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INTRODUCTION

A basic problem of elementary algebra is solving a
system of two linear equations in two unknowns. The general
problem involving a system of n-linear equations in n un-
knowns can be solved in a variety of ways. Direct methods
of solution such as Cramer's rule, Gaussian elimination, or
straight forward matrix inversion and multiplication may be
employed, Also iterative methods such as the Jacobi, Gauss-
Seidel, or overrelaxation techniques may'be used to solve
the system,

Non~linear systems of equations are usually studied
as equations involving nonlinear operators on abstract
spaces, For example, a system of three nonlinear homoge-
nous equations in three real unknowns can be thought of as
the equation F (x) = 0, where F:R3> R3 is composed of three
nonlinear functions fi:Ri—aR, i=1, 2, 3. A solution x*
to the equation F(x) = 0 is thus a solution to the system
f;(x) =0, i =1, 2, 3,

In chapter one, the concepts of functional analysis

necessary for analyzing operator equations on abstract
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spaces are developed, Newton's method and related iter-
ative techniques for nonlinear systems are examined for
convergence using the unified approach of Rheinboldt and
Ortega in chapter two, Finally, in chapter three conditions
are found to insure the convergence of the extended
Gauss-Seidel iterative technique in R2.

It is assumed that the reader has a modest
knowledge of linear algebra, including the basic vector

space properties found in Halmos 7 , chapters one and

two,
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CHAPTER 1

Concepts of Functional Analysis

The subject matter collected under the title functional
analysis includes major portions of analysis, topology, and
linear algebra, The development of all the concepts to be
used in this paper would provide ample material for a text-
book. Thus, only a few basic definitions are stated
and the less common results, crucial in the examination of
iterative techniques for nonlinear operator equations are
developed in detail,

We shall reserve R to denote the real number system,
and begin with a listing of basic properties,

Definition 1,1: A vector space is a set V associated
L

with a field (F, +, °) such that the operations ¢:VxV+ V and
V:FxV—V, where ¢(xX,y) is denoted x + y and ¢(c,x) is denoted
by ax, satisfy the following:

1) (v,+) is a commutative group,

2) aeF, x,y eV implies that a(x+y) = ax + ay.

3) oa,BeF, xeV implies that (a + B8)X = ax + BX,
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4) «o,BeF, xeV implies that (aB)x = o(Bx),
5) xeV implies that 1lx = X,
If F= R, then V is said to be a real vector space,

Definition 1,2: A real vector space V is said to be

n-dimensional if there exists a set { x esoy X, }cV such

10
that cjeR, i = 1, ..., D, E;; cix; = 0,implies that

n
1,., ¢ = 0,and for any subset { ¥, , coe, %, } of V contain-

ing n + 1 elements, there exists d;eR, i =1, .o, n + 1,

n+ .
such that I;ﬂ'dixf = 0, and 2: df > 0, A vector space V is
said to be finite dimensional if there exists a positive
integer n such that V is n-dimensional,

Definition 1,3: Suppose M and N are vector spaces
A

associated with the same field F, Suppose T:M—N, Then
T is said to be a linear operator if T(ax + By) = aT(x) +
BT(y) for all x,yeM, a,BeF, In the special case where
N=F=R, T is said to be a linear functional,

Definition l,4: A real vector space V is said to

be normed if there exists ¢:V —+R, where ¢(x) is denoted
by ||x||, satisfying the following:

1) xeV implies that [|x|| > 0 and |[x|| = 0 if and only if
x = 0,

2) xeV, aeR implies that [lax|| = {df ||x]].

3) xeV, y eV implies that ||x + yv||< [{x[] + ||¥]].

Definition 1,5: If M and N are real normed vector

spaces, and if T:M »N is a linear operator, then T is said

to be bounded if there exists Ke¢ R, K> 0 such that
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(1,51) [|T(x)|] < K||x|| for all xeM, The least such K sat-

isfying (1,51) is said to be the norm of T and is denoted

by |T|| -
Note that if ||x|] = 1, then (1,51) becomes [|T(x){|< M,
and hence ||T|| = sup [|T(x)|]| -
XeM

[l |=1

Definition 1,6:A real normed vector space V is said

to be complete if whenever { xi}, a sequence in V, is such

that liml]xm - X
m'n-)-ee

oll = 0, then there exists an xeV such that

- xX|| =0, i.e., A real normed vector space V is

complete if every Cauchy sequence in V is convergent in V,

Definition 1l,7: A complete real normed vector space
R

is said to be a Banach space or simply a B-space,

Thegggm l,l: Suppose X and Y are B-spaces, Then we

shall let [X—Y denote the set of all bounded linear op-
erators mapping X into Y. If we define ||F|| as above,

(F + G)(x) = F(x) + G{x), and (aF) (x) = a(F(x)) for all F,
Ge X—Y] ,0eR, and xeX, then [X +Y] is a B-space.

Proof: Clearly [X +Y] is a real normed vector space,
Suppose {Un } is a Cauchy sequence of elements of the space
EK—+{]° Then given ¢ > 0, there exists an NeR? such that
n,m, > N implies HUn - Upll < ¢« Thus for any fixed xeX,

NU (%) = Up(x)[| < €||x|]|, and so the sequence {U (x)} of elem-

ents of Y is Cauchy., Y is complete, hence there exists
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U(x) = 1lim U_(x) for xeX, U is linear because U(x + y) =
n+>=

lim Un(x + vy) = lim @n(x) + Un(yD = U(x) + U(y) and U(ax)=

n-—e« n-o>e«

lim U_(ax) = a(lim Un(x)) = aU(x), Also, [Ju(x) - U (x)|| =

n-orw nre

lim |JU,(x) - U_(x)|ls € ||x|| for m > N, so the operator V,
n-w

where V(x) = U(x) = Uy(x) for xe X, is an element of the
space [X—Y¥] . Thus U = V + Uge [k—v], so llu - u ll¢ ¢ for
n > N and {U,} converges to Ue [X—¥] . Therefore [RK—Y] is
complete, and hence a B-space,

Remarks: 1) In the particular case where Y = R,
El-—*R] corresponds to the adjoint space X* of X, (See
Halmos [7]).

2) If X is a B-space, then we may define

a second operation on [K—X] as follows: if U, Ve [X—X] ,
then UV = W where We [x——a»x'] such that W(x) = U(V(x)) for all
xeX, In this case |[W(x)|| = |Jju(v(x)|ls [|0]flvex)|< Holl vkl
so|W|| < |[Ulf|lv]]e With the two operations defined on [X ‘+)ﬂ ,
E(-—-*)Q becomes a ring over R or [X—X] is a real algebra,
In the general case, given Ue [Y—X| and Ve [x—Y] we shall
again define UV = W where We [X—X] such that W(x) = U(V(x))
for all xeX,

Theorem 1,2: (Banach) Let X be a B-space and let

Ue [X—X] . 1I£l||lull€ g < 1 then the operation (I - U)?

exists and is an element of [K—X] . Further,||(I - U<

I"’q
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Proof: Let Ic [X—X] be the identity mapping and
define U? = 1, v® = Uy for n = 1, 2, °°°, 1In view of the
above remark, we have||[u"{lk ||U||® for n = 0, 1, °°°, Then V =

® uf is convergent since ||v|k Z;“,IIU*H < ;w Huj %<

oo
15 qf = 1 Further, V(I - U) = J7,0f (1 - 0) =

0 0 r ’ =0

;“,Ut - z;“,Uaﬂ = y? = 1, and similarly (I - U)V = I, Hence
V=2(I-U"} so (1 -1U)"! exists and |[[{T - U) "} ]|% 1l

- q
In view of the fact that every n-dimensional real
vector space is isomorphic to R" (see Halmos P. 15 E{] ), we

shall pay particular attention to this space, If xeRn, then

X
X = : | and we shall define ||x|| = max |x;) . With this norm,
Xn i=1l, °%¢,n R

nis a B-space, Recal-

usually called the Tchebycheff norm, R
ling that Te[én—+R@] implies that T may be represented by an

nxm matrix, (see Halmos 7 ), we have ||Tll=]|/a,°°° a,,
> .

m
= max Z;ﬂ laiil -
i=1,°°°,n

Definition 1,8: Suppose X and Y are B-spaces, A is

an open subset of X, X €d, and T:A-+Y, Suppose that there
exists Ue B—*f] such that for every xeX,

(1,81) 1lim T(Xg,+ tx) - T(%Xe) = U(x)., Then the linear
t+ 9 -t

operator U is said to be the Gateaux derivative of T at the

point %X, , denoted U = T'(xo)o The element U(X) is called

g
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the Gateaux differential, If the convergence relationship
is satisfied uniformly for all xeX such that ||x|| = 1, then
U and U(x) are called the Frechet derivative and Frechet
differential respectively,

Theorem 1,3: The operator T has a Frechet deriva-

tive at the point x, if and only if there exists Ue X—Y]
such that for every ¢ > 0, there exists a § >0, such that
AxeX, [[ax||< § implies ||T(xq, + 8x) - T(x;) =~ U( ax)|| <

ellax{lo

fl
”

Proof: Let Ax = tx where ||x|| = 1, Then ||ax]|
and statement (1,81) is equivalent to

(1.82) 1lim T(xo + AX) = T(X,) - U{AXx) = 0, Now statement
“Ax“*o HAx”

(1,82) converges uniformly if and only if given € > 0 there
exists a & >0 such that AxeX, ||ox|| < & implies

T(X, + 4x) - T(%) - U(ax)

[1ax][]

U( ax)l|¢ e||ax||, yielding the desired result,

L €, orHT(xo + AX) - T(xo) -

Corollary 1,31: If the operator F has a Frechet

derivative at the point X, then F is continuous at x,,

Proof: F&OE[X‘*i] implies that there exists MeR'

such that HF&O(XHLQ M||x||for all xeX, Given e > 0, there

exists 6§ > 0 such that § < € , and AxeX, ||Ax||< §
€ + M
implies ||F(x, + Ax) - F(x,)| - |IF%, (ax)l|< || F(x, + Ax) -

F(xo) - Fk, (ax)|ls ¢ [|ax|l. Then [|F(x, + ax) = F(xg)|ls

el{ax]| + Miax|l = (¢ + m|laxlls e,
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A useful tool of real analysis is the mean value
theorem for differential calculus, The next theorem gives
the generalized form of this result,

Theorem l.,4: Suppose X and Y are B-spaces, F:X—Y,

and F is Gateaux differentiable on the convex subset A of X,
Then if X, ye A,

(1.41) ||Fy - Fx||< |ly - x|| sup ||F (ex + (1 -€ )yl}.
O<ex<l

Proof: Let g be any functional in Y* and let ¢(t) =
g(F(x + t(y - xD » Then ¢(t) has a derivative in the inter-

val [0, l] because: 1lim ¢(t + At) - ¢(t) =
At+p At

lim g (F(x + t{y - x) + At(y - X)) - F(x + tly - X)))=
Aty At

g (itfo F(x + t(y - x) + At(ﬁf:,X)) - F(x + t(y - x)) ) =
g(F/(x + £y - X)) (y - 0) . i.e.,07(0) = g(Fx + tly - %)
for te [0, 1.

Now, applying the mean value theorem of differential
calculus to ¢(t), we get ¢(1) - ¢(0) = ¢/(8) for some 8,
0< 6 <1, Thus substituting we get g(F(y) - F(x)) =
g(F’(x +6(y - x)) (y - x)), so“gﬁf‘(y) - F(x))ll <
91| 33%<1“F (x + 6(y - x)){||ly = x|, By invoking a corollary
of the Hahn~Banach theorem (See Vainberg[iﬂ ¢+ P. 1ll) we may
choose g to be that functional in Y* such that ||g|{ = 1 and
g(?(y) - F(xO =||F(y) - F(x)||]. Then upon substitution we

obtain ||[F(y) - F(x)||< [ly - x|| sup ||F (ex + (1 - 0)y]|.
O<e<1l
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Corollary 1,41: Suppose X and Y are B-spaces, F:D<X

+Y, F is Gateaux differentiable on some convex set D, <D,
and ||F/ (x)||<y for xeDy. Then ||[F(x) - F(y)|< v ||x = y|| for
all x, y €Dy,

Proof: By the mean value theorem we know that

IF(x) = F(plls sup [IF/(ty + (1 - ©)x|lllx - y|]l. Dyis a
O<tcl
convex set, x, yeD,, thus ty + (1 - t)xeDyfor all t such

that 0 < t ¢ 1, Therefore sup |[|[F/(ty + (1 - t)x)||ls v ,
O<tc<l
so || F(x) - F(ylll< v|]x = y|}s
To obtain conditions for convergence in chapter three

we shall be dealing with F’/(x) where F:Rz—*ch Therefore it

is necessary to further investigate F’/(x,) where F:R}—RE ,

Let x =| : |eR™ and x, =(; |eR", If F:R"—R", and if(: | =
3 En Mo

A~ L/

F(x) , then there exist b4 i=1l, ;.. m such that ¢i:RQ—+R

and n; = ¢5(& 5 coosby) for i =1, ..., mac 1f F/(xy) exists
)

then F'(xg)c [R"—R"|, and if F/(xp)(x) = (i | then F' (x,)
Cm

may be represented by an nxm matrix a, °°°a,\such that

a".O ooam

n
z; =E'f” ajzé; for 1 = 1, o0, Mo Now substituting into

i

lim F(xo + tx) - F(X,) = F/(xq) (x) we obtain

t-+0 t

1] (1] n
lim ¢; (£ + tg, , °°0 EF ) = 1. aix &

t+0

+ tEn)
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£,
for i = 1, .00, m, and for all x =| ; | eR®, 1If in particular

&n
we let x; be the vector with i-th component equal to one and
all other components equal to zero, for i =1, ..., n, we find

that the functions ¢5, i = 1, ..., m have partial derivatives

with respect to £, i =1, ,,.,, N, Hence we have
361 (&0, °°°, &) = lim ¢z ((£, °°°, 89 ) + (0, °°°,0,tE ,0,°°°,0))
&k t-+0 t
- lim Q‘: (g‘iﬁ' OQOL‘VIO)) =aix for i = l' ocao g m' k= l' cooyp n -
t-+0 t

i.e., F/(x,) is represented by the matrix of partials of
$, 4 ooosbmo This matrix is called the Jacobian matrix of F
at 30@

Recalling the definition of the Gateaux derivative,
it is clear that if X and Y are B-spaces and F:X—Y such that
F exists on the open subset A of X, then F may be thought
of as a mapping from A into [} *i]o With this in mind we
make the following generalization,

Definition 1,9: Suppose F:A<X—Y and F has a Gateaux

derivative on A, where X and Y are B-spaces and A is an open
subset of X, Suppose XgeA and there exists Uel?—»[}—+iﬂ
such that

(1,91) 1lim ¥/ (x, + tx) = F/(%X,) = U(x) for all xeX. Then
t>0 T ——

U is said to be the second Gateaux derivative of F at x,

denoted F”(xc)O Similarly if F has a Frechet derivative on
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A, and the convergence in (1.91) is uniform for all xeX
of unit norm, then U = F"(xo) is said to be the second
Frechet derivative of F at xg .

In order to examine elements of the space [k— [X—Y]
we introduce the concept of a bilinear operator, and show
that any element of [}F*IZ—+§H may be regarded as a bounded
bilinear operator,

Definition 1,10: Suppose X and Y are B-spaces and

suppose T: XxX—Y, Then T is said to be a bounded bilinear
operator if:

1) Given x,, X,, X;, X,eX and a,B8eR, T(axy + B8%,, 2Z) =
aT(x;, 2) + BT(X,, 2) for all zeX and T(w, aX; + BX, ) =
aTiw, §1) + BT(w, X,) for all w:X,

2) There exists an MeR, M > 0 such that [|T(x;, x,)|| <
MHleHxZH for all x;, X,eX,

As with linear operators, we defineIITHto be the

least M satisfying 2). Ifljx,|| = ||x,|| = 1, then [|T(x;, x,)||<M,
So ||T|{ = sup HTﬁxl,xz)Ho Similarly, if we define
X1, Xs€

e | =] pe2f|=1
(T, + Ty)(x,, x2) = Ty(x,, xz) + TZ(xl, x2) then [kz—»i] =
{T|r is a bounded bilinear operator mapping X? into Y} is a
B-~space,
In the finite dimensional case we find that a bilinear
operator may be represented by a finite collection of matrices,

This can be seen by letting X and Y be B-spaces of dimension
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n and m respectively, and letting Te[}2+i], Suppose xiex

has zero components, except for the i-th entry which is one,

for i = 1,,..,,n, and suppose T(xi,xj) = (a;g’ooo'aUM) for i,j =
l,6004"c Then for x =/ \ eX, X = [T, \eX we have T(x,X) =
E n rﬂ

n n n .

‘1?(2,1=l Ei Xy Z;=,E;x;) = Zijq.ﬁiz%T(xi,xj)o So if T(x,X) = z,
h (M n _ n (k) r -1
where z = | i , then y, = Zttla‘? £.%; for k = 1,...,m,

Ym
Clearly, whatever collection of m, nxn matrices (a“d), i,j =
l,0004n, k = 1,,,,,m we consider, the operation T defined
above will be bilinear, Thus every bilinear operation may be
represented by a set of m matrices,

Using the Tchebycheff norm on X and Y we see that

e 1= 1L L5 aly £.Tyo So if x|l =||X{|= 1, then [y |«

(K) n {n
\zl” Z&_‘a‘?\ and hence ||T|} = max Ziﬂ Z? lais | o

pooopi

Theorem l1l,5: There exists a norm preserving isomorph-

ism between [x-—» E(—-»Y_—ﬂ and E(Z—vY]

Proof: Define y: E(-—-r E(——*Sﬂ-——* X?—y by w(u) =T
where Ue[?** @—+§] » and x'eX implies that U(x') = Vx'eX—Y]
and T(x,x') = Vx'(x)e[X2—Y], Clearly v is additive and
homogeneous, Suppose Te [X2—Y]|, Then there exists T*e [X—Y]
such that T*x'(x) = T(x,x') for x' fixed and for all xeX,

Let W(x') = T*x' for all x'eX, Then y(W) = T, so ¢y is onto,

Now [|T(x, x| = [vx Galle [[vxelllkdi 1olllillix*|l, so 17!l <|[ull,
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Also, |[Uu(x)l] = sup |lvx'(x)|| = sup ||T(x,x")}| < |l Tllllxil,
xXeX xeX
||| |=1 | [=2
which implies ||U|| < ||T||. Hence ||U|[ = ||¥(U)]|, and so ¥ is norm

preserving and one-to-one. Therefore, ¢ is an isomorphism,

Therefore, the second Gateaux derivative of an oper-
ator F mapping X into Y, being an element of [?—»I}—*fﬂ , Mmay
be thought of as an element of IEZ—»g]O Regarding F'(x3) as a
bilinear operator we find that for any x,x'cX,

(1,92) F”(x0) (x,x") = lim F'(x, + tx'")x = F'(X,)X . As before,
t*0 T

if the convergence in (1,92) is uniform, then F”(x,) is the
second Frechet derivative of F at x5, Again we are concern-
ed with the form of F”(xo) in the case where X and ¥ are fin-
ite dimensional,

Let F:X—Y where X and Y are B-spaces of dimension n
and m respectively, and let F”(xo) exist and be defined as a

bilinear operator represented by the m matrices (afg), i,j =

l,000s0p k = 1,,00,m; Further let x = E, \eX,x? = '\ eX,
En \ &g

¢] (EF pooopgn)
and F(x) = H €Y, Then substituting our earlier

¢m(£, poooygn)
results for first derivatives into (1,92) we obtain:

n n
° 3 .. .(K) . P = 13 Y - . l°)+ tet +ooo+t . i
(1.93) ZL,?qug» 3 Ej' tirg z,t—l Tr%t(gl & En ) 3 _

T

n
ZE__. ddx (gsﬂyooopg:?)gi )
L ¢ for k = lpooopmo Now if we let
T
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X and x' be the elements with all zero entries except the
i-th and j-th components respectively, which are equal to
1, we find that ¢k' k=1, s o -, m have second order
partial derivatives, and

(1.94)  af) = 224 (2, .00, E8) for i, 3 =1, coup my k = 1,
LT

coop Mo

A final concept in the general theory of operators
on B-spaces of which we shall make limited use is that of
integration,

Definition 1l,11l: Suppose F: E, ll-lcR-»X, X a Bespace,

and suppose a = t, < t, < t, °vo°< t, = b, EKEIEK ¢ il

k = 0, 1' soeypy NI = 1' and A = max ‘tK"" - tK" then
k-—-o'ooo'n-l

b
f F(t)dt = lim [ F(g) (e ~ to) if this limit exists,
o.

A 0
b
Note that fF(t)dt = Lim [|I7) FUEQ (tan = tidls
a A 0 )
b
lim Z::JHF(EKH'(tKﬂ - tg) = J'HF(t)Hdt,
A =0 . a

Definition 1,12: Suppose T:DcX—Y where X and Y are

B-spaces and D is a convex subset of X, If x,, x,e D, and

tkséke ¥k =1, 600, n - 1, are as in (1.11), we define:
) \
T(x)dx = _J'I‘(x0 + t(x1 - X4)) (%) = xq9)dt
Lo °

(1,121) = iiﬁozz;'o T(Xg + Ex(x) = Xg)) (X = Xg) (tyy = ty)

if this limit exists,
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Clearly if T is continuous the limit (1l.,121) exists
and the integral represents an element of Y,
With the above definition of integration we can derive
an analog of the fundamental theorem of calculus,

Theorem 1,6: Suppose F:DcX—Y where X and Y are B-

spaces, and suppose F'(x) exists and is continuous on the

%

convex set D,<D, Then for x;, x,eD,, J; F'(x)dx exists and
x »
F'(x)dx = F(x;) = F(xy).
Xo

Proof: Let X, = X + tk(x1 = X0), 8% = (ty,; - tg)-
= x + & (x,=- x43), and A = max

0 1 6’
k k=0,1,,00,n-1

(x1 =-x), X

Itmﬂ - td o Then using definition 1,12 we have

12
IF(x,) - F(x,) - J; FP(x)dx||=||F(x,) - F(x) -
1im Y% Pr(®y) ax ‘; lim F(x,) - F(x,) -
A >0 2.{:0 K k” A0 “ 1 0

n-1
K=0

o

F* (Ry) A%,

Noting that F(x;) = F(x,) = Z::O(?(xmq) - F(xki)we have

n-i

lim [|F(x1) = F(xo) = ] .7,
A0

F* (X)) ax, || =

. n-t -
ii?" ko Flx,) = F(x) - F(F)ax || <

n-|

k-0 (tkn = tg) sup |[|F' (xx +es x,)

lim [|x; = x| ]
x=+0 D<o<l

- F”(Ek)”, making use of the mean value theorem, Now since

F? is continuous and lim sup lek + 8AX), - §k“ = 0 we have
A20 O<e<l
o [] - ‘ - » - .
lim sup HF (%, + 0%, xk“ 0, giving the desired result,

A+0 O<o<l
Finally, we use some of the concepts developed in this

chapter to verify the following lemmas which will aid in
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investigating the convergence of iterative techniques in

chapter 2,

Lemma 1l,1: Suppose X and Y are B-spaces, F:D<X—Y,

F is Gateaux differentiable on some convex set DycD, and
HF*(y) = P°(x)|]| <y for x,yeDg., Then||F(y) = F(x) - F*(z)

(y - )| < v|ly - x|]| for all x,y,z eD,.

Proof: Using the mean value theorem we have
lF(x) - F(y)l] & sup ||F'(ty + (1 - &)x)||llx - y||l. Also,
O<tcl

F'(z)e[?=~i] for all zeDyg. Replacing F by F - F'(z) in the

above inequality we get ||F(x) = F(y) = F'(2)(y - x)]|| <

sup KF - F'(2) )”(ty + (1 - v)x)|||}x - vl

O<tcl

o Let w = ty +

(1 - t)x, then (F - F"(z))'(w) = F'(w) - (F“(z))’(w) direct-

ly from definition 1,8, Further, since F“(z)eﬁk—ﬁﬂ ,

((F“(Z))“(vﬂ) (8) = lim F'(2) (w + t§) = F°(2)(w) = F’(z)(§)
t-+0 t

for all £eX, Thus (?“(z))“(w) = F'(2), so we have

|[F(x) = Fly) = P'(2)(y - x)|| & sup ||F(ty + (1 - £)x) -
O<tcl

Fe )|l x - ylis v||x - yllo

Lemma 1l,2: Suppose X and Y are B=-spaces, F:DcX—Y ,

F has a Gateaux derivative on some convex set DgcD, and
[IF* (v} = PP ()] s v|ly - x| for x,yeDy, Then ||F(y) = F(x)-
F'(x){y - x)||$ %v||ly - x|| for all x,yeDo.

Proof: Clearly ||F'(y)} - F*(x)|]< Y|[|ly - ¥|| implies

that F' is continuous on Dy, Thus F(y) -~ F(x)
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J.: F°(x)dx = f. F'(ey + (1 =-6)x)(y - x)de , Therefore,
o
lIF(y) - F(x) - F'(x) (y = X)|] = ”J;' [Fr(ey + (1 —0)x)- Fr(x) °
(y - xdells ||y - x||£'||F'(9y + (1 =8)x) - F'(x)]|de <
Yy - x||2fo' ede = Ly ||y - x[]?,
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CHAPTER 2

Solving Nonlinear Operator Equations

In this paper we are primarily concerned with oper-
ator equations of the form
(1) F(x) = 0, where F:X—+Y, X and Y are B-spaces, As was
noted in the introduction, if X and Y are of dimension n
and m respectively, then a soclution x* of F(x) = 0 may be
regarded as a solution to a system of m equations in n un-
knowns,

Another equation of interest is
(2) T(x) = x, where T:X—X, X a B-space, If x* is a solution
to T(x) = x, then x* is said to be a fixed point of the op-
erator T, Clearly, if a solution to the equation T(x) = x
is known, then a solution to F{x) is known, where F(x) = x -
T(x). Keeping this in mind we shall examine operator eguat-
ions of forms (1) and (2),

Suppose that X and Y are B-spaces and F:AecX—Y, where
A is an open subset of X, Suppose further that F has a con-
tinuous Gateaux derivative in A, and there exists an element
x*¢A such that F(x*) = 0, Then for x,eA, F(xy) = F(xg)= F(x*)
can be approximated by F°(x¢) (x; - x*), so it is reasonable

19
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to assume that a solution to the equation F’(xg) (xq = X)
F(xg) is close to x*, If x) is such a solution and [?'(xoﬁ-'
exists,we have X, = X, = [%“(xaﬂ-' F(xo)° Continuing this
process, assuming [?“(xgﬂ" exists, we obtain a sequence
%, } defined by
(3) X,y = %X - [?’(xki]ul F(xg), This iteration process
for constructing Xx; is called Newton'’s method, In practice
[:%‘(kaJ-i may be difficult to compute, or may not even
exist, For this reason a cruder sequence of approximation,
{X)}, to x* defined by
(4) X4y = Xy -ijf’(igi]-l F(Xy), is often constructed, The
iterative method in (4) is called the modified Newton method,
A wealth of variations on Newton 's method have been pro-
posed, A few of these Newton like techniques have been
studied by Dennis [5], Altman [1], and Ben-Israel Bﬂc

If either the sequence {x,} or {ﬁk} » constructed
above,converges to an element x*, and if F is continuous,
then x* is a solution to F(x) = 0, We shall therefore
devote the remainder of chapter two to determining con-
ditions which insure the convergence of sequences of iter-
ates constructed by (3}, (4), or related techniques, The
general approach to the convergence of iterative techniques
used in this chapter is essentially that of Rheinboldt ﬁﬂ 0

Definition 2,1l: Suppose {Xy} is a seguence in the

B=-space X, Then a real non-negative sequence {tk} is said
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to majorize {x.} if“xk+1 - X || € ¢,y - tx for k = 0,
19 oooo
Noting that any majorizing sequence is non-decreasing
we make the following observation:

Theorem 2.1: If {tgx} majorizes a sequence {xi}

in a B-space X and if {t,} is convergent, then {x;} is con-
vergent,

Proof: |[|xXm = X,|| < Za n“xj+1 - x5l| <
)} 141(t - tj) = t, = th. Thus the convergence of
{ tx} implies that { xx} is Cauchy., But X is complete, hence
{x3} is convergent,

Definition 2,2: Suppose X is a B-gspace and D is a
closed subset of X, Then T:D—D is said to be a contrac-
tion mapping if there exists aeR, 0O<a<l, such that
IT(x) = T(x*)|l £ allx - x*||] for all x, x"eD,

Theorem 2,2: Suppose D is a closed subset of the

B-space X, and T:D—D is a contraction mapping., Then there
exists a unique fixed point x* of T in D,

Proof: Choose xgeD and construct {x;} by the
successive approximations x, ., = T(x.). Let t; = 0 and
tx = D4t Xaf'lIx; = x,||, for k > 1, where a is as in defini-
tion (2,2), We now show inductively that {tyx} majorizes
{x} o Ifk =1, then [|x; = %g]] < [|[x; = %x4]| = t; = ¢,

Assuming||xk - xk_1|L5 ty - tyx_, we find that
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ey = Il = lFtx) = Pl s o f|xg - x| =

“(zgi‘ G%-'Hxl - Xo” - 2:{ a*ﬂx; - xo“) = a(a®||x; - xo“’ =
Zgﬂ, u%-'”x1 - x|| - fé;i dfmxl = xoll = )4 - tx. Now

lim t, = e |lxy - x,{| . Therefore {x, }converges, say

oo ¥

to x*eD, Noting that T is a contraction map which implies

T is continuous we have 0 = lim ||x* - T(ka| =
ke
[|x* - T(x*)|]| ., Therefore T(x*) = x*,
Suppose XeA and T(X) = X, Then||X - x*|| =

IF(®) - F(x*)| < «|IR - x*||/which implies that
|[X = x*|| = 0 and ¥ = x*, Hence x* is unique,

Corollary 2,21l: Suppose T:A<X—X where X is a B=-space,

and T has a Gateaux derivative on AygcA, a closed convex set,
If

2) sup {|T"X)]| = a < 1,
Xelhg

then there exists a unique fixed point x* of T into Ay,
Proof: Suppose Xx;, XzeAg. Then by the mean value

theorem, |[|T(x;) - T(x;)l¢ sup [IT"(6x, + (1 -0)x || °
O<oe<1l

”xz - 31“~€ aljjxy - xlﬂo So T is a contraction mapping and
by theorem (2,2), T has a unique fixed point x¥*ea,
Recalling the relationship between equations (1)

and (2) we obtain the following result,
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Corollary 2.22: Suppose F:X—X, X a B-space, F con-

tinuous, and suppose T(Xx) = x - [%'(xi]4 F(x) exists on A<X
and satisfies the conditions of theorem (2,2). Then there
exists a unique x*eA such that F(x*) = 0,

Before the concept of majorizing sequences can be
utilized, a method is regquired to obtain a majorizing se-
quence{tk} for a given sequence {x,} , We have found such
a majorizing seguence when {xk} is constructed by x, .4 =

G(x k =0, 000y and G is a contraction mapping, in theorem

x) ¢
2,2, We shall formulate two lemmas whose proof depends
upon the construction of majorizing sequences in a more
general setting, To simplify notation we make use of a

definition of Rheinboldt [11],

Definition 2,3: A function ¢:QcR™ R is said to be

of class r(Q) if it has the following properties:
1) The domain Q = J,xJ,%.,, xJ, where J; = [@, b;),

1)i§< “'fori=lp coop INg

2) ¢ is non-negative and isotone, i.e,, if (U%& oo s UﬁheQ,

for i = 1, 2, and ug’ < u‘;’,
{ ) 2}
0 < ¢(Ug)p o090 Unl)) < ¢(U(1’ 000 @ U:’l) o

“

for j = 1, .00 N, then

Lemma 2,1l: Let X be a B-space and G be a continuous

operator such that G:De¥—X, Suppose there exists a function
$eT2(Q) and a point xpeD such that on some set DgecD

llety) = cualle  ¢illy = x| o [ x = %0]) =¢(u,v) for all x, yeDq.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24
Further suppose there exists a continuous function
w:[@,w)-+a such that ¢(u - v, v) = ¢y(u) - ¥v(v), and let the
sequence {tk} defined by ty 1 = ¥(t ), k =0, 1, ..o, tg = 0,
t; = |I*1 - %)}, exist and be such that ty,3 > t,, for k = 0,

kooop and lim t) = t*, Finally, suppose that T(xy,t*)<Dy, Then

Kk -+

G has a unique fixed point x*e¥(x,,t*),

Proof: Define {x )by %, ., = Gx, for k = 0, 1, °°°,
We shall show by induction that x,.e¥(x,,t*) and
%, - xk_lns tg =ty for k =1, 2, °°°,

For k = 1, [|x, =~ xqll¢ |[|%; = Xg|| = 0 = t; - t; s t* ,
soO xle§(xo,t*) and Hxl - Xg Hs t1 - ty . Assume that
k-1° kx 1S
defined, and |[x, .y = x|l = ||Gx = G&x, _,||< ¢dlx - x, _4ll,

xkeg(xo,t*) and ”Xk - xk-l“ K3 tk = %t Then xk+l = GX

%1 ~ xoll) & ¢ (¢ - t_1r tk-1) = ¢(u - v, v), where u = t;
and v = t) 1, so ¢({t, - ty_;, t_ 1) = vt) - v(t _,) =

ter1 = Bo Thus fIxyg - xille tryy - to Alsoy||xpyy - x|l
Zitonxj+l - leLf zjtotj+1 -ty =ty -t = tkﬂé t*, There-
fore, xk+le§(xo st*) ., Hence, {t;} majorizes {x,} and

lim t, = t*, Therefore, there exists x*eX such that
koo

lim x, = x*, Since % e8(xg,t*) for k = 0, 1, °°°, it follows
X+

that x*e¥(xg,t*), and the continuity of G implies that Gx* = x*,
Suppose there exists y*eS(xo,t*) such that Gy* = y*,
We shall show by induction that ||y* = X ]l t* - t; for k =

0, 1, °°°, Clearly if k = 0, then||y* - Xg”S t* = t* - £ty o
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Assuming that |[y* - xp|l< t* - t,, we have
y* = xgpall = Hey*) = ctxplle o dly* = x|, Hx, = %,/D <
(t* = ty, t) = ¢(u - v, v) = y(u) - ¥(v) where u = t* and
v =t So |ly* - xill ¢ v(t*) - w(t,) = t* - ¢ ;. Thus

lim x, = y*, so y* = x* and hence x* is unique,
k o

Lemma 2,2: Let X be a B-space, XpeX, keR' and

T:S(x,,k)—X, Let there exist a function¢elrS(Q) and MeR"
such that J; = [0, b;), b; < Mfor i =1, °°°, 5 and

b; + by < M, where Q = J;xJ,x°°°xJ5, and such that (2,21):
T (x) - T(y) | < ellx = yll, llx - Xo”r lly - xo“' T (y) - x|l ’
lIT(y) = y||) whenever both sides exist, Further let there
exist a function v¢: E),M) ——R,and a pge E,M) such that

(2,22) ||x, = T(x )ls w(py) =p, and

(2.23) ¢(p=0,p =pg, © = Pg, ¥(p) — p, V(o) - o) &«

v(p} = v(a) for Pg <0 g p whenever both sides are defined,

Let the sequence {pn} defined by el = ¢(pn) exist and be

such that Pn+l > Pn and 1lim Pp = p¥* < M,
n e

Then if p* - p, < k, the sequence {x_} defined by
Xn4l = T(x,) is well defined and converges to an element x*e
S(x,,k) such that T(x*) = x* and |x* = xp[l € o* = pp0

Proof: We shall show by induction that x,eS(x,,k),
and ||x_,; = xlls ppyy - ppe For n = 0, xgeS(x,,k) and
=, - XOH = ||T(x,) - xo||$ v¥(o,) - pg = p,= p,o Assume that

|| x* - xn“.s p*-p, holds for n g k. Then Xypyq = T(xy) is
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. K
defined and ||xy .y = %x.|| ¢ jﬂoﬂxj+1 - lels

K
za',—.vopj+1 - pj = pk+l - po < D* - DO < ko Hence Xk+l€S(x°,k)°

Also, |{x,,.q = X |l = 1T(x) = T(x,_;) |l <

¢(|ka - xk-l”' ka - xo“p ”xk-l - xour “xk = xk”, “xk - xk_]_“)

< ¢(pk - pk-l’ pk = Py pk—l - pO' Dk - ka pk - pk-l)

¢(o = 940 = pgr 0 = o,y V(o) = o, ¥(o) - 0) &

v(p) - ¥(o) where o= V¥(g) = p) and ¢ = Pk-1e Therefore,
1 ®ee1 x| < ¢(ok) - ¥(px.3) = Px41 = Pk. Thus {x.} is

majorized by (pk} and lim p, = p*, so there exists x*e X
k >

such that lim X, = x*, Further |[|x* - x || ¢ o* = pg< k,
K oo ’ 0

hence x*eS(x,,k).
We shall defer application of lemma (2,2) until
chapter 3, but we invoke lemma (2.1) immediately,

Theorem 2,3: Suppose X is a B-space and G:DeX—X

is such that G is Frechet differentiable on D, and
lle*(x) = c*(y)ls v ||x = yil on Dy for D,cD, a convex set and
vyeRY, Suppose that for some X,eD,;

1 6" (xlle 6 < 1,

2) [|x, - G(xgllls « and
3) h = Yo < 1 o
=372 7
Finally,if t* = 1 - YT =72R ., _a , t** = 1+ YT =735 ,
R T =3 R

a_, and T(x,,t*)cD,, then the iterates x;,; = G(x,),
T - ¢
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k =0, 1, °°°, remain in §(x0,t*) and converge to a fixed
point x* of G which is unique in Dy N S(x,,t**),

Proof: For x, yeD;y, applying lemma (1.,2) we get
lle(y) - clls |l6ly) - 6(x) = c*(x) (y - x)|| +
(" (x) - G" (%)) (y = %] + lle* (x) (v - x)llg
Sally = %12 +y|ly = %olltly = xll + slly = xll = o¢ly = x|, lx = xolD)
where ¢(u,v) = %yu? + yvu + 8su, ¢el'2(Q) because

y 20, § 20, TIf y(t) = kyt® + st + o, then ¢(u ~ v, v) =

v(u) - p(v), If t, = 0 and tee1 = v(t, ), then

t1 = $(0) = a >0 = t0 and t1 = a < t*¥, Assume for n< k
that t a'tn-l and t & t*, Then sincey is isotone,

teel = w(tk) > ¢(tk_l) = t,. Also, because typ < t* and ¢
is both isotone and continuous, t, ; = w(tk) < Y(t*) = t*,

Therefore, lim t, = t*, Hence by Lemma (2.1), xke§1x0,t*)

K
for k = 0, 1, °°°, and there exXists a unique fixed point x*e
Ti(x,,t*) of G,

If h = %, then t* = t** and x* is the unique fixed
point in DofW S(x,, t**), Suppose h < % and there exists y*e
D, N S(x,,t**) such that y* = G(y*), Ifl|jy* - xo” = Sy=
S - ty, and if ||y* - xplle 8, - t, for n < k, then
Hy* - xk+1H~5 ¢ (l|ly* - xk”v “xk - XOH) < ¢(Sy - tk' te) =
$(Sy) - vl ) = Sy = 490 So we need only show that

lim S = t* = lim tko For te(t*,t**), we have y(t) < t,
kow k o

Thus S, .1 < Sy and t* & S;. Applying the same argument that
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was used for {t,}] we have 1lim S. = t*, Hence lim x, = v*,
k k k
k+w ko=

and so x* = y* which verifies the uniqueness of x* in
D, N S (%, ,t**),

Again exploiting the relationship between equations
(1) and (2), this theorem may be applied to the generalized
Chord iterative technique;
to produce the following result,

Corollary 2,3: Suppose X and Y are B-spaces and

F:DeX—Y such that F has a Frechet derivative on Dy and

Pt (x) - P ()l < v]|x - yl| for x, yeDgy, where vyeRT and

Do<D is a convex set, Suppose Ae[}-*f] has a bounded inverse
! eEL—rg_l with ||[A-'ll« B8, Choose xgeD, such that

H = a ' Frxgllse 6 < 1, la7'F(xylls o and

h = Bya < 1 Let t* = 1 = ¥l - 2h , a and
TT="737 2 z° h T -0
t** = 1 + ¥1 = 2h , a ., If S(x,,t*)eD;, then the iterates
n 1l =

(2,31) remain in ¥(xy,t*) and converge to a solution x* of
F(x) = 0 which is unique in Dy ) B(xq,t**),

In the particular case where F'(x,) and [:F'(x(,:)]"l
exist, and E* (X°E|-‘ e [Y-—-»}El , by letting A = F'(x,) we obtain
from (2,31) the modified Newton iterative technique, Thus
we have specified conditions under which the modified Newton

method will produce a sequence of iterates which converge to
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a solutionof F(x) = 0, This special case of Corollary (2,3)
is essentially the convergence theorem for the modified
Newton method given by Kantorovich and Akilov Eﬂu

To formulate conditions under which Newton's method
will produce a convergent sequence of iterates, we begin by
considering approximate Newton processes of the form
(2:32) x4 = x¢ - A7 (x)F(x ), k = 0, 1, °°°, where A(x)
is a linear operator for fixed x,

Theorem 2,4: Let X and Y be B-spaces; and let

F:DeX—Y be such that F is Frechet differentiable on DgeD,

where Dy is a convex set, SupposellF'(x) - F'(y)l] <

vllx = y|| on D, where veRY, and suppose that A:Docxa+[3—rﬂ‘
has a bounded inverse A“(x)e[%—#ﬁ] for each xeD, such that
Ha~! ()l 8 and |IF*(x) - A(x)|| < § for xeDy. Let xqgeD,

be such that[IA"(xo)F(xo)“s a and h = kBya + B6< 1, If

T(xg,r)eD, where r = a s then the sequence {x,} defined

by (2,32) remains in §(x0,r) and converges to a solution x*
of F(x) = 0,

Proof: Define G:D,cX—X, by G(x) = x - A™ (x)F(x),
Then whenever x, G(x)eD;; l|lc(G(x)) - G(x)ll =
- a! (cENFex) e 8 HF(G(x)) - F(x) = F(x) (a(x) - x|+
slita(x) - Frx)(cx) - xlls odllex) - xl) where
6{u) = %Byu? + gsu, Now in order to construct a majorizing

sequence {tk} for the iterates {xk} defined by (2,32), we
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must solve the difference equation tee1 — % =

BBy (ty = t, )2 + B8(t, - t,_3) for k = 0, 1, °°°, with tg
and t; = a,

. . L
By induction we shall show that ty <« aZj,, h', for
k=1, 2, °°°, Clearly t; = 0 < a and t; = a ga+ ha, Now
n
suppose tn-s 32*:051 for n & k, Then for k + 1: tk+1 - tk

Bty ~ t, )2 + B8(t -t ). So t

k-1 k +1%5
%8 (ah%)2 + Bs(ah) + o[, B < h(en®) + J 5ot =

aigfoh?o Therefore lim t, = a = r and so xke§1x0,r) for

k> o -
k=0,1, °°°, Also {t,} majorizes {x,} which implies that

lim X, = x*eg(xo,r)CDoo Thus A ~!(x*) exists and x* = G(x*)
ke

implies that F(x*) = 0,

Newton's method is the particular case of this
theorem where A(x) = F'(x), So for Newton's method § = 0
and h = %8y, and the majorizing sequence is constructed by
solving: t -t =hity - )%, k=0, 1, °°°, t, =0

k+1
and t;, = o, By induction we find that

it

K
(2.41) t -t < ah?! , k=0, 1, °°°, If k = 0, then

k+1
t, - t0 = q < a, Suppose (2,41l) is true for kgn, then

n+l n+l
the2 ~ Ehel = h(tp,y - tn)2 N he?h? -2 < ah? -t Now
K K
L za'fxtj+1 -ty ¢ Eéfg“hz-d = ah27! , Therefore,
1 - h2"

K

2=l
lx* = xls  __ah?

1 - h2"
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This result with the above error bound is known as the
Newton - Mysovskih theorem, (See Kantorovich and Akilov [ﬁ] ) .

For a final result concerning the convergence of New-
ton's method, we shall prove the Newton - Kantorovich theorem
using the method of Ortega [1@1. This theorem is more gen-
eral than the Newton - Mysovskih theorem in that [F'(#ﬂ-'
is assumed to exist only at a single point,

Theorem 2,5: Let X and Y be B-spaces and let F:DeX—Y,

Suppose on an open convex set DpgeD, F is Frechet differen-
tiable and ||F'(x) - F'(y)ll¢ v ||x - yl| for x,yeDy. For some
XoeD,, assume that r, = [%'(xoﬂ-d is defined on all of Y
and that h = Byn ¢ %, where ||T || ¢ B8 and |[IgF(x))|l¢ n . Let

t* = (1 13/1 - 2h) , t** = (1 + Y1 -~ 2h), and suppose that
Y By

?;'(xo,t*)cnoo Then the iterates Xpp1 = X - [%'(x#i]ﬂ F(xk),
k=20,1,*°°, are defined, lie in §(x0,t*) and converge to a

solution x* of F(x) = 0 which is unique in Dy N S(xy,t**),

Proof: Let g 1 » then for xeS(x,,q) we shall show

By

[F' (XSJ-‘ exists and H [F' (xil_'
xeS(x,,q), then using remark 2) page 6, ||I - [?'(X&ﬂ-' F' (x)|]
= “LF"(xOS]-' (Fr(xy) = Fr (x| ||Fr xpf|]] Frixp) - F* (x|«
Byllx - x4l < 1. So for xeS(xg,q), (I - (I - E‘-(xo‘ll" F'(x)))"!

]5 B If
T = BY[IX = Xq] °

exists and ||[(T - (I - [F'(xoﬂ" Fe(x)))7H] < 1

1 - By[lx = x|l
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by theorem (1,2}, Simplifying we have
(X - (@ - [Fx)]” Fraon = ([Frix]™” £re” =
[E'(x)-' F'(x,) exists for xeS(x,,q). [F'(x&ﬂ" exists so
[i&”(xil-'l F'(xo)[?'(xda" = [F'(xﬂ" exists on S(x,,q), and

e ™I < [l ed e e e ox03] 1] <

Letting N(x) = x - [?'(ka'q Fx where x and N(x) are in

8
T = B[ = Xl ,

S(xg yg) , and noting that F(x) + F'(x)(N(x) - x) = 0, we
obtain |IN(N(x)) - nNx|l = ||[Fr (vG)]T Foveo)|| <

8 | FN ) - Fx) - B ) (N(x) - ol <
T =8P = VO]

1, By|llx - nxl|2 using lemma (1,.3).
z - BY|IXo~ NX

Next we shall show that {xk} is well defined and is

majorized by {t,} where t, , = t, - %8y(t;)2 - ty+n  k = 0,
k-1 ‘
1, °°° and t, = 0, Note that {t,} is the sequence of Newton

iterates for the polynomial %8yt2 - t + n with roots t* and

t**, Thus t > tk and lim tk = t*, For k =1, x, =

k s

k+1

-1
Xg - [F'(xoﬂ F(xg) and ||x1 = xplls n=¢, = t, - t;,. sSup-
pose that x,, °°°, X, exist and |[|X, ~ x__ [l ¢ t, - t,_; for

ns ko Then [[x - xo|| S £ = tp < t* so xe¥(xy, t*)

~

S(x9,q) and hence ¥, is defined. Also,“xk_‘_l - x| =

2 2 -
“N(N(xkal) - N(xk-lﬂLS %By||xe = Xl < By (ty - ty ) =
T = BYIIX - X,| T - ‘Eyfk
- 3 : = * . .
tesl t,o Again we have shown iiﬁ € t*, {tﬁ majorizes

{x} , and {x,}c8(x4,t*) . Using the same reasoning as in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33
the proof of theorem (2,3) we find that there exists a solu-
tion x*e¥(x,,t*)cS(xg,q) such that N(x*) = x*, By the con-
tinuity of F(x) and the existence of [E'(x*ﬂ" we see that
F(x*) = 0, The uniqueness follows again from the reasoning
in theorem (2,.3),

In a practical situation, the application of Newton's
method involves a tremendous amount of work, partially
because [f'(xkﬂ-‘ must be computed at each iteration., In
chapter three we shall consider the generalized Gauss-Seidel

technique which is more efficiently applied to real problems,
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CHAPTER 3

Generalized Gauss-Seidel Techniqgue
Two of the most common iterative methods used for
solving linear systems of equations are the Jacobi and the
Gauss-Seidel techniques, Given the linear system Ax = B

where

a“ oeo am x| bl
A = : - Jpx={:}], and B = ], the Jacobi
am °°°* ann Xn by,

method is described by the formulas

(1) x K0 -23,. aiz . xi + Eﬁ e i =1, °°°, n, For the

X
itt aﬁ.;l aii

same system the Gauss-Seidel technique is written as:

(K+1) (Ke 1) (x) s

n
(2) X‘: = 'zd,'_-,l ai fxt Za::l'-‘” th + bA. ’ i = 1' ’ n,
ali ajii au.

Sufficient conditions to insure convergence of these
technigues may be found in Faddeev and Faddeeva [F],

For solving a nonlinear system of equations fi(x,,"',xn),
i=11, °°°, n, Ho M, Lieberstein [y] proposed two iterative
techniques which are generalizations of (1) and (2), The

generalized Jacobi method has the form:

34
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(3) xgﬂﬂ)___ xi“" - Fi(x® 000, x¥ ), i =1, 2, °*°, n; k = 0,
E&l(x?)'°°°' X
l, °°% where fii = 3f{ , and the generalized Gauss-Seidel
XL

technique is described by:

K )
(0 %" = - g e, x50, xf,000, 1) 1=, o0,

) KH (K#1) (k) !
fri(x, )l°°°r Xioy X4 2°°%, x

Bryan l}] has derived conditions sufficient to
guarantee the convergence of (3) in a special type of B=-space,
We shall state this result for R® with Tchebycheff norm, with-
out proof, and shall employ the methods of Bryan to derive
conditions which insure the convergence of (4) in RZ,

Theorem 3,1: Let fi(xl,ooo, X,) be a real valued

function defined on a set AcRP for i = 1, °°¢, n, such that
there exists x4 = (x?ﬂ 000, xt?) belonging to A and positive
real numbers r, N, Py, Qy, and Hy; so that for i =1, 2, °°°,

n, fi has continuous second-order partial derivatives for

XES(XO ,r)cA,

1) max Zi:.z.id Eijk(x)\.s N, for xeS(x,,r),
1=1’ooo’n

2) max 1 < Py,
i=19°°°'n fiizxos

3) max fi(xXe) | Qp,
i:lgooo'n ii xo

4) max ZgL f (x )]s Hy < 1,

u=l'00°'n ”*‘, xo

5 bg =RON_ <1 and
- Hy)
0
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6) ry = Qo (1 - Y1l=4b,) < r, Then the sequence

0 = 0
defined by (3) converges to a point x* = (x,*%, °°°,x *) in A
such that f, (x*) = 0 and max e, * - xi0 |« ry. More~

i=l,°°°,n
over, x* is the only solution of fi(xl, o0, X)) =0, i =1,
°°°, n, in the set S(x,k)es(x,r) where

k = Qo (1+/_]—.—:TSB)0
25, (T - HO)

Let F:R?>—R?, T,:R?>—R?, and T,:R>—>R? where

fl(xl,xz) Xy = £, (x)

F(x,,x2) = e T (x,,x,) = Eﬂfﬁ) and
£,(x,,x,)
X2
%
T, (x ,x)) = » Then if T:R*—R? is defined by
x, = £a(x)
2\ X

T(x) = T,(T,(x)), the iteration x = T(xk) becomes the

k+1
generalized Gauss-Seidel technique, With these operators in

mind we formulate the following theorem for the extended
Gauss~-Seidel technique in R?Z,

£.(x)
TheorenL(BOZ)s Let F:AcR?2—R?,where F(x) = 1

£, (x)
ot and T be defined as above, Suppose there
exists X eA and ry, N, 8,, Qp, and HyeRT such that

and let TI,T

1) F is twice Frechet differentiable on S(x,, rO)US(Tl(xa)'ro)
cA, and [|F"(x)]l¢ N for an(xo,ro)L)s(Tl(xo)' ry)o
2) f£3.(xg) # 0, £,,(T (x,)) #0, £,,(x)) # 0, and

£,,(Ty(xg)) # 0
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3) max 1

1 |
’ r
T (X,T EZRACFAETY) 22 (X T22(T1(Xg))

£2(T; (x0))

0 Izzt&ltxo’,
5) max £i2 (Xo) £a1 (T, (X0))
( Ty, (Xg) ' F,2(T,; (X))

6) (1 - H,) 2 >4Q N8, and

~
/A
0
(=]

4) max ( £f,(x0) |,
T xg)

\_/
/A
m
o
A
’-I

7) (1 = Hg) ~ V(1 = Ho)* = 4Q,NB < r
'INBO 2 o

then the iteration Xoel = T(xn) is well defined and the

sequence {x_ } will converge to x*e¥(x,,r,) such that

F(x*) = 0, Moreover,“xn - x*|< ol Q, where

-0

a = (He + 1) = /(1 = Ho)2 - 4Q,NB, < 1,
(HO + L) + V{1l = Ho)“- - 4QONBO

Proof: We begin by showing that||T, 6 (x) - Tl(yﬂls Hx = vl
for x, yeS(x,,k)es(x,,r ).
£, (%) ,Xa).
; 2 2 114¥) X,
Define H,:R“—R* by del,xz) = « Then for x,
0

yeS(x,,r ), H '"(x) - Hl'(y) =

1 0 £..(x) = £_ _(v) £..(x) - £, _(y)
11 11 12 12
(T, (%) 1 ,
0 z22[’(0j 0 0

so||H,'(x) = H ' (Yl Bo [|F'(x) - Fr(w)lls By Nilx - yl|l. Let

®:[0,=)> [0,=) be defined by W(t) = B,N t2?, then H(t) is
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monotone increasing and
(3,21 [jH;' () = H (W« B (llx - vl]). Choose [|x - x(|< k

where k = min(ry, 1 ), Then
0

1 0 £ I(XO) - fll(x) 0
F (%) :
1
0 5221}:0) 0 f22(x0)—f22(x)
& BoN||x - x¢||. So by theorem (1.2), the linear operator R, x=
f11 Ixo)
- 1
0 0 T72(%0) 0 £22(xg)=£5,(x)
has a bounded inverse on S(x,k) such that IR =Y <
fll(x) 0 fll(xo) 0
1 « Now = R, x
T = NB[[X=%,]] 0 £,,(x) 0 £,5(xg)
1 0 1 o0
T, L[ TitReY
on S(x,,k), so 1 = R X 1 s
0 TI0x) 0 T32(xo)

Therefore T, (x) is defined on S(xo,k)o

Since we are attempting to verify the inequality
T, (%) - Tl(yHL$ |Ix - y||, and because the second components
of the vectors T, (x) - Tl(y) and x - y are egual, we need
only consider the first component of the vector T, (Xx)-T, (y),

Thus we define T;;: S(x,,k)cR?>—R? by Ty;(x)=/ x,- £ (x)
11 (X

0
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Then,
£y (x)
511137
(3.22) Ty (%) =T, , (y) = - -
22 o, (X), 0
11 (x) 0 £, (y)
lezy5
+ +
0 fzg(x) 0
£1.4{y) -£,( ))
11'Y -
' = Ryx"!g,, where g, =
0 £,,(y) 0
£ (x) "o vy - £3(y) - x4
11 xo 11 x0 Elliyi
- £22(x) +
0 fzztxo’ 0

f ( ) -f](¥)
11 x0 . 11 xO (v) 11\Y Letti
. etting
0 0 f%TxLoT 0
gi{s) = =£,(x) + f!(¥) -
F)(xy) 11Xy
1 £,({x + s(y; - fg(*) - X)) - £ (x)
Ty, (%) LY : =
s

£y0y + s( = £3(y) _)) = £,(y)
11y , we find that g; =
s

llm g,(s), Substituting we have g,(s) = =H;(x) + Hl(y) -
s-+0"

1 (H (x + s(z; - x;)) - Hj(x) - Hi(y + s(z1- y,)) + H(y) )
%

where z = T, (y).
Next, if we let X = tx + (1 - t)y, then the fundamental

theorem of calculus implies that g,(s) =
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o 2 - p - -
- fo 25,,1*11% (x) (x4 - yt-)dt - _1_[H12(x + s(z; = X)) (x,- y,)dt
s "o

i
+§L 2;;, H, (X) (xa:- ya-,)dt. Hence |gi(s) | <
lo 2 - _

I
S 2 ® =m0 [, - v, 1t + By, 0x0) 1k, = v2 |, so

i
lorts)ll s L LI, (R + s(z; = %)) = 5 @llix - yllac +

0]

!
j;HHl'(i) - H, ' (x0)||l]x = yllat + Hgj|x - y|| - Now using (3.21),
i - ! -
oy tsllls [ M(slzy - % Dlix - yllat + '@ (IR -x,Ihllx - yllat

+ Hl|x - vile If we let o1 = ||x = vliler, =|lx = x4ll,03 =
Iy = %ls 0, = |2, = x|, and o, = |z, = y; |, then ||F - x,ll¢
tp, + Py, |z, = X, | = [(z) = 2Dt + (1 - t)(z,~ y)) | gp,t +

(1 - t)ps' and because H'(p) is increasing,||g1(s)“-s

[
;'L_jo'ﬁ'(s[tpu + (1 = t)ps])pldt + H'(t:;:o1 +93)°1dt + Hpogo
s

Thus we have ||g, (s)lls NBo[(pI+ +o. ) (k0,) + pgpy + %(pl)z] +
Hpp,. Since the right hand member of the above inequality
is independent of s, ||g,|l< NBO[:(pq +05) (Mpy) + pgo, + %(pl)%]
+ Hgp,. Therefore, ||T;,(x) - T, (vl]s [IR;x7Y|lg,ll <

o Ulx = vl llx = xoll,lly = x0ll, 'z, = %, 1, |z, = y1 ) where

‘b(pl’Qprspr,ppu) = 1 {%NBO(QQ + ps)pl + NBO(D3°1 +
1l - NBOQ "

%(91)2) + Hopl} ° Note that since N8, > 0, ¢el°(Q) where
Jg, = |0, 1 s 1 =1, 1D, and Q = J_ xJT, X, ,.%xT., Let
-2 -] 1 2 L - 5

p, =P = 0y P, =P, Py =0, p, =L =p, p5 = L = o, then upon

substitution, ¢(p - 6, p, 0, =-p,z =a )} =
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ﬁlﬂo_a-{;ﬂqso(zc - p -0)(p —o‘) +NBO(U(D ""C) +!‘5(D -0)2

+ Ho(p -—a)} o Next let T(p) = p + 1l E)o + NBop2 - p+Hop},
oP

and let ¢ = T(z). Using the procedure of (3,22) we obtain

T(p) -~ T(o) = 1 LWNBy (28 -~ p = a){p - a)
- N 0P

+N85 (0 (p —0) + k(o =0)2) + Holp =0)} =
¢(p - 0,p, 0, T(c) - p, M(6) - 0). So we have

(T11¢x) = T, , (¥)lls T(o) - T(a). Solving T(p) = p =

1 Q0+Nﬁoz-p+Hop}=0f0r0\< p < 1 we find
I7="NEGp {. 0 EON
that (1 = Hy) t V(1 = Ho)? - 4NB,Q, are the fixed points of

2NB o

T(p) . By assumptions (5) and (7) these roots are real and

positive. Let p* = (1 = Hg) = Y(1 - H )2 - 408N <
2NB,

1l and consider pe [Opp{l o
0

Tlp) = (1 -~ NBop) [NBoo + Hol + NB (Oy + NBop?2 = (1 - Ho)p) =
{1 - NBop)*

Hye + QoNBo > 0 for p < p* < 1 , hence T(p) is increasing

- NBgp 0
on [Opp’;]o Further'since T(p) = p + (NBep?2 = (1 = Hodp + Qo)
and NBop?2 = (1 = Help + 0 > 0, we have T(p) >p for
p < p*, BAlso, T"(p) = 2NBo (Hy + Q¢NBy) > 0 for p < p* so
II - Ewopg
T (p) is increasing and hence max M (p) = M (p*)=

Ogpgp*
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NBop* + Ho = (Ho +1) = Y(1 - Ho)Z - 4NBoQo = a < 1,
= NB,p TH, #1) + V(I - H,) = = 4NBQ,

Coupling this result with the mean value theorem,we obtain

T(o) = T(o) | < o lo- o). Thus T(p) is a contraction mapping.
so we have ||T),(x) - T, (yll« T(p) = T(a) < alp - ol=

aIHx - x,l] - ly - X0||-$ allx = ¥|]| € |Ix = y||] In view of

the previous remark, we now have ||T,(x) - Tl(y)H-S
\lx = y|| for x, yeS(x,,k). An immediate result of this in-
equality is T, (x)€sS(T,(xq), k) whenever xeS(x,,k),

We now proceed to show that T(x) is defined on
S(x,,k) using reasoning analogous to that which was applied
to T;(x), First we define HZ:RZ—-*R2 by H,6(x) =

0
» For, x, yeS(x,, rg) we have H,'(T,;(x}) -

f,(x)
Elellx 7) 1 0

’ T (T (Xg7)

H," (T, (y)) = L .
0 T, 2Ty (X))
0 0
le(Tl(X)) - fZl(Tl(y)) fZZ(Tl(x)) - fZZ(Tl(Y)) ’

so that ||H," (T, (x)) - H,' (T, (y)lls 80 N7, (x) = T, (¥l
BoN|jx - y||]c Further we have |[H,'(T,(x)) - H2°(T1(y))“$
B (|lx = yl]) for x, yeS(xy,ry). Now if xeS(xo,k) where

k = min (ro,¢1 ), then
RON
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1 0
T (T (X0
1
0 T (X707
£110(Ty (x4)) - £, (T, (x)) 0
g
0 fzz(Tl(xo) - fzz(Tl(x))

BoN HTL(X) - Tl(xo)Hs Bg Nllx = xol[< 1. So again applying

Banach's theorem, we see that the linear operator

1 0 1 0
R,X = - [T1; (T1(Xo)) L .
0 1 0 T, (T, (X,7)
£, (T, (%)) - £, (T, (x)) 0
0 £,,(Ty(x,)) = £,,(T (x))

has a bounded inverse on S(x,,k) such that HRZX’1|LS

1 Further
i - NBOHX = Xo|| °
£, 1T, (X)) 0 £,,(T, (x)) 0
0 £,,(T1(x)) 0 £, 01 (x4))
1 0
R,X, SO T (T, (%)) = R,x71,
1l
0 T, (T, (X))
1 0
fll(T&(xg)) on S(x,,k). Therefore
) 1
0 fzz(Tl(x01T
X, £ (x)
T(x) = T,(T,(x)) = L
- is

X £,(T;(x))
: Ezzdlt"”
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defined on S(xy,k), If we define T,,:S(T,x,,k) < RZ—R?

0
by T,,(n) = , then T(x) - T(y) =
uz- £ (u)

22\

Ty, (x) = T,,(y) + T22(T)(x)) - T22(Tl(y))° Further,

T(X) - T(y) = max {HTIl(x) -z, wll, llr,, () x) -

TZZ(Tl(y))Ir} « Letting u Tl(y) and w = Tl(x) we note

that the form of T, , (w) (u) is analogous to the form

= Ty

of T,,(x) - T,,(y), thus by the same reasoning we applied

to T,,(x) - T, (y) we find that ||T,, (w) - T,, (wll <

o (|~ ull, Jw = Ty(xd|] 4 [ =T (x5, - w, s

&, = u; ) where & = T,(u), and $(p,s PreP3s Pyy Pg)

is defined as before, Recalling that

0(pys Pos P3s Py o ps)ers(Q), and noting that;

[lw = c{l=1lT, 0 = T, (s [[x = yll, [lw = T, (x]l <

e = 100 (e = 7 (xlls [ly = 01l = w2 | <

lITeyy = x|h |21 - % L < lITty) = x|, &, - v, l< [IT) - ylls

and |z, -y, |< |[T(y) - y|| we have: [|T,,(x) - Ty, ()| <

¢ (x = yll, llx = xll, [ly = xoll, HITyy = xll, JIT(y) - 9l and

[T, , (T, (x)) = Ty (Tt ls o lllx = wllo [lx = xoll, |y - xIl,

[IT(y) = x[|, ||T(y) - ¥|l} Therefore ||T(x) - T(lls

s tllx = yils tx = xqll, lly = x[b, llreyy = =il llTey) = vips
Continuing as before, except now P, m HT(y) - xH

and ps = ||T(y) - y||, we have ||xy - T(xg)|| = @, <

(0) -~ 0 and T(p) > o for p < p*, Thus if {pk} is
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defined by Prel = T(py) we have »p and because

>

T(o) is a contraction map {p,} converges to the unique fixed

point p* < 1 , By assumption (7) p* < ror S© p¥ <
0

min ( 1 , r ) and the hypotheses of Lemma (2,2) are
NE

satisfied for T(x)., Therefore there exists x* such that

n
T(x*) = x* and “xn - xX*||g o* - pr € (__a_)0p.
-
Now T(x*) = x¥* imﬁlies that T(x*) = x* -
£ (x*)
Eflltx‘)
» and because f,(x), i = 1, 2 are continuous,
£ (x*) 1l
Tpz (00
fi(x*) = 0 for i = 1, 2, hence F(x*) = 0,

Therefore, after examining the concept of majorizing
sequences and their appiication to Newton-like techniques,
we have imposed conditions on the generalized Gauss=-Seidel
iterative method which are sufficient to insure convergence

of the iterates to a solution of the equation F(x) = 0 in RZ?
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