* = x* 

Suppose there exists y*ES"(xo,t*) such that Gy* = y*«
We shall show by induction that |jy* - XjJĵ  t* - tj, for k =
0, 1 ,  °**o Clearly if k = 0, then ||y* - XqIU t* = t* - t^ „
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Assuming that ||y* - X|̂ ||< t* - t^, we have
||y* - = ||G(y*) - G{x^)|U * ( ||y *  - x^l , I I - XqII) <
* (t* - tĵ , tĵ ) = 4»(u - V, v) - ^(u) - *(v) where u = t* and
V  = tjç,o So ||y* - xjl < ij; (t*) - 'f'(tĵ) = t* - Thus
lim x^ = Y * f  so Y *  -  x* and hence x* is unique,

Lemna_^^ Let X be a B-space, xqeX, keR*’' and 
T:S(Xp,k)— ►Xo Let there exist a function<|>cr® (Q) and MeR"*" 
such that = Ip, b^) , bŷ  < M for i = 1, °'’®, 5 and 
bi + bg < M, where Q = J jx x  <» o o x , and such that (2,21) : 
IjTCx) - T(y)j|^ * (||x - yjj, jjx - XqH, ||y - x̂ jj, ||T(y) - xjj ,
||T(y) - y||) whenever both sides exist. Further let there
exist a function [o ,M) — R̂, and a pge (p,M) such that
(2.22) ||xq - T(x^)||^ *(pQ) -pQ and
(2.23) é(p-o,p -p 0, o - p 0, *(p) - p, *(o) - o) ^
*(p) - $(o) for pQ 4 o ^  0 whenever both sides are defined.
Let the sequence {p̂ ) defined by p^^^ = #(p^^ exist and be
such that Pjj+]̂  ^ Pn and lim p̂  ̂= p* < M,

n
Then i f p * - P g <  k, the sequence {x^} defined by 

x̂ _i_2 ” T (x^) is well defined and converges to an element x*e 
S(Xg,k) such that T(x*) = x* and ||x* - x̂ || < p* - p^.

Proofs We shall show by induction that x^eS(x^,k), 
and II x̂ ,̂  ̂« x̂ j; j P^+i - P ^ o For n = 0, X(,eS(Xg,k) and 
||x% - Xqll = ||T(Xg) - Xgll ̂  *(pg) - Po = Pj- pQ o Assume that 
||x* - x̂ ll ̂  P*~Pn holds for n ̂  k. Then Xĵ ^̂  = T(xĵ ) is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

defined and - x^H < I - %jll f
 ̂A ' ’j+1 ' "j ' "k+l - «0 ' e* - pQ  ̂ k. Hence Xĵ ĵ̂ eS (Xj ,k) . 
Also, Ijx̂ ĵ̂  - x^ll = ||T(Xĵ ) - T(x^_j^)||«

♦<IK -  *k-lll' ll’‘k - Xoll' l|Xk-l - xj|, MXk - x l̂l, ||x̂  - x^-lll'

i  * < » k  -  " k - 1 '  " k  -  " O '  " k - 1  -  " o '  " k  ■ " k '  " k  ■ " k - l ’  “
* (p ~ o ffp - pp, a - p Q f *(o) - p, $(o) - a) ><
*(p) - *(o) where p = i|>(o) = pĵ  and a = p̂ _̂̂ o Therefore,

!l^k+l “ ^klU *(P%) - '*'(Pk-l̂  = Pk+1 - P.k= Thus (x^} is
majorized by { p, } and lim p. = p*, so there exists x*e X

k k - ^

such that lim x. = x*, Further |jx* - x |j < p* - p q < k,
k-H» ^ °

hence x*eS(Xg,k)o
We shall defer application of lemma (2«2) until

chapter 3^ but we invoke lemma (2,1) immediatelyo
Theorem 2*3: Suppose X is a B-space and G:DcX-— X̂

is such that G is Frechet differentiable on D q and 
||g * (x ) - G® (y)|U Y ||x - y|| on Dq for D^co, a convex set and
YeR‘*'a Suppose that for some x^eD^;
1) ||G®(Xjj)|U< 6 < lo
2) (|Xq - G(X(j)jU cx and
3) h = yo ^ 1 oI T  Z ~ r T '2 ?
Finally, if t* = 1 - /l'̂ -""2̂ i , a , t** = 1 + /I - ÜZh „

h 1 — 6 ~ h
g g and ?(XQ , t*)cDq , then the iterates = G(x, ) ,
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k = 0 y 1, ° ° ÿ remain in ?(xQ^t*) and converge to a fixed 
point X* of G which is unique in Dq H S(Xg yt**)»

Proof: For x ,  yeDg, applying lemma (1,2) we get
l lG (y )  -  G (x ) IU  ||G(y) - G(x) - G" (x) (y - x)|| + 
j|(G'(x) - G«(X(j))(y - x ) l l  + ||G' ( x ^ )  (y - x ) I U

*sa||y -  +Y||y -  XolK ly  -  x | |  + 6| |y  -  x j j  = $ ( | |y  -  x | | ,  | |x  - XqI!)
where * (u,v) = ŝyû  + y vu + 6u, (Q) because
y  ^  O f  6  Oo If V'(t) = h y t ^  + 6t + a, then * (u - v, v) =
*(u) - 4* (v) , If tg = 0 and “ V then
tj = *(0) = a >0 = tg and tj = a < t*, Assume for n < k
that t^ >, and t^ ̂  t*. Then since if» is isotone,
t^+2 ” 'I' 5- Also, because tĵ  ̂  t* and i|<
is both isotone and continuous, ^ * (t*) = t*.

Therefore, lim t, = t*. Hence by Lemma (2,1), x e^(xQ,t*) 
k-^ k

for k = 0, 1, ° , and there exists a unique fixed point x*e
?(Xg,t*) of Go

If h = then t* - t** and x* is the unique fixed
point in 0 S(x^^ t**), Suppose h < % and there exists y*e
D q n S(x^,t**) such that y* = G(y*) , If ||y* - x^H = Sq =
Sq - t|j, and if ||y* - xj|< - t^ for n 4 k, then
l l y *  -  <t»(||y* -  x j l ,  | |x j^  -  x j l )  4 *(S]^ -  t^f t j^ )  =

*(S%) - y, (t̂ ) = S)̂ +2 - ^k+l° we need only show that
lim Sĵ  = t* = lim t , For te ( t*, t**) , we have *(t) < t,
k-̂ » k-*«
Thus 4 S^ and t* 4 Sĵ o Applying the same argument that
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was used for { we have lim S = t* » Hence lim x. = y * ,

and so x* = y* which verifies the uniqueness of x* in 
Do n s(x^,t**).

Again exploiting the relationship between equations
(1) and (2), this theorem may be applied to the generalized 
Chord iterative technique;
(2*31) 3C]̂ +1 = X]̂  - A"’ F(Xĵ ) , k = 0, 1, o o o ^  where Ae[x—
to produce the following result*

Corollary 2*3: Suppose X and Y are B-spaces and
FtDcX— *-Y such that F has a Frechet derivative on Dq and
||f'(x) - F*(y)ll ^ y1|x - y(j for x, yeDg, where y e R ^  and
DqcD is a convex set* Suppose Ae [x— has a bounded inverse 
A“* e [y— with IIa'MI-̂  6 « Choose Xg eD^ such that
III - A-' F» (Xg)|j<< 6 < 1, ||A'*F(Xg)|U a and

1 Let t* = 1 - /I - 2h o a and

If S'CXg , t*)«Dg , then the iterates

(2*31) remain in 5"(xg,t*) and converge to a solution x* of 
F(x) = 0 which is unique in D q 0 ?(xg,t**)*

In the particular case where F*(Xq) and [f *(Xq̂  * 
existf, and ' e [Ÿ— , by letting A = F'(x^) we obtain
from (2*31) the modified Newton iterative technique* Thus 
we have specified conditions under which the modified Newton 
method will produce a sequence of iterates which converge to
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a solution of F(x) = Oo This special case of Corollary (2*3)
is essentially the convergence theorem for the modified
Newton method given by Kantorovich and Akilov o

To formulate conditions under which Newton®s method
will produce a convergent sequence of iterates, we begin by
considering approximate Newton processes of the form
(2o32) - *k - (xĵ )F(Xĵ ), k = 0, 1,  ̂® ®, where A(x)
is a linear operator for fixed x.

Theorem 2^4: Let X and Y be B-spaces; and let
F;DcX—►Y be such that F is Frechet differentiable on Dq^D,
where Do is a convex set* Suppose || F* (x) - F' (y) || ̂
y I|x - y|I on D q , where and suppose that A:Dq cX—»• Jx—
has a bounded inverse A~* (x) e [y— for each xcDq such that
|1a“  ̂(x)ll̂  6 and ||f'(x) - A{x)|( ^ 6 for xeDq« Let XqcDq
be such that ||a'’ (Xq)F(Xq)||^ a and h = h & y a , + B6< 1» If
^(xo ,r)cDQ where r = a , then the sequence { Xĵ } defined

1  — h

by (2o32) remains in 5"(x̂  ,r) and converges to a solution x* 
of F(x) = Oo

Proof; Define G;DqCX—*-X, by G(x) = x - A'* (x) F(x) ,
Then whenever x, G (x) eDg ; ||G(G{x )) - G(x)ll =
11 - A'' (G(x) )F(G{x) )IU 6 I|f(G(x)) - F(x) - F' (x) (G(x) - x)||+ 
b|I(A(x) - F'(x)) <G(x) - x)[U <j)(ltG(x) - x|l) where 
^(u) = Jsgyû  + B6Uo Now in order to construct a majorizing 
sequence {t̂ }̂ for the iterates {x̂ } defined by (2 „ 32) , we
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must solve the difference equation - t^ =
is6Y(tjç - + 66 (t^ - for k = 0  ̂ 1, ° ° ° ,  with tg = 0
and tj = a

^ *

By induction we shall show that " f for
k = 1, 2 f  ° ° ° o Clearly tg = 0 ̂  a and tj = a ,< a+ ha,, Now
suppose for n <s k^ Then for k + l; t̂ ^̂  ̂- =

- \_i)^ + S6(t,̂  - . So
Î56 (ah^) ̂  + 65 (ah) + ^ h{ah^) +  ̂̂ =o ■*
« I Q Therefore lim t,, = a = r and so Xi,e2'(Xn,r) for

^ k->« ^  1 -  n

k = 0, 1, 5®®, Also { t^} majorizes {x̂ }̂ which implies that
lim X, = x*c2‘(x ,r)<=D o Thus A “*(x*) exists and x* = G(x*) 
k^« ^ ® ^

implies that F(x*) = 0 ®
Newton's method is the particular case of this

theorem where A(x) = F* (x) <> So for Newton's method 6 = 0
and h = H ^ y , and the majorizing sequence is constructed by
solving; t^^^ - tĵ  = h(tĵ  - t]̂ _̂ ) ̂ , k = 0, 1, ° , tg = 0
and tj = ao By induction we find that
(2o41) - bx ah^ ■' # k  = 0, 1, *‘”*0 l f k  = 0, then
t j - t g  = o <  a o Suppose (2 ̂ 41) is true for k$ n,then 

^n+2 ” t^+1 = h(t^+i - tn) ̂  < h a ^ h ^  '  ^ < ah^" "» . Now
t* - t^ = tj+i - tj >5 ® Therefore,

||x* - ohZ*''
h2

O
K
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This result with the above error bound is known as the 
Newton - Mysovskih theorem* (See Kantorovich and Akilov {jbJ ) .

For a final result concerning the convergence of New­
ton's method, we shall prove the Newton - Kantorovich theorem 
using the method of Ortega [l^ • This theorem is more gen­
eral than the Newton - Mysovskih theorem in that [V*(x^ 
is assumed to exist only at a single point*

%ieorer^_2j5 : Let X and Y be B-spaces and let F:DcX—
Suppose on an open convex set DgcD, F is Frechet differen­
tiable and IIF' (x) - F'(y)||^ y 11 x - y|| for x,yeDo, For some 
xqeDq, assume that = |f'(Xq)J  ̂ is defined on all of Y 
and that h = Byn ^ h ,  where 11 r̂  || < 6 and | | r gF(x^)||^ n . Let
t* - (1 - /I - 2h) f t** = (1 + /I - 2h), and suppose that 

 éy 6y
“ (Xq ,t*)«=Dg o Then the iterates “ ^k ” * F(x̂ )̂ ,
k = 0,1,*®°, are defined, lie in ?(Xg,t*) and converge to a
solution X* of F(x) = 0 which is unique in Dq H ̂ (Xg,t**)«

Proof: Let q = 1 , then for xeS(Xp,q) we shall show
6y

Tf'(xTI * exists and I I  Tf' (xFl * I I  ^ 6 If
^ II L J II r - r'Ty|jx XJ]- •

xeS(Xg,q), then using remark 2) page 6, jjl “ Qp' (xg^"' F' (x)||
= ||[f'<3Cg^"^ (F'(Xp) - F' (X) )||< ||F'(Xg)|||| F'(X(j) - F' (x)||<
By||x - Xgll < 1. So for xeS (Xg ,q) , (I - (I - [f * (Xg^"' F'(x)))"'
exists and II (I -  (I -  [f ' (Xg^"' F' (x) ) )"• || < 1

1 - By||x - X
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by theorem (1,2), Simplifying we have
(I - (I - [f 'CxoI]"' F'(x )))-« = {[f 'Cxo '̂''' F'(x ))"' =
[p* (x^  ̂ F ’(Xq ) exists for xeS (x^ ,q) . |̂ F* (Xq̂ '”* exists so
[j” (x)] * F'(Xq) jj” (Xjĵ ~' = [f '(x ^ ”* exists on S(x^ ,q) ̂ and
||[fMxO''|1 ^  lit" (xJ'V* ( X o ) | l l l & ' ^  6

1 - 8y||X - x„j| _

Letting N(x) = x - |jF" (x^ * Fx where x and N(x) are in
S(xq f and noting that F(x) + F*(x)(N(x) - x) = 0 ,  we
obtain ||n (N (x) ) - Nx || = || jV* (N (x)^ *F(N(x))|| <

B II F(N(X) ) - F(x) - F ’ (x) (N(x) - x) || ^
i - By||Xo - W(x)|| ”
1 0 Byl|x - Nxll̂  using lemma (1,3) ,
7  JL -  B y | | X o -  N X j )

Next we shall show that {Xĵ } is well defined and is
majorized by {t^} where t̂ ĝ̂  “ (ty) ̂  - ty.+n k = 0,

^k-1
ly ° " and t# = 0 ,  Note that {t̂ }̂ is the sequence of Newton
iterates for the polynomial ^Byt^ - t + n with roots t* and
t**o Thus t, - ^ t, and lim t = t*, For k = ly x. =k+l k k-“

I-IXq “ [f *(Xq)] F(Xq) and ||xi - XqH^ n = tj = t^ - t^, Sup­
pose that x^y x^ exist and || x^ - x^_^|| < t^ - t̂ _]̂  for
n ̂  ko Then ||xĵ  - X(j|| < t^ - tg << t* so X]̂ e3"(xQ y t*>
S(xoyq) and hence is defined. Also, || - x̂ || =
||n (N(x, .) - N(Xĵ _i)l|^ *5By||xK - XK_,IM , ^By (t̂  - tK_, ) ̂  -

1 - By||X]̂  - Xgll " 1 - Byt^
t̂ ^̂  ̂- tĵ o Again we have shown lim t^ = t*, { ty) majorizes
{ Xĵ } f and { x^}c7(xg y t*) , Using the same reasoning as in
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the proof of theorem (2„3) we find that there exists a solu­
tion x*e5’(xQ, t*)c.s (xq ,q) such that N(x*) = x*. By the con­
tinuity of F(x) and the existence of |f * we see that 
F(x*) = Oo The uniqueness follows again from the reasoning 
in theorem (2*3)*

In a practical situation, the application of Newton’s 
method involves a tremendous amount of work, partially 
because |̂ F* (x̂ ]̂  ' must be computed at each iteration» In 
chapter three we shall consider the generalized Gauss-Seidel 
technique which is more efficiently applied to real problems,
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CHAPTER 3

Generalized Gauss-Seidel Technique
Two of the most common iterative methods used for

solving linear systems of equations are the Jacobi and the
Gauss-Seidel techniques, Given the linear system Ax = B
where .

/a„ a,n\ /x,\ /b,\
A = I .* ; If X =1 : I ,  and B = I : 1 » the Jacobi

ya*ni ' " • kmj \x„/ \ĥJ
method is described by the formulas
(1) = - 1 a i t  +  h i  f  i  =  I f  n. For the

 ̂ Si/ â u

same system the Gauss-Seidel technique is written as:
(2) = - I ̂ -1 a ^  ^  , i = 1, •**, n*

aii a i i ,  a U

Sufficient conditions to insure convergence of these 
techniques may be found in Faddeev and Faddeeva [j6̂ ,

For solving a nonlinear system of equations f^(x,,•*•,x^), 
i = 1, n, H* Mo Lieberstein [s] proposed two iterative
techniques which are generalizations of (1) and (2), The 
generalized Jacobi method has the form:

34
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(3) - f l  (xr),"", x ^  ) . i = 1, 2, n; k = 0
, °o°, xjii

1, ° ° ®# where f . . = 9f/ . and the generalized Gauss-Seidel
75ET

technique is described by;
(4) x f  ̂ = xj") - f2 ( % r y  ' r -I-, f ,

« « o x(KhM-( f ̂  * f t  I

n? k = 0, 1, *" = g
Bryan [ll has derived conditions sufficient to 

guarantee the convergence of (3) in a special type of B-space« 
We shall state this result for with Tchebycheff norm, with­
out proof, and shall employ the methods of Bryan to derive 
conditions which insure the convergence of (4) in R^,

Theorem 3pl: Let f^Cxj,»»®, x^) be a real valued
function defined on a set A<=R̂  for i = 1, » ° , n, such that
there exists Xg = (x|% , X ) belonging to A and positive
real numbers r, N, Pg, Qq, and Hg so that for i = 1, 2, ° ° , 
n, f h a s  continuous second-order partial derivatives for 
XeS (Xg ,r)<= A,

l/li N, for xeS{Xg,r),1) max 2
i=l,° o c,n

2) max
i=l,°“»,n

3) max
i=iy " % n

4) max
i=l,"°%n

5) bn = Po QoN

( P

fjL (3Co)

0 *

Qfl t

Hg < 1,

< 1 and
r r " ':  T O " ?
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6) Tn = Qft (1 - /l-4bA) < To Then the sequence
SbT U  Ho)

defined by (3) converges to a point x* = (x^*, ”°®,x^*) in A
such that f. (x*) = 0 and max Ix.* - x.® ls$ rg o More-

i-1^ o o o ^
over, X* is the only solution of f^Cx^, = « «,, x^) = 0, i = 1,

n, in the set S(x,k)cs(x,r) where
k = Q# (1 + /I - 4bn) .

Let F:r 2— »-R̂  , TjîR^— ►R^, and T, :R^— »-R̂  where
/ fj(Xj,x^) \ /xi -

F ( X j , X 2 ) = 1 ,  T (x. ,x_) =/ f |Y(XJ \ and

fa (X)
f„ IX)

T^(x^,x^) =1 jo Then if T:R^— ►R^ is defined by

T(x) = Tg (T^ (x) ) , the iteration Xĵ ^̂  = T(Xĵ ) becomes the 
generalized Gauss-Seidel technique. With these operators in 
mind we formulate the following theorem for the extended 
Gauss-Seidel technique in R^,

/f,{x)
Theorem (3,2) ; Let F:AcR^—*-R̂ ,where F(x) = (

Vf,(x)
and let T^,T^, and T be defined as above. Suppose there 
exists XgCA and rg, N, 6 ,̂ Qq , and H^eR"^ such that
1) F is twice Frechet differentiable on S(x^, r^ )U S(Tj(x^),r^) 
cA, and |1f "(x )||̂  N for xeS (xg ,rg) U g (T^ (x^) , r^ ) ,
2) fii(Xo) 0, fii(T/Xg)) ^  0, fggCXg) j i 0, and 
f22<Ti(Xo>) 0
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3) max ( 1 t 1 r 1 t 1

[ f li'rTiTxo)) ^22^07 t22('l'l(XoV <

4) max

5) max

f /(xo)
T t r r ?
f ( a  (xo )

fg(Tf (Xo)) \ ̂

, Ifji (Ti (xq))|\ ^ H. < 1
t-2Trv(x-))U

6) (1 - H q)2 >4QqNB o and
7)

--------- 7 m 0
(1 - Ho) - /(I - Ho ) ̂  - 4QoNBo < rn.
--------- 2ÏÏT-------------------

then the iteration x^^^ = T(x^) is well defined and the
sequence {x^} will converge to x*ei?(xQ,ro) such that
F(x*) = 0, Moreover, || x^ - x * | Q g  where

1 -  g

g = (Ho + 1) — /TÏ — Ho ) ̂  — 4Qo N 3« < 1 *

Proof: We begin by showing that || T ̂ (x) - T ̂ (y)| | f
for X, yeS (Xg ,k) ï=; S (Xq , r̂ j) , /|,l (Xf..fX̂ )

I ^ 11 ( ̂  1 f ̂Define H ̂ ;R^— ^2 by H,(x ̂ ,x^) = \ / . Then for x,

yeS(Xg,rg), H^'(x) - H^'(y) =

1

X - y||

0
1

fj^(x) - f^j(v) fi2(x) - f^g(y)

0 f„_(x ) / \ 0 0
so ||H/ (X) - Hj'(y)|k 6o ||f ’(x ) - F*(y)|k Pq - yIU Let
ff: Q), [O,») be defined by !T(t) = BpN t^, then H(t) is
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monotone increasing and
(3o21) - Hj»(y)|| < F' (||x - y||). Choose ||x - xo||< k
where k = min(m , 1 ) « Then

0 \  / f 11 (Xq) - f 1 1 (X)

^22 \ 0 ^2 2 " ^ 2 2  
^ BoN||x - Xo||, So by theorem (1,2) , the linear operator R^x=

1 ^  /  1 0 \  /f, , (x„)-f, , (X) 0
til(Xq)

0 V  \ 0 t22(Xo>/ \ 0 f22(Xo)-f2^,(x)y
has a bounded inverse on S(x^,k) such that ||RjX” ĵ| <

______ 1______  • Now R , X

on S(Xq,k) f  so

Therefore Tj(x) is defined on S(x^,k),
Since we are attempting to verify the inequality 

||Tĵ (x ) - Tj(y)||^ |jx - y II, and because the second components 
of the vectors T^(x) - T^(y) and x - y are equal, we need 
only consider the first component of the vector T^(x)-T^(y), 
Thus we define Tj,: S(Xg,k)c R^— ►R̂  by ^(x)=/ x^- f (x)

iYiTxp
0 m i x j t22(Xo)

til(x)
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Then,

(3,22) Tji(x)-Tj,(y) =

1 1 ( x )

0 fz2(y)
fl (X)

Yi - fl (y)
FTTTyl

%■fji}'). 11
0

f 1 (X)

fTTTx)

91 (s)

FTTTxTT

f22(x) 

0
f? 9 (v)

0 t z l H o )

+ f 1 (y)

= Rix'^g^, where

yi - f1<y) - xi
*11(y)

f11IXg)

0

■ft* 7
Letting

f1(X + s(yi - f1  ̂ - x%)) - f^(x)

fj(y + s (  -  f 1( v )  ) )  -  f 1 (y)
1 1 i l v J f we find that gi =

lim g,(s), Substituting we have gj(s) = -Hj(x) + H,(y) 
s-K)+
1 (H (x + s(Zi - Xj)) - HjCx) - Hi(y + s(zi- y^)) + Hj(y) )
S
where z = (y),

Next, if we let x = tx + (1 - t)y, then the fundamental 
theorem of calculus implies that g^(s) =
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“ X  (X + s(Zi - Xj) ) (Xg- y2>dt
s ®

 ̂̂  fo  ̂A  - y^)dt. Hence |gi (s) | <

1 X  ̂  A' + s(z^ - %i)) - (X) I |x^ - ŷ l dt +

X  1Hi2 (x) - H j 2 (Xq) I IXg - y2 |dt + 1Hi2 (Xq) | |x2 - yz If so 
llgi {s)|| ^ i X  11̂ 1 ' s (Z]̂  - Xj) ) - Hj ' (x)|||jx - yljdt +

Xf(Hl’(x) - Hj'(Xo)||||x - yjjdt + Hq||x - y|| , Now u s i n g  (3.21), 
jjgi (s)lU X (s jzi - Xj l)||x - ylldt + X  (llx -Xq||)||x - yljdt 
+  Hq||x - yjj. I f  we let pi = jjx - y||, p 2 =||x - x ^ H f P  3 =
||y - x j l  , p^ =  jzj - Xj 1, a n d  p^ -  jzj - y^ |, t h e n  jjx - X q H ^
tpj + P3, jzj - Xi I = Kzj - Xi)t + (1 -  t) (Zj- yj) 1 ^p^t +

(1 - t) p g , a n d  b e c a u s e  IT* (p) is i n c r e a s i n g ,  ||g^ (s)|| <
^  X +  (1 - t) P5] ) p j d t  + ET' (tp 1 +p 3) p jdt +  H q p  J ,
F
T h u s  w e  h a v e  ||gj(s)|j^ N g g  [(p ̂  +p 3 )(î5pj) + P g P j  + *s(p 1) +
H q P j o  S i n c e  t h e  r i g h t  h a n d  m e m b e r  o f  t h e  a b o v e  i n e q u a l i t y  
is i n d e p e n d e n t  o f  s, |jgi||$ N B q Q p i *  +P 5) (*5P 1 ) +  P g P j  +  ^(p ^
+  H q P j . T h e r e f o r e ,  ||T^ ̂  (x) - (y)||^ ||RjX"l||j|gJ| <<
* (l|x - yjj,jjx - Xoll,||y - x^jj, 'Zj - x^ |, jz^ - y ^  |) w h e r e
♦ (p j,p2fp3fPi»fPi») = 1 /^Ngn(Pt. + P5)Pi + N$o (P3Pi1 - Nggp^ \

*s(Pj)^) +  H g p  . N o t e  t h a t  s i n c e  N B q  > 0, ((>er^(Q) w h e r e  
J. =  To, 1 ~j , i = 1,0* 0,5, a n d  Q = J, x J 2 >< • • <* « L e t
 ̂ L ^

Pj^*=p - a, p2 = P, P 3 = P f C - p f p 3 = Ç - P ,  then upon
substitution, <|)(p - o, p, o,ç -p,ç -o ) =
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 ^ r%N6ft (2c - p - a) (p - a) + NBq (o (p -Ç) + h i P  - o) ̂
- NB^p ^

+ Hq (p -o)(. 9 Next let T(p) = p + 1 /Qn + - P+Hop%.
1 W q  p L

and let ç = T(ç), Using the procedure of (3,22) we obtain
¥(p) - T(o) = 1 f^NBr,(2c - p - o) (p - a)

1 - NBqP I
+N6Q(a(p -o) + %(p —a)^) + H q (p -o )̂  =
* (p - o,p, a ,  !T(a) ~ p , T(o) - o) , So we have
11̂ 11 (x) -  ̂(y)||< T(p) - ?(a) . Solving ?(p) - p =

1 T  Oo + NB p^ - p + H(jpl = 0 for 0 ̂  p < 1 we find
I - n S qp l j rpr
that (1 - H q )  ± /(I - Ho)^ - 4N6oQo are the fixed points of

T(p), By assumptions (5) and (7) these roots are real and 
positive. Let p* = (1 - Ho) - /{1 - H ) ̂  - 4 Q ^  <

1 and consider pe jOpP^ •
0

Cp) = (1 - NBop) [nB»P + Hq] 4- NB, (Q^ + NBp p^ - (1 - Ho)p) =
(1 - NBo P J ̂

Ho + QoNBo > 0 for p < p* < 1 , hence T(p) is increasing
TI "'1î"b7 pT ^  ^
on [OgP'Ao Further, since T(p) -  p + (NB* p^ - (1 - H® ) p + Q® )

' g ̂ p

and NBop^ - (1 - Ho ) p +Q« > 0, we have ÜT(p) >p for
— m - p --------------

p < p*o Also, T"(p) = 2NBo (Ho + QoNBo ) > 0 for p < p* so
(i - NÔopJ*^

(p) is increasing and hence max T' (p) = 7 >(p*) =
0< p< p *
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NBoP* + He = (Ho +1) - /(I - Ho ) 2 - 4N6o Qo = tt < 1 =
i  -  N ^ qP* (Hq + i )  + /(I - - 4NâoQfl

Coupling this result with the mean Value theorem^we obtain 
lT(p) - T(o) I < a |p- a lo Thus T(p) is a contraction mapping,
So we have ||Tjj(x) - Tjj(y3||< T(p) - T(a) < a jp - o j=
“ | l l ^  -  Xgl l  -  l l y  -  Xq II ^  a||x -  y | |  ^  ||x -  y| |o In view of 
the previous remark, we now have )|T̂  (x) - Tj(y)l|^
||x - yjj for X, yeS(X(j,k), An immediate result of this in­
equality is T j (x)€S(Ti(x q ), k) whenever xeS(x^,k)»

We now proceed to show that T(x) is defined on 
S(Xg,k) using reasoning analogous to that which was applied 
to T j (x) o First we define H^:R^— by H^(x) =

0 \
\ o  For, X, yeS(XQ, rg) we have Hg'(Tj(x)) - 

f 7 (X) I

H^MT^Cy)) -

0 0 
fgj(Tj(x)) - f2j(Tj(y)) fg2(Tj(x)) - f22(Tj(y)) I,

so t h a t  I I h ^ ' C T j Cx ) )  -  H2’(Tj(y))IU Bo n | | T ^ ( x ) -  Tj(y)|U 
BgNljx - y||o Further we have |[Hg * (Tj (x) ) - Hg ' (Tj (y) )||< 
!f“(j|x - y||) for X, yeS(Xo,ro)« Now if xeS(x^,k) where 
k = min (rg* 1 ), then
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TTTWrncTTT

0
fllCTjtXp)) - fj^(Tj(x))

eoN |[Tj{x ) - T jCXq))!̂ 3q n(|x - xo||< lo So again applying 
Banach’s theorem, we see that the linear operator 

1 0 \ / I 0
1RgX = 7iilTi(xo))

0 f22 (Xq J J
f , , (T, (X„) ) - f J 1 (T j (X) ) 0

0 ^22(Ti(Xo)) - ))
has a bounded inverse on S (Xg ,k) such that llRgX'^H^
______ 1̂________ Further
1 - N B q ||X - Xo|j “

fl,(T,(x))

01

1 1 ' 1 ' 0 

0

RgX, so I t  (Tj(X)) = RgX »
f  2 2  ( " T i I x j  )

T(x) = Tg(T j (x ))

on S(Xg,k)o Therefore

f 1 (x)
I is

f2(Ti(x))
^ZTTTTTT).
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defined on S(X(,^k)„ if we define :S(T^XQ ,k) <= R^—
/ 0 \

by (u) = I K  then T(x) - T{y) =
lu2 - f z  (u) I  
\  ^ T T u y

Tjj(x) - Tjj(y) + T22(Ti(X)) - T^^(Tj(y))o Further,
T(x) - T(y) = max [||T^^ (x) - (y)|| , H t ^^CT^Cx )) -

(T̂  (y))| I ̂  * Letting u = (y) and w = (x) we note
that the form of (w) - ^(u) is analogous to the form
of Tj j (x ) - Tj J(y), thus by the same reasoning we applied
to Tjj(x) - Tj J (y) we find that (u)|| ^
♦ (||w - u||, II w - Tj (Xq) II , ||u - Tj (Xo)||, 1̂ 2 - Wg I,
1̂ 2 - Uj 1) where Ç = T2 (u) , and <# (p j , P2 ,P 3 p P ̂ p P 5 )
is defined as before. Recalling that
*(p j p P2P P 3 p P^p P g)er^(Q), and noting that;
||w - a II = ||Tj (X) - Tj (y)|k ||x - yjj, ||w - Tj (Xg)|| 4=
||x - xjj, ||u - Tj (Xg)||<g ||y - xjl, IC2 - W 2 I <
ilTCy) ” x||, jzj - Xj I < ||T(y) » x||, U 2 - Ug I < ||T(y) - y||,
and |z2 - Yz I < ||T(y) - y|| we have: ||Tjj(x) - T22 (y)|| <
* (||x - y|l, jjx - XqII, ||y - XqII, ||T(y) - x||, ||T(y) - y||) and 
|1T22(Tj(x)) - T22 (Tj (y) )||;̂ *(||x - yj|, ||x - X q \ \ , |jy - x||, 
j|T(y) - x[|, ||T(y) - y|j), Therefore || T (x) - T(y)|U
4>(||x - y||p ||x - XqII, ||y - x|| , ||T(y) - x||, ||T(y) - y||). 

Continuing as before, except now p | | T ( y )  - xj 
and P5 = ||T(y) - y||, we have ||xq - T(Xo)|| = Qg ^
T(0) - 0 and T(p) > p for p < p*, Thus if (p^l is
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defined by Pj,̂ 2, ” T(py) we have ^ p^f and because
T(p) is a contraction map tpĵ J converges to the unique fixed
point p* < 1 o By assumption (7) p*< r^, s o p * <

HÏÏ7 »
( 1 , r_) and the hypotheses of Lemma (2„2) are
m r  °

satisfied for T(x), Therefore there exists x* such that
T<x*) = X* and [ |x^ - x*||^ P* - P^ < ( a" )Qn*

i - a
Now T(x*) = X* implies that T(x*) = x* -

I , and because f.(x), i = Ip 2 are continuous,
f 2 (X*) I ^

f^(x*) = 0 for i = 1, 2p hence F(x*) = Oo
Therefore, after examining the concept of majorizing 

sequences and their application to Newton-like techniques, 
we have imposed conditions on the generalized Gauss-Seidel 
iterative method which are sufficient to insure convergence 
of the iterates to a solution of the equation F(x) = 0 in
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