Quantifying impacts to a floodplain groundwater system from large-scale sand and gravel mining

Thomas E. Michalek

The University of Montana
Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports.

Please check "Yes" or "No" and provide signature

Yes, I grant permission

No, I do not grant permission

Author's Signature:

Date: 5/5/01

Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent.
QUANTIFYING IMPACTS TO A FLOODPLAIN
GROUNDWATER SYSTEM FROM LARGE-SCALE
SAND AND GRAVEL MINING

By

Thomas E. Michalek

B.S. University of Wyoming, 1991

presented in partial fulfillment of the requirements
for the degree of

Master of Science

The University of Montana

May 2001

Approved by:

Chairperson

Dean, Graduate School

Date

5-30-01

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
In order to satisfy the increasing demands of construction industries, new sources of sand and gravel (aggregate) must be continuously located and developed. Sand and gravel deposits are typically found in flood plains along active river and stream channels. Excavation can and does take place below the water table, leading to concerns about negative effects on groundwater and surface-water resources, particularly from large-scale mining. Local Residents and an adjacent drainage district were concerned that a proposed expansion of an aggregate mine, creating a 360-acre lake in the Columbia River floodplain, would raise the water table over a large area, thereby increasing flooding potential, and drainage pumping costs.

This study characterized groundwater and surface-water conditions in the area of the expansion and reviewed the drainage district's dewatering operations. A MODLFOW (McDonald and Harbaugh, 1988) model was developed and a series of simulations created to replicate existing conditions and to predict the effect of the aggregate mine excavation on the local groundwater flow system. Numerically simulating existing and future groundwater conditions showed that groundwater flow to the aquifer beneath the drainage district would increase by 10 to 17 percent. This increased flow produces additional saturation of a limited area above the current water table, resulting in additional pumpage requirements of five to eighteen gallons per minute. In addition, an increase in flooding potential due to a widespread increase in water table elevation is not predicted.
Table 6. Sensitivity Analysis and Calibration Summary

FIGURES AND PLATES

Figure 1 – Project Location and Vicinity Map
Figure 2 - Site Plan
Figure 3 – Portland Basin Stratigraphy
Figure 4 - Geologic Cross-Section A-A’; West-East
Figure 5 - Geologic Cross-Section B-B’; South-North
Figure 6 - Hydrographs
Figure 7 - Water-Level Map for May 15, 1995
Figure 8 - Water-Level Map for September 22, 1995
Figure 9 – Conceptual Model Cross-Section
Figure 10 - MODFLOW Design for Current-Conditions Models
Figure 11 - MODFLOW Design for Future-Conditions Models
Figure 12a: Current-Conditions Model, MODFLOW High-Water Conditions
 12b: Future-Conditions Model, MODFLOW High-Water Conditions
 12c: Predicted Water-Level Changes, MODFLOW High-Water Conditions
Figure 13a: Current-Conditions Model, MODFLOW Low-Water Conditions
 13b: Future-Conditions Model, MODFLOW Low-Water Conditions
 13c: Predicted Water-Level Changes, MODFLOW Low-Water Conditions
Figure 14: Evaluation of Future Conditions Model Results

Plate 1: Project Area with Well Locations (in pocket)

APPENDICES

Appendix A Annotated Bibliography
Appendix B Water-Level Data
Appendix C Driller's Logs, Boring Logs and Well Construction Logs
Appendix D MODFLOW Model Details (Includes disc in pocket)
CHAPTER 1: INTRODUCTION

According to the USGS, each year in the U.S. over two billion tons of aggregate are produced annually (USGS, 1999). Aggregate consists of sand, gravel and crushed stone that are used in the construction of roads, structures and the manufacturing of cement products. Current projections indicate that the amount of aggregate needed to satisfy demands over the first 25 years of the 21st century will be equal to the total amount of aggregate mined during the entire 20th century (USGS, 1999). In Oregon alone, the Department of Geology and Mineral Industries predicts an increase in aggregate consumption of 0.53% annually over the next 50 years (Whelan, 1995). This means that new sources of aggregate must be located and developed in order to fulfill increasing demands.

Most sand and gravel aggregate was deposited as stream-laden (fluvial) sediments along the course of rivers and streams. These deposits can be found in and near active river channels and within the floodplains of river valleys formed by the erosion, migration and flooding of rivers over thousands of years. In some cases, these sand and gravel deposits are several hundreds of feet thick and cover many acres.

Floodplain mining for aggregate often occurs in areas with shallow water tables. Mining can and does take place within the saturated sediments of unconfined sand and gravel aquifers. Mining within an aquifer can be a source of concern to neighbors and regulatory agencies because its potential to alter the natural groundwater flow system and/or introduce contamination.
Several researchers have examined the flow conditions around lakes, ponds and gravel pits. Many of these studies are associated with contaminants or the potential contamination of public water supplies. However, at least two efforts (Durbec, et al., 1987, and Shope, 1990) include an investigation of the interaction between gravel pits, aquifers and nearby surface waters. These studies examine the characteristics of existing groundwater systems in which mining has occurred and the potential impacts of mining below the water table.

Significant research has been conducted to examine the behavior of lakes and ponds relative to hydraulically connected groundwater flow systems, including techniques of numerical simulation. Cheng and Anderson (1993, 1994) developed a Lake package for MODFLOW, which allows simulation of lakes with variable recharge and boundary conditions within a groundwater flow system. This package has subsequently been modified to include additional boundary conditions (Council, 1998). Baker, et al. (1998) developed a MODFLOW module, PITLAKE, to simulate dewatering and rewatering of mine pits.

Comparison of techniques used to simulate flow-through lakes is reported by several workers. Chung and Anderson (1998) and Nair and Wilsnack (1998) examined the results of using high-hydraulic conductivity (K) zones in MODFLOW compared to the use of the Lake package for various scenarios.

Several researches have examined the techniques used to quantify the parameters and controls that influence lake/groundwater interactions and the uncertainty that may be associated with these parameters (Winter, 1981) (Lee, 1996) (Lee and Swancar, 1996).
Goals and Objectives

The primary goal of this project was to determine what effect the proposed mine expansion would have on the local groundwater flow system. In order to accomplish this, specific objectives were established. They included:

1) Compiling and reviewing previous work on the hydrogeology of the project area. Tasks included analysis of water well reports filed with Oregon Water Resources Department (WRD).

2) Interviewing individuals familiar with local hydrogeology, mining activities and the SDIC operations. Tasks included reviewing historic mining in the area and detailing past and current SDIC operations.

3) Analyzing the location of project area monitoring wells, piezometers and surface-water gages. Tasks included confirming elevations for measuring points and relating them to a common datum.

4) Estimating the hydraulic characteristics of project-area sediments. Tasks included analyzing previous research and evaluating information on the geologic history of the area.

5) Measuring, documenting and analyzing water-level data collected from piezometers, monitoring wells and surface-water gages to provide basis for a conceptual model. A database of water-level elevations was generated to support this objective.

6) Developing a conceptual model of the local groundwater flow system and surface-water groundwater interaction based on the information gained from Objectives 1 through 5 above.
7) Creating a groundwater flow model that tests and evaluates the conceptual groundwater flow system. Tasks included calibrating the model to match measured water levels.

8) Creating a groundwater flow model to simulate the potential effects of the proposed mine expansion on the local groundwater flow system. Several methodologies were explored.

9) Analyzing flow model results and determination/quantification of actual mining effects.

Report Organization
The text of this report provides a discussion of the results and conclusions from the background research, field investigations and groundwater modeling. Chapter 2 provides Background information, Chapter 3 describes the Research Methods, and Chapter 4 details the Results of the study. Chapter 5 contains a discussion of Uncertainty and Limitations and Chapter 6 includes Selected References. Figures are included after the text and Appendices A, B, C and D contain supporting data.

CHAPTER 2: BACKGROUND

As shown on Figure 1, the project area is about 2 miles northeast of the town of Scappoose in Columbia County, Oregon. The site is on the western side of the Columbia River valley. Elevations in the valley bottom generally range from about 100 feet Mean Sea Level (MSL) to near sea level. The west side of the river valley is bounded by the Tualatin Hills, which locally extend to more than 1,000 feet MSL in elevation.
The project area includes numerous creeks, sloughs, lakes and wetlands as shown on Plate 1, Project Area Map. Major water bodies in the area include Jackson and Scappoose Creeks, Santosh and Evans Sloughs, Scappoose Bay and the Multnomah Channel, which connects the Willamette and Columbia Rivers. Dense vegetation exists along Jackson Creek, Evans and Santosh Sloughs and scattered small stands of deciduous trees are also present. Most of the area is used for agriculture, including irrigated crops and pasture for cattle.

Sand and gravel mining has been conducted in the Scappoose area for decades. Several active mining operations are located directly north of the expansion area and also to the west. These operations currently mine sand and gravel below the water table, creating open-water lakes and ponds.

The expansion property (referred to as Pit E, see Plate 1) is a 423-acre parcel of relatively flat crop and pastureland that slopes downward gradually from northwest to southeast. The Scappoose Industrial Airpark and rural residential properties border it on the west, Jackson Creek on the east. Residential properties and farmlands exist north and south of the site, respectively. Site elevations range from approximately 50 feet MSL at the western edge near the Scappoose Industrial Airpark to less than 10 feet MSL at the eastern border near Jackson Creek/Santosh Slough. No surface water features are present within the site boundaries.

Native vegetation is largely absent from the site, existing only as individual trees and isolated strips along fences. Elsewhere, pasture and crops cover the site.
The mining is planned to occur in excavated cells. Ponds will naturally form as the excavations extend to about 100 feet below the water table. No offsite surface-water runoff will be allowed to enter future ponds, and water levels within each mining cell will correspond with groundwater elevations in the surrounding area.

Area Geology

The project area is within the historic floodplain of the Columbia River. Ancient flows of the river deposited gravels, cobbles and boulders on top of basalt bedrock, which is present at depth. Subsequent channel meandering and intermittent flooding over millions of years covered these ancient deposits with layers of coarse-grained materials interspersed with lenses of fine-grained overbank deposits. An overlying soil, consisting of sand, silt, clay and gravel, is from 1- to 20-feet thick in much of the floodplain.

Walker and MacLeod (1991) mapped the finer-grained sediment as Holocene age (about 11,000 years ago and younger) alluvial sediment. The underlying coarse-grained material is interpreted as a combination of Late Pleistocene age (about 1.8 million years ago) catastrophic flood gravels overlying older Miocene-Pliocene age (7 to 26 million years ago) river gravels of the Troutdale Formation (Bet and Rosner, 1993). Rock-type distinctions occur between the unconsolidated gravel and the Troutdale formation, but these are not likely to be noted on drillers' logs (the primary source of geologic information). Figure 3 shows the simplified stratigraphy underlying the project area. Figures 4 and 5 show geologic cross-sections through the project area.

The following paragraphs describe the geologic units in the project area in order of increasing age:
Fine-Grained Quaternary Flood Deposits

Fluvial sediments occur to depths of 1 to 20 feet below the ground surface. These geologically recent, fine-grained overbank or flood deposits consist primarily of brown cobbly silts with some bouldery cobbly silts with silty sands and cobbly silty sands. The thickness of this unit apparently increases toward the eastern side of the project area. The permeability of this finer-grained material is less than in the underlying sediments.

Coarse-Grained Quaternary-Tertiary Flood Deposits

Below the fine-grained flood deposits, older, coarse-grained glacio-fluvial flood deposits underlie the area. These sediments, which are Quaternary to Tertiary in age, extend to depths of more than 200 feet below ground surface. The unit consists of poorly graded, rounded gravels and cobbles in a sand matrix. These deposits are the materials that are locally mined for sand and gravel.

The deposits contain scattered boulders larger than 12 inches in diameter. The deposits are locally cemented and can perch groundwater, based on observations of dewatered gravel pits southwest of the site. Groundwater can be locally confined beneath these low-permeability cemented zones. A review of water-well reports for several wells in the project area suggests that these cemented zones are discontinuous and cannot be confirmed over large distances. Hartford and McFarland (1989) report that cementation occurs in both the Quaternary gravels and the deeper Troutdale formation, thereby preventing these criteria from being used as
a distinguishing characteristic. A greenish, cemented gravel is present between depths of about 65 to 108 feet below ground surface (bgs), based on site coring data.

Site Geology

The geology beneath the expansion site is consistent with the units described above, based on the conditions encountered near and below the adjacent GNW Pits A and B (Figure 2). Boring logs for 94B1, 94M1, 94M2, 94M3 and 94M4 (see Appendix C) and Figures 3 and 4 provide details on the subsurface geology.

A discontinuous silt unit was encountered in the upper unconsolidated sand and gravel zones in borings 94M2 and 94M4. The silt unit, where present, appears to be 10- to 15-feet-thick.

Cemented and unconsolidated sand and gravel was encountered in borings 94M1, 94M2 and 94M3. The cemented zone appears to be discontinuous beneath the site, based on the information from these borings. In boring 94M1 (the only boring that extensively explored the vertical thickness of this layer), the cemented zone extended to -200 feet MSL and was more than 90-feet thick. The full thickness of the cemented zone in boring 94M1 is unknown since this boring did not completely penetrate the cemented material. Based on reports by others, it is inferred that unconsolidated silts, sands and gravels are present below the cemented zones.

Soils

Maps compiled by the U.S.D.A. Soil Conservation Service (SCS) show two soil series exist at the site (SCS, 1986). These series are the Sauvie silty clay loam and the Sifton loam. The Sauvie silty clay loam occurs in the southeastern portion of the property
along Jackson Creek and the Sifton loam covers the remainder of the site. Both soils are described as deep to very deep (extending deeper than 60 inches below ground surface). The Sauvie series is described as poorly drained soil formed on recent silty alluvium. The Sifton series are classified as somewhat excessively well-drained soils formed in gravely alluvium mixed with volcanic ash.

Surface Water

As previously discussed, the project area is within the historic floodplain of the Columbia River (see Plate 1). In addition to the Columbia River, principal drainages in the area include:

- Multnomah Channel east of the site, which discharges to the Columbia River at Scappoose Bay (south of St. Helens, Oregon);
- Jackson Creek and Santosh Slough immediately east of the site, which discharge either to Evans Slough or to the SDIC tide gate at the north end of Santosh Slough, depending on season; and
- Scappoose Creek west and northwest of the site, which drains to lowlands northwest of the site and eventually Scappoose Bay.

Some of the above features are natural, although the U.S. Army Corps of Engineers (COE) and the SDIC have substantially modified local drainages. The Jackson Creek/Santosh Slough system functions as a drain to collect water from other smaller drainage ditches in the district. This water is directed either to Evans Slough when the Columbia River is high or to the tide gate when the Columbia River is low.
The COE modifications to surface water features are primarily related to flood control and to allow shipping in the Columbia River and related major waterways. The SDIC's improvements control water levels in private farmland within the historic floodplain. The COE assists the SDIC with dewatering system improvements since the COE provides additional flood control structures, such as the dike along the Multnomah Channel.

Other surface-water features within the project area include the numerous channels and ditches within the SDIC, and ponds created by gravel mining operations. These ponds are at Santosh Pits A and B (north of the expansion area), and at the Scappoose Sand and Gravel operation, about ½ mile west of the expansion area. In addition, the area includes a barge canal north of Pit A, and several small seasonal ponds within the SDIC.

Levels and stages of surface-water features in the project area are influenced by regional as well as local conditions. A major regional influence on surface-water elevations is the Columbia River stage, which, in turn, is influenced by conditions such as tidal effects, seasonal precipitation and snowmelt, and the regulation of upstream dams.

Tidal influences, which alter the river stage as much as several feet along this reach of the Columbia River are pronounced during low water periods, but are less significant during high river stages (Helper, 1991). The mean monthly river stage ranges from about 15 feet MSL in January to about 5 feet MSL in September (Helper, 1991). The Barge Canal, north of the site, allows barges to move from the Santosh loading area to the Multnomah Channel. The water level of the Barge Canal is considered to be roughly equal to the Columbia River stage because of its direct connection to the river.
Local controls on surface-water elevations include runoff from precipitation, recharge from groundwater and the pumping schedules of the SDIC.

No natural surface water features or drainages exist on the proposed expansion site, based on aerial photos and site observations. However, farm roads and some irrigation and drainage ditches provide conduits for surface runoff. This runoff collects in low-lying areas and forms intermittent, temporary puddles. Precipitation for this area is estimated to be approximately 40 inches/year, based on data from the collecting station at St. Helens, Oregon.

Scappoose Drainage Improvement Company Operations

The SDIC (formerly known as the Scappoose Drainage District or SDD) was formed as a drainage district in 1922 to manage water levels in the agricultural lands along the floodplain. Numerous drainage canals, levees, tide gates and pump stations were subsequently constructed between 1926 and 1928. In 1939 and 1940, the COE reinforced the SDIC's levees and upgraded the pumping capacity of the system. Additional improvements were added through the years.

The COE studied other SDIC improvements (described in a June 1971 COE Design Memorandum) and subsequently completed further work. This work included removing and replacing major pumping stations and tide gates, upgrading the levee and constructing a sublevee southeast of the barge canal (Ogden Beeman & Associates, 1979). The SDIC tries to maintain water levels within the Jackson Creek and Santosh Slough system at approximately elevation 4 to 4.75 feet MSL during winter and elevation 3 to 3.75 feet MSL.
during the summer (personal communication, SDIC). The calculated recurrence frequency of the Standard Project Flood is about 1,000 years (COE, 1971).

Dewatering inside the SDIC boundaries is conducted by pumping surface water from drainage canals, which in turn, are connected to numerous ditches. Five pump stations currently exist near the site. Each station is related to a sub-basin within the district. Four of the stations (referred to as the Johnson, Honeyman, Hoven and Smith pump stations) are in the interior of the SDIC and discharge water to Jackson Creek, Santosh Slough or Evans Slough inside the SDIC boundaries. The fifth station, known as the Evans pump station, extracts water from the east end of Evans Slough and discharges it into Multnomah Channel, which is outside the SDIC boundaries. Plate 1 shows the locations of these pumps and features.

The majority of SDIC pumping occurs in the winter when precipitation rates and water levels reach their seasonal highs, although the SDIC also controls creek and slough levels in the summer to maintain water for irrigation. Pumps at each station automatically start when float switches exceed pre-set elevations. The Johnson, Honeyman and Hoven pump stations, which pump in the interior of the SDIC, each have capacities of 3,000 gallons per minute (gpm) and discharge into Jackson Creek/Santosh Slough. The Evans pumping station at the eastern edge of the SDIC has four pumps, each reportedly capable of discharging a maximum of 32,600 gpm at 27 feet of head.

The Smith pump station is nearest the site. This station is also within the lowest elevation and largest subbasin of the SDIC. The Smith station has two pumps with capacities of 3,000 gpm and 6,000 gpm. These pumps extract water from a network of
ditches and discharge it to a ditch connected to Jackson Creek/Santosh Slough. From Jackson Creek, the water flows northward into Santosh Slough or enters Evans Slough and is pumped into Multnomah Channel. During low stages on the Columbia River, tide gates at the north end of Santosh Slough allow water to gravity flow out of the SDIC. During high river stages, water flows south from Santosh Slough and north from Jackson Creek into Evans Slough and is eventually pumped into the Multnomah Channel.

Groundwater

Regional groundwater flow is inferred to be from the highlands west of the project area toward the Multnomah Channel east of the proposed expansion site. The aquifer system in the project area is interpreted to be unconfined, although locally confined conditions appear to exist. The Quaternary-Tertiary fluvial deposits in the area are the principal, uppermost regional water-bearing unit. These deposits are referred to by Swanson, et al. (1993) as the Upper Sedimentary Subsystem of the Portland Basin. This subsystem is described as being composed of two hydrogeologic units, the Unconsolidated Sedimentary Aquifer and the underlying Troutdale (or Consolidated) Gravel Aquifer. This interpretation is consistent with Hartford and McFarland’s (1989) Unconsolidated Gravel/Troutdale Gravel Aquifer. Within this subsystem, the two units are not separated by geologic structures or a major change in sediment types, but are commonly distinguished by a change in the amount of cementation.

The referenced authors describe the Unconsolidated Sedimentary Aquifer as being composed of catastrophic flood deposits, and consisting of bouldery gravels to silt. Drillers’ logs indicate cemented or clayey gravels mark the transition from the unconsolidated
gravels to consolidated gravels. Swanson et al. (1993) shows the Unconsolidated Sedimentary Aquifer to generally be less than 200 feet in thickness. It likely increases up to 400-feet thick along the axis of the Columbia River channel, based on data from wells drilled on Sauvie Island to the south of the project area.

The Troutdale Gravel Aquifer is present in most parts of the Portland Basin. This aquifer occurs within consolidated formations of poorly to moderately cemented conglomerates (consisting of sands, gravels and cobbles), and sandy conglomerates and gravels. The conglomerates are derived from ancestral Columbia River-borne sediments. Gravels in the unit are derived primarily from basalt flows of the Columbia River Basalt Group, although the full range of rock types found in the Columbia River drainage are represented. Lenses of sand, silt and clay are also common in the Troutdale Gravel Aquifer. The aquifer commonly ranges from about 100- to 400-feet thick.

The hydrostratigraphic units underlying the Upper Sedimentary Subsystem of the Portland Basin are described by Swanson et al. (1993) as the Undifferentiated Fine-Grained Sediments and Older Rocks. Neither of these units appears to be penetrated by any wells in the project area and both consist of relatively low permeability formations. These units probably represent the lower boundary of the Portland Basin groundwater system. It is estimated from Swanson et al. (1993) that the top of these units occur at a depth of at least 300 feet below ground surface in the project area.
Project Area Conditions

Drillers' logs for water wells in the project area were compiled and reviewed. Wells that could be located from the reported information and field observations are shown on Plate 1 and listed in Table 1.

The project area drillers' logs describe cemented zones and layers of fine-grained sediments, with up to 80 feet of confining head in the water-bearing zones. Variations in the reported amount of confining head between wells that are in relatively close proximity provide strong evidence that the cemented zones and fine-grained sediments comprise a system of discontinuous lenses. These lenses tend to locally confine groundwater, but still allow hydraulic communication to occur between different areas of the aquifer. For example, wells 4/1-31dd1 and 4/1-31dd2 have a difference in confining head of 24 feet even though these wells are less than 500 feet apart and are completed at depths of 53 and 60 feet respectively. These conditions are not uncommon in fluvial environments.

Keener (1983) estimated hydraulic parameters in the area using specific capacity test data reported on 39 drillers' logs. Keener reports "the predominant computed permeability coefficient lies between 70 and 580 ft/day. However, there are sufficient wells with computed values ranging up to 1,220 ft/day to force the average computed value to 400 ft/day (with the extremes excluded)." He also reports the results of tests conducted by others. One such test provided a permeability estimate of up to 8,640 ft/day in a large-
Table 1. Project Area Water-Well Data Summary

<table>
<thead>
<tr>
<th>Well Number</th>
<th>Total Depth of Well (ft.)</th>
<th>Screened Interval (ft.)</th>
<th>Depth to First Water (ft.)</th>
<th>Static Depth to Water (ft.)</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/1-6ab1</td>
<td>79.5</td>
<td>open casing</td>
<td></td>
<td>42</td>
<td>Mar-61</td>
</tr>
<tr>
<td>3/1-6ab2</td>
<td>50</td>
<td>"</td>
<td>38</td>
<td>Aug-66</td>
<td></td>
</tr>
<tr>
<td>3/1-6ab3</td>
<td>70</td>
<td>"</td>
<td>39</td>
<td>Aug-68</td>
<td></td>
</tr>
<tr>
<td>3/1-6bb1</td>
<td>80</td>
<td>"</td>
<td>50</td>
<td>Aug-68</td>
<td></td>
</tr>
<tr>
<td>3/1-6bb2</td>
<td>80</td>
<td>"</td>
<td>60</td>
<td>Apr-67</td>
<td></td>
</tr>
<tr>
<td>3/1-6bb3</td>
<td>63</td>
<td>open casing</td>
<td>18</td>
<td>Apr-94</td>
<td></td>
</tr>
<tr>
<td>3/1-6ca</td>
<td>81</td>
<td>"</td>
<td>18</td>
<td>Apr-67</td>
<td></td>
</tr>
<tr>
<td>3/1-7cd</td>
<td>80</td>
<td>open casing</td>
<td>3</td>
<td>Dec-94</td>
<td></td>
</tr>
<tr>
<td>3/1-8da</td>
<td>35</td>
<td>open casing</td>
<td>30</td>
<td>Sep-92</td>
<td></td>
</tr>
<tr>
<td>3/2-12ad</td>
<td>138</td>
<td>"</td>
<td>124</td>
<td>42</td>
<td>Jul-74</td>
</tr>
<tr>
<td>3/2-12bb</td>
<td>94</td>
<td>"</td>
<td>89</td>
<td>Jul-74</td>
<td></td>
</tr>
<tr>
<td>3/2-12edc1</td>
<td>177</td>
<td>"</td>
<td>85</td>
<td>Sep-73</td>
<td></td>
</tr>
<tr>
<td>3/2-12edc2</td>
<td>164</td>
<td>113-155</td>
<td>45</td>
<td>Dec-79</td>
<td></td>
</tr>
<tr>
<td>3/2-1aa</td>
<td>149</td>
<td>open casing</td>
<td>70</td>
<td>Aug-57</td>
<td></td>
</tr>
<tr>
<td>3/2-1ba</td>
<td>90</td>
<td>"</td>
<td>55</td>
<td>Jul-60</td>
<td></td>
</tr>
<tr>
<td>3/2-1cc</td>
<td>210</td>
<td>"</td>
<td>56</td>
<td>Aug-91</td>
<td></td>
</tr>
<tr>
<td>3/2-1cd</td>
<td>120</td>
<td>"</td>
<td>97</td>
<td>Dec-94</td>
<td></td>
</tr>
<tr>
<td>3/2-1db</td>
<td>120</td>
<td>open casing</td>
<td>10</td>
<td>Feb-93</td>
<td></td>
</tr>
<tr>
<td>3/2-2ca</td>
<td>280</td>
<td>260-280</td>
<td>265</td>
<td>May-89</td>
<td></td>
</tr>
<tr>
<td>3/2-2dd1</td>
<td>260</td>
<td>165-260</td>
<td>246</td>
<td>Aug-88</td>
<td></td>
</tr>
<tr>
<td>3/2-2dd2</td>
<td>250</td>
<td>open casing</td>
<td>65</td>
<td>May-92</td>
<td></td>
</tr>
<tr>
<td>4/1-31ad1</td>
<td>70</td>
<td>open casing</td>
<td>21</td>
<td>Jul-69</td>
<td></td>
</tr>
<tr>
<td>4/1-31ad2</td>
<td>33</td>
<td>"</td>
<td>17</td>
<td>Jun-80</td>
<td></td>
</tr>
<tr>
<td>4/1-31bd</td>
<td>118</td>
<td>"</td>
<td>25</td>
<td>Aug-51</td>
<td></td>
</tr>
<tr>
<td>4/1-31cb</td>
<td>127</td>
<td>"</td>
<td>40</td>
<td>Aug-80</td>
<td></td>
</tr>
<tr>
<td>4/1-31cd</td>
<td>85</td>
<td>open casing</td>
<td>48</td>
<td>May-85</td>
<td></td>
</tr>
<tr>
<td>4/1-31da1</td>
<td>60</td>
<td>"</td>
<td>45</td>
<td>Oct-82</td>
<td></td>
</tr>
<tr>
<td>4/1-31dd1</td>
<td>53</td>
<td>open casing</td>
<td>35</td>
<td>Oct-79</td>
<td></td>
</tr>
<tr>
<td>4/1-31dd2</td>
<td>60</td>
<td>"</td>
<td>60</td>
<td>Oct-79</td>
<td></td>
</tr>
<tr>
<td>4/1-32bb</td>
<td>40</td>
<td>"</td>
<td>20</td>
<td>Nov-73</td>
<td></td>
</tr>
<tr>
<td>4/1-32cb</td>
<td>85</td>
<td>"</td>
<td>32</td>
<td>Apr-82</td>
<td></td>
</tr>
<tr>
<td>4/1-33cd</td>
<td>106</td>
<td>"</td>
<td>80</td>
<td>Sep-92</td>
<td></td>
</tr>
<tr>
<td>4/2-36bb</td>
<td>148</td>
<td>"</td>
<td>110</td>
<td>Sep-91</td>
<td></td>
</tr>
<tr>
<td>4/2-36bc</td>
<td>150</td>
<td>"</td>
<td>120</td>
<td>Aug-77</td>
<td></td>
</tr>
<tr>
<td>4/2-36cc</td>
<td>135</td>
<td>"</td>
<td>120</td>
<td>Jul-77</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1) Approximate locations of the above wells to the nearest quarter-quarter section are shown on Plate 1.
2) More wells in project area than shown.
3) Data based on drillers' logs (see Appendix B).
4) Depth to first water not always reported by driller.
5) Well numbers assigned according to the following format:
 3 - Township number (north, Willamette Baseline)
 1 - Range number (west, Willamette Baseline)
 6 - Section number
 a - quarter section
 b - quarter quarter section
 1 - indicates the number of the well within the quarter-quarter section (if more than 1)
To summarize, the groundwater system beneath the project area is a single, unconfined aquifer composed of heterogeneous, but predominately coarse-grained fluvial sediments. Lenses of silt locally occur and areas of significant thicknesses of cemented sediments are common, apparently resulting in localized confinement of groundwater.

Previous Investigations

Work for this project was initiated in 1993 by David J. Newton Associates, Inc. (DNA) at the request of the property owner, Lone Star Northwest (now known as Glacier Northwest (GNW)). GNW operates sand and gravel mining and processing operations near Scappoose, Oregon and desired to expand mining to adjacent farm property to the south.

A number of technical studies relating to aggregate mining have been conducted in the area. These studies have addressed issues regarding the quantity and quality of aggregate in the area; the presence, quality and use of surface water and groundwater; and environmental concerns (see Appendix A).

Monitoring of groundwater and surface water conditions in the project area began in April 1993. The purpose of the monitoring was to collect water-level data to help characterize existing conditions at the site. Initial groundwater modeling was conducted by others in 1993 (DNA, 1994a) using data available at that time. This initial model simulated a shallower excavation and was designed to estimate only the amount of additional groundwater flow that would result from that excavation. This was done by directing all
groundwater discharge in the model to a single point, rather than through a cross section of the aquifer.

Subsequent to the initial modeling effort, significant additional geologic and hydrogeologic data were collected from new borings and water-level measurements. These data provided details into such things as the nature of the aquifer material and seasonal fluctuations in water-table position. It was determined that modeling efforts could be improved to produce a more realistic simulation of the project-area conditions. This new model uses some of the same data as the previous effort but differs in almost all model design aspects. The modeling effort for this study began in September 1995 and therefore uses data collected up to that time. This report details the results of that work and evaluates the predicted impacts to the floodplain groundwater system. These results are based on:

- Subsurface explorations and field-testing conducted by others prior to this project.
- Subsurface explorations completed in support of the mine expansion project.
- Water-level data and field observations compiled from April 1993 to September 1995.
- Numerical modeling of the groundwater flow conditions that will likely result if the mine is expanded to include a 460-acre excavation.
CHAPTER 3: RESEARCH METHODS

As discussed earlier in this report, a previous investigation (DNA, 1994a) attempted to model the effects of mining Pit E. This effort relied on less than one year of water-level measurements collected on and around the site and a limited number of shallow borings to characterize the geologic and hydrogeologic conditions beneath the site. In order to account for seasonal fluctuations in groundwater conditions and to more accurately simulate a revised mining plan, an additional data collection effort was deemed necessary.

Subsurface Investigation

To investigate site conditions, 10 wells on and adjacent to the proposed expansion property were installed (Plate 1, Table 2). Water levels in these and several previously existing wells on and near the site were regularly measured beginning in April 1993. Table 2 lists information on the wells monitored for this investigation. Four surface-water gages placed in Jackson Creek were also used to monitor changes in surface water elevations. The purpose of measuring these water levels was to:

- Document any seasonal changes in groundwater elevations beneath the site.
- Obtain data on groundwater flow directions and gradients, and seasonal fluctuations that may occur.
- Collect data to help define surface water/groundwater relationships.

With the above information, it was possible to compare the model-predicted water levels with those observed.
Table 2. Well Completion Details

<table>
<thead>
<tr>
<th>Well Number</th>
<th>Total Depth (feet bgs)</th>
<th>Screened Interval (feet bgs)</th>
<th>Casing Depth (feet bgs)</th>
<th>Casing Diameter (inches)</th>
<th>Date Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1</td>
<td>9</td>
<td>7-9</td>
<td>1</td>
<td>3/93</td>
<td></td>
</tr>
<tr>
<td>P-2</td>
<td>10</td>
<td>8-10</td>
<td>1</td>
<td>3/93</td>
<td></td>
</tr>
<tr>
<td>P-3</td>
<td>11</td>
<td>9-11</td>
<td>1</td>
<td>3/93</td>
<td></td>
</tr>
<tr>
<td>P-4</td>
<td>34</td>
<td>unknown</td>
<td>2</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>P-5</td>
<td>9</td>
<td>7-9</td>
<td>1</td>
<td>3/93</td>
<td></td>
</tr>
<tr>
<td>P-6</td>
<td>20</td>
<td>18.5-20</td>
<td>2</td>
<td>4/93</td>
<td></td>
</tr>
<tr>
<td>P-7</td>
<td>20</td>
<td>18.5-20</td>
<td>2</td>
<td>4/93</td>
<td></td>
</tr>
<tr>
<td>P-8</td>
<td>46</td>
<td>unknown</td>
<td>2</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>MW-1</td>
<td>42</td>
<td>32-42</td>
<td>2</td>
<td>4/93</td>
<td></td>
</tr>
<tr>
<td>MW-2</td>
<td>50</td>
<td>35-50</td>
<td>4</td>
<td>3/94</td>
<td></td>
</tr>
<tr>
<td>MW-3</td>
<td>55</td>
<td>40-55</td>
<td>4</td>
<td>2/94</td>
<td></td>
</tr>
<tr>
<td>MW-4</td>
<td>40</td>
<td>25-40</td>
<td>4</td>
<td>2/94</td>
<td></td>
</tr>
<tr>
<td>4/1-31cd (Havlic)</td>
<td>85</td>
<td>open casing</td>
<td>8</td>
<td>2/67</td>
<td></td>
</tr>
</tbody>
</table>

Numerical Modeling

To understand how the mine expansion might influence area groundwater levels and flow, a numerical model, of the site and surrounding area was constructed using MODFLOW (McDonald and Harbaugh, 1988). MODFLOW, a three-dimensional, finite-difference groundwater flow model developed by the USGS, was chosen because of its flexibility of application and its widespread use and acceptance among groundwater professionals (Anderson and Woessner, 1992). The modeling was designed to simulate existing surface water and groundwater conditions, and provided predictions of groundwater conditions that may result from the proposed mining. These results were used to estimate changes in groundwater flow directions, gradients and the volume of groundwater that would annually move through a given area, and to and from the SDIC boundaries.
The new model uses some of the same data as a previous effort (DNA, 1994a) but differs in almost all model design aspects.

Modeling Process

The modeling process began by developing a conceptual visualization (model) of the hydrogeologic system, followed by constructing a corresponding numerical model that incorporates field data (such as water-level measurements), simplified assumptions about the aquifer system and professional judgments of the system's hydraulic parameters. The results obtained from the numerical model are subsequently compared to the conceptual model and field data. This comparison can indicate whether the underlying assumptions and generalized estimates of hydraulic parameters are: 1) reasonable; or 2) should be revised and the numerical model adjusted and reanalyzed. An iterative process of comparing and modifying the conceptual and numerical models typically continues until both models are in general agreement and the water-level conditions produced by the numerical model are reasonably similar to those observed in the field.

This process can also be effective in identifying the need for additional data or directed research. These new requirements are evaluated and, if necessary, completed and incorporated into the model. At this stage, the model is ready for use as a predictive tool to examine how changes in the existing hydrogeologic system will likely influence groundwater elevations and flow.

In fluvial environments, subsurface materials are generally heterogeneous and anisotropic, and hydraulic parameters can be highly variable over short distances. As a result, numerical models in these types of systems are based on best estimates of hydraulic...
parameters (such as hydraulic conductivity), and a number of model simulations are generally carried out, with a specific set of hydraulic parameters used in each simulation. The parameters can be adjusted until the model results match field-measured conditions according to established criteria. This is the process of model calibration.

Sensitivity analyses were conducted for this study to evaluate how the parameter uncertainties influence the model results (Anderson and Woessner, 1992).

The model parameters used and assumptions made in this project are intended to be as simple as possible. It is important to remember that this model is a design and evaluation tool that is based on these simplifying conditions. As such, the model does not provide a unique solution since other model designs that are consistent with the observed data could be developed. However, the model developed for this project is appropriate for understanding the affect of the mine expansion on the groundwater flow system in the project area. Where assumptions are made, it is with the objective of producing the maximum change to the flow system, and thus provide conservative results.

CHAPTER 4: RESULTS

Site Conditions

Tables B1 and B2 in Appendix B summarize water-level data collected during this investigation. Figure 6 is a hydrograph of the same data. One piezometer, P-3, was monitored, but later abandoned due to casing damage. Measurements in well 4/1-31cd were interrupted in August 1994 due to modification to the wellhead, which made access difficult.
As part of this work, surface-water levels were monitored at stream gages on Jackson Creek/Santosh Slough. These gages are designated WL-1, WL-5, SG-1 and SG-2. Plate 1 shows the locations of these stream gages and Figure 6 presents hydrographs of the measurements collected between April 1993 and September 1995. Table B2 summarizes the surface-water data collected for this investigation.

Groundwater

The average groundwater elevation in the monitored wells ranged from 3.9 feet MSL at P-8 to 4.9 feet MSL at MW-1. Water levels are generally lowest along the eastern margins of the site. Water-level fluctuations in each well averaged approximately 2 feet annually, although P-6 changed by almost 2.7 feet in 1993 (see Table B1). Based on the collected data, the direction of groundwater flow beneath the majority of the site is generally from the northwest to the southeast.

Figures 7 and 8 are water-level maps based on May 15 and September 22, 1995 measurements. These dates were selected as being representative of typical high-water and low-water conditions. As shown in Figure 7, water levels on May 15, 1995 ranged from approximately 5.5 feet MSL on the west side of the site to approximately 5.2 to 5.4 feet MSL along the eastern boundary. For comparison, water levels during the low-water conditions on September 22, 1995 (Figure 8) show water levels ranged from approximately 3.8 feet MSL on the west side of the site to approximately 3.1 to 3.6 feet MSL along the eastern boundary.

As shown on Figures 7 and 8, the inferred direction of groundwater flow beneath the site remains essentially unchanged between the May 15 and September 22 high- and low-
water conditions. Although the flow direction is not uniform, (probably due to local variations in sediment composition) the predominant flow direction beneath the majority of the site is inferred to be to the southeast. Furthermore, although the average water-level difference is approximately 2.2 feet for these dates, the inferred groundwater gradients are approximately consistent at 0.0002 to 0.0004 through the majority of the site.

Groundwater mounding is apparent around P-7 during periods of low water conditions, based on water-level measurements. This mound influences the nearby gradients and directions of groundwater movement. For example, groundwater appears to move outward from well P-7 with an apparent maximum gradient of up to 0.0002 based on September 1995 data. It’s possible that an upward vertical flow gradient caused by variations in the hydraulic conductivity of the sediments could be a cause of the groundwater mounding, which apparently occurs only during the dry summer months.

Surface Water

Water levels in Jackson Creek/Santosh Slough remain relatively stable due to continuous recharge to the creek from the Smith pump and other interior SDIC pumping plants (Plate 1).

Measurements collected between May 24, 1993 and September 22, 1995 showed the average annual fluctuation at the stream gages was approximately 1.9 feet, although SG-2 fluctuated almost 3 feet in 1994 (see Table B2). Similarly, the average elevation of Jackson Creek was 3.9 feet MSL. The maximum observed water level on Jackson Creek was 5.8 feet MSL at SG-2 on April 11, 1994 and the minimum observed water level was 2.4 feet.
MSL at WL-5 on August 4, 1994. Gage WL-1 was destroyed in September 1993; therefore subsequent measurements are not available for this location.

The relative positions of the water levels at the four Jackson Creek/Santosh Slough gages (SG-1, SG-2, WL-1 and WL-5) indicate a changing direction of flow in these streams, and at times, stagnant conditions. Pumping to the south of SG-1 in the SDIC apparently causes Jackson Creek to sometimes flow to the south. At other times, it flows north to either the Evans pump station (via Evans Slough) or to Santosh Slough and the tide gate.

Stream-stage data are not available for Scappoose Creek. According to the USGS St. Helens, Oregon and Washington quadrangle map, Scappoose Creek flows north between elevations of 0 and 30 feet MSL along its course, which is approximately 2,500 to 4,500 feet west of the proposed expansion.

Surface Water/Groundwater Relationships

Drillers' logs for water-wells adjacent to Scappoose Creek give an indication of the relationship between the creek and groundwater. Many of these wells (including wells 3/2-1aa, 3/2-1cd, 4/1-31ad1, 4/1-31bd and 4/1-31cb) indicate significantly different static water levels than the apparent elevation of the nearby creek. This difference is attributed to the hydraulic separation of the creek from groundwater. This separation is likely due to deposition of fine-grained sediments along the banks and bed of the creek, and/or cementation of subsurface sediments in the area. Several wells, 3/2-1db and 3/1-6bb3, are reported to have a static water levels apparently consistent with the elevation of the creek at their locations (see Table 1 and Plate 1). However, it is concluded from the majority of the data that Scappoose Creek has limited hydraulic connection with the groundwater in the...
area west of the project site. This conclusion is supported by the fact that lower Scappoose Creek maintains low-gradient flow in the floodplain throughout the summer, indicating it is not losing significant flow to groundwater.

Stream gages WL-1 and WL-5 on Jackson Creek are sited near wells P-1 and P-5 on the west bank of the Creek (see Plate 1). These monitoring pairs (P-1/WL-1 and P-5/WL-5) provide data on the water-level relationship between surface water and groundwater. The data for both monitoring pairs show similar trends, and in many cases, the measurements differ by only tenths of a foot (see Figure 6 and Tables B1 and B2). These data indicate that Jackson Creek is well connected to the groundwater system, and that groundwater flow is toward the creek in this area. The creek is maintained by the SDIC to receive flow from the subsurface and SDIC pumps, and carry the water to Evans or Santosh Sloughs. Observations indicate this system is operating as intended.

A Corps of Engineers report (COE, 1971) indicates that seepage into the SDIC from Multnomah Channel increases when the Columbia River stage rises. This is logical considering the significant volume of coarse sediments in the area. The SDIC maintains water levels within the district that are substantially less than the river stage during much of the year. This condition likely induces surface water to recharge the groundwater system within the SDIC. It is also likely that the influence of the river stage on surface and groundwater levels decreases with distance from the Multnomah Channel, and that at some point within the SDIC, this influence is offset by the recharge of surface water from the west.
Overview of Conceptual Model

The conceptual model of the area groundwater flow system is based on the hydrogeology of this part of the Portland Basin as described in Chapter 2 and interpretation of data collected between 1993 and 1995 (see Figure 9).

The uppermost aquifer system underlying the project area is interpreted to be 200 to 400-feet thick, with the thickness increasing toward the Columbia River to the east, and decreasing and eventually terminating against the Tualatin Mountains to the west. The aquifer is underlain by low permeability siltstones, mudstones and claystones as described by Swanson et al. (1993). The aquifer system appears to be laterally extensive along the north-south axis, which is parallel to this reach of the Columbia River.

Recharge to the aquifer underlying the project area occurs from the Columbia River to the north, northwest (via Scappoose Bay wetlands) and east; highlands to the west; and infiltration from precipitation, dry wells, and septic systems both within and upgradient (west) of the project area. Discharge from the aquifer is inferred to occur from the SDIC dewatering system and flow to the Columbia River (via Multnomah Channel) during low river stages.

The predominant directions of groundwater flow appear to be toward the SDIC basin from the Multnomah Channel in the east, north and northwest, and the higher elevations to the west. Groundwater appears to move from northwest to southeast beneath the proposed expansion site. During high-water conditions, shallow groundwater recharges open ditches and is removed to the Multnomah Channel via the network of pumps and canals. During low-water conditions, the direction of groundwater movement and gradient
remain unchanged, but water is removed from the SDIC basin via the tide gate at the north end of Santosh Slough and by pumping from the Evans pumps. Flow gradients through the majority of the project area are inferred to be approximately 0.0002 to 0.0004, based on measured water levels on and near the site. Water-level data also show a groundwater mound in the northeast corner of the site as discussed elsewhere in this report, but this is inferred to be localized, based on well measurements and does not appear to have a significant effect on the larger-scale groundwater flow system.

Flow rates and leakage rates of the Multnomah Channel, Scappoose Creek, Barge Canal or Jackson Creek/Santosh Slough, and the volume of water removed from the aquifer by SDIC pumping are unknown. However, as discussed in Chapter 4, there are indications that leakage to or from Scappoose Creek is relatively limited and that Jackson Creek/Santosh Slough is relatively well connected to the aquifer. The Barge Canal is presumed to be an extension of the Multnomah Channel and is likely hydraulically connected with the aquifer, based on the coarse nature of the underlying sediments and the fact that the canal is dredged to maintain its depth.

Conceptual Model Water Balance

In general, a simple water balance (or hydrologic budget) for a given area of aquifer can be described by the following equation:

\[
\text{Flow in} = \text{Flow out} + \text{change in aquifer storage}
\]

In the steady-state condition as considered here there is no change in storage, therefore flow in must equal flow out. The components of inflow are recharge from precipitation and recharge from upgradient groundwater flow. Outflow components consist of groundwater
discharge and discharge from pumping wells (if any). It is presumed there is no surface water recharge (except leakage from the Barge Canal) or discharge from pumping wells in the conceptual model.

Groundwater inflow can be calculated using Darcy’s Law:

\[Q = K i A \]

Where:
- \(Q \) = groundwater flow rate
- \(K \) = hydraulic conductivity of the aquifer material
- \(i \) = groundwater flow gradient
- \(A \) = cross-sectional area through which groundwater is flowing

The length of the cross-sectional flow area (or discharge boundary) is defined by a line drawn to generally connect the SDIC pumps east of the expansion site from about SG-1 on the south to the Barge Canal on the north (see Figure 10). The thickness of the aquifer is about 300 feet (slightly thicker during high-water conditions) and groundwater is flowing generally west to east.

Groundwater flow gradients range from 0.0002 (during low-water conditions) to 0.0004 (during high-water conditions) over the expansion site as discussed previously. Higher gradients likely exist in the northern part of the study area between the Barge Canal on the northwest and the SDIC pumps on southwest due to the Barge Canal level being at a somewhat higher elevation than groundwater. Although no groundwater data exists for this area, the level of the Barge Canal and pumping level in the SDIC are known. These data indicate groundwater flow gradients ranging 0.0003 to 0.001 for high and low water conditions respectively.
The value of hydraulic conductivity used is 1,225 ft/day. The selection of this value is discussed in detail later in this Chapter.

A recharge factor (17 inches/year) is calculated for a surface area that extends from the discharge boundary described above (on the east) westward to approximately Highway 30 and to the Barge Canal in the northwest. The source of this value is described in detail later in this Chapter.

Uncertainty results from errors that can be present in the values of parameters that are measured or calculated. Winter (1981) estimates that errors in annual rainfall estimates and evaporation rates (used in this model as part of estimated recharge) can be as high as 10 to 15%. Calculation of hydraulic gradients and the position and nature of hydrogeologic boundaries may contain errors due to interpretation of drilling and measurement data and placement of piezometers and surface-water gages. In addition, Winter (1981) concludes that it is probably not possible to estimate hydraulic conductivity any closer than 50% and in many cases it may be closer to 100%. Based on these error estimates, and using the method of Lee and Swancar (1996), a maximum probable error for the hydrologic budget is calculated to be ± 52%. Table 3 below contains the results of the calculations and error analysis described above.
Table 3. Conceptual Water Balance Results.

<table>
<thead>
<tr>
<th></th>
<th>Calculated Groundwater Flow (ft^3/day)</th>
<th>Range Including Error (± 52%) (ft^3/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Water Conditions</td>
<td>5,280,000</td>
<td>2,534,000 to 8,026,000</td>
</tr>
<tr>
<td>Low Water Conditions</td>
<td>2,380,000</td>
<td>1,142,000 to 3,618,000</td>
</tr>
</tbody>
</table>

Model Design

MODFLOW (McDonald and Harbaugh, 1988), a three-dimensional, finite-difference groundwater flow model developed by the USGS, was used to model the project area. MODFLOW was chosen because of its flexibility of application and its wide acceptance among groundwater professionals. The governing equations, solved by finite difference methods, upon which the MODFLOW program is based, and the computer code itself, have been independently verified by other researchers using analytical solutions. The following sections describe the model design elements used for this project and justification for each condition or assumption.

The general approach of the modeling was to develop a model that predicts the maximum water level and flow volume change to the SDIC that may occur in the SDIC during and after mining. Where parameters were estimated or simplifications were made in the model based on a likely range of values, the value was selected to cause the largest increase in the water level or flow volume to the SDIC area. This was done to prevent underestimating the effects of mining, providing a conservative result.
The modeling involved the simulation of: 1) existing hydrogeological conditions (current-conditions model); and 2) hydrogeological conditions resulting from the proposed mining (future-conditions model). The difference between the current-conditions model and the future-conditions model is the insertion of a high conductivity zone that was used to simulate the presence of the completed mine at Pit E that will extend below the water table (see Figures 9 and 10 for details of the model designs). In order to examine the range of potential influences on the groundwater system, two sets of boundary conditions were used for each of the modeled systems: 1) low-water or dry season conditions; and 2) high-water or wet season conditions. The September 22 and May 15, 1995 water-level data were selected to represent the low and high water conditions, respectively, based on analysis of the collected data.

A steady-state model was used due to the limited information on the aquifer storage properties within the project area, and the inherently higher data demands of a transient simulation. A three-dimensional model was selected since this allows for simulating different hydrogeologic units within a thicker aquifer system. The model design presumes that the existing and proposed excavations penetrate only part of the total aquifer thickness.

Model Grid
A regularly spaced, 250-foot-square grid was horizontally imposed over the project area (see Figures 10 and 11). The two-layer model contained 5,204 active cells. This level of discretization was selected to balance the level of detail needed with the desire to maintain a model of manageable size. Finer and variable nodal spacing was judged unnecessary because of the relatively low and consistent groundwater gradients in the project area.
In the model, the aquifer system is divided into two layers. The position of the boundary between the two layers is intended to approximate the projected maximum excavation depth at the proposed expansion site (see Figure 9). The model allows water to flow freely between the two layers since this boundary does not reflect changes in geology, but is only intended as a means of projecting the proposed excavation. The layer boundary is located at an elevation of -100 feet MSL in the model. Since the water table at the site is typically at an elevation of 5 to 8 feet MSL, the model slightly overestimates the depth of the pit. This overestimation is a conservative simplification since a larger excavation would produce a greater influence to the groundwater flow system.

Boundary Conditions

Two types of boundaries were used: no-flow and specified-head. The locations of each type of boundary are shown in Figures 10 and 11.

No-Flow Boundaries

No-flow boundaries are used to constrain the northeast to southwest groundwater flow. The northern and southern no-flow boundaries are placed roughly parallel to the inferred direction of groundwater flow and, therefore, should not alter the direction of flow. A no-flow boundary is also present between the Barge Canal and the western specified-head boundary, separating the model from the wetlands to the north (which are assumed not to contribute groundwater to the area being modeled). The bottom no-flow boundary simulates the low-permeability, fine-grained sediments that are inferred to exist at an elevation of approximately -300 feet MSL.
Specified-Head Boundaries

The east and west margins of the model are composed of specified-head boundaries. The western specified-head boundary is composed of two reaches. The northwest reach coincides with the Barge Canal, although limited field data are available to define historic water levels in the Barge Canal. As a result of this limitation, the Columbia River stage recorded at the Vancouver, Washington gage was used. This gage is approximately 15 river miles upstream from the project area and, therefore, should always be somewhat higher than the stage of the river at the Barge Canal. This results in a water level estimate that is slightly high at this boundary (probably \(\frac{1}{2} \)-foot or less), a conservative assumption because a higher water level results in a greater volume of water entering the model. On May 15, 1995, the average gage reading was 10.2 feet MSL and the average September 22, 1995 gage reading, 4.4 feet MSL.

The west reach of the western specified-head boundary follows a general southwest to northeast line located west of Scappoose Creek. As discussed elsewhere in Chapter 4, Scappoose Creek is considered to have limited connection with groundwater in this area. This boundary, therefore, represents an average groundwater elevation along the line that is not influenced by surface water conditions. High-water conditions are simulated by using a specified-head value of 8.0 feet MSL, which corresponds to May 15, 1995 measurements. Low-water conditions are simulated by using a specified-head value of 6.0 feet MSL, which corresponds to September 15, 1995 measurements. These values were selected to maintain and extend the groundwater gradient that exists beneath the expansion site, and to provide a reasonable match between field measurements and model calculations. The specified-head
boundary was placed far enough away from the proposed mining site (over 4,000 feet) to minimize the potential for this boundary to interfere with groundwater conditions beneath the site.

The location of the eastern specified-head boundary in the model follows a line that approximately connects four interior SDIC pumping stations (Johnson, Honeyman, Smith and Hoven, see Figures 10 and 11). This was done to simulate the hydrologic divide likely created by SDIC pumping. Although no field data are available for this part of the project area, information supplied by the SDIC indicates that they attempt to maintain water levels in this area at 3.0 to 4.75 feet MSL. To simulate the high-water conditions occurring on May 15, 1995, this boundary was set at 4.75 feet MSL. To simulate low-water conditions occurring on September 22, 1995, this boundary was set at 3.0 feet MSL. It is inferred that the area east of these four pumping stations is in such close proximity to the Multnomah Channel that the influence of this large, continuous supply of water would tend to dominate any changes in the groundwater system west of the SDIC pumping stations.

Hydraulic Conductivity

Drilling data reviewed for this project show there is significant variation in the grain size and amount of cementation within the geologic materials underlying the project area. In order to simplify what is a complex system and at the same time maintain conservative overestimation in the model, the largest consistently reported field-measured values of hydraulic conductivity in Keener (1983) were used, except where large-scale excavations are currently located or proposed. This value was 1,225 ft/day. Use of the highest
consistently reported value rather than an average is a conservative approach since the higher hydraulic conductivity should result in more water flowing to the district.

Ponds resulting from mining act essentially as flow-through lakes (they neither remove nor add water relative to the groundwater system) since they do not have inlet or outlet streams. Therefore, it was concluded that an accurate way to model these surface-water features was to insert a volume with extremely high values of hydraulic conductivity to simulate open-water conditions.

The existing and proposed excavations (ponds and lakes) were simulated by using a hydraulic conductivity value of 1,000,000 feet/day. This value was selected by creating a generic model of similar size and properties to the project area. A rectangular volume of higher hydraulic conductivity was inserted into the generic model to simulate a quarry excavation. A series of simulations were subsequently conducted in which the hydraulic conductivity of the excavated zone was increased from 1,000 ft/day to 1,000,000 ft/day in order-of-magnitude increments. The resulting flow volume from each simulation was compared to the previous increment and the percentage increase in flow was calculated for each step. The change in flow became smaller with each successive increment, until at 1,000,000 ft/day, the increased flow from the previous increment was less than 0.25%. It was concluded that further increases in the hydraulic conductivity value of the excavated volume would have negligible effect and that 1,000,000 ft/day would be a reasonable value to use in simulating a flow-through lake. This result, using a contrasting hydraulic conductivity value that is three orders of magnitude larger for the lake nodes than the surrounding aquifer, is consistent with work done by Chung (1998). In addition, Chung and
Anderson (1998), and Nair and Wilsnack concluded that representing a flow through lake with a zone of high hydraulic conductivity yields results similar to using the MODFLOW Lake Package (Cheng and Anderson, 1993 and 1994).

Recharge

According to Snyder et al. (1994), recharge rates in the project area range from 6 to 19 inches/year although precipitation for the area is estimated to be approximately 40 inches/year based on data collected at the St. Helens, Oregon Rural Fire District Station. Based on the recharge estimates, 17 inches/year was selected as the overall estimate for the entire modeled area. The selected recharge rate was applied uniformly at the top of the uppermost layer of the model. The value selected is conservative because using a high volume for recharge should again cause overestimation of the effects that could be caused by mining.

Model Calibration

Calibrating the model involves comparing model-generated water levels and water balance calculations with actual field-measured data. Adjustments are made to the model design parameters (such as boundary conditions or aquifer characteristics) to bring the model-generated and the field-measured values into closer agreement (for head and for flow). For this modeling effort, emphasis was placed on designing a conservative model that tends to overestimate the results of changes to the groundwater flow system. This strategy should result in a higher overall hydraulic conductivity of certain areas of the model (such as near MW-2), thereby producing a larger volume of water flowing to the SDIC.
Calibration statistics for each model are listed in Table D1 (Appendix D) and summarized in Table 6. The Absolute Residual Mean for the high- and low-water conditions models was 0.55 feet and 0.46 feet respectively. Generally, both the high- and low-water conditions models achieved closer calibration at wells located in the southern and eastern portions of the site, downgradient of the proposed excavation. The largest residual errors occurred at MW-2, in the northeast portion of the site at the apparent location of a groundwater mound. The residual error at MW-2 is a maximum of 2.8 feet.

As shown in Table 4 below, the groundwater output flows generated by both current conditions models are within the error range calculated for the water balance. This indicates reasonably good agreement between the conceptual water balance and the model-generated results.

Model Results

To quantify the amount of water-level change and groundwater flow change volume that could result from mining Pit E, the results of the current-conditions models (Figures 12a and 13a) were compared to the results of the future-conditions models for each of the two water-level conditions (May 15, 1995 and September 22, 1995, Figures 12b and 13b). Two MODFLOW-generated criteria were used for comparison: 1) the output flow rate; and 2) the change in head (water-level elevation).

MODFLOW produces a volumetric water budget for each simulation (see Appendix D). This budget includes the output flow rates, which is the rate of groundwater flow that exits the model under steady-state conditions via specified-head boundaries. All of the groundwater in these models discharges to the eastern specified-head boundary. For
comparison, the output flow rate produced by the current-conditions model for each date is compared to the output flow rate produced by the corresponding future-conditions model. These comparisons are shown in Table 4 below.

Table 4. MODFLOW Model Groundwater Flow Output Comparisons.

<table>
<thead>
<tr>
<th>Simulation Date</th>
<th>Output Flow Current Conditions (ft3/day)</th>
<th>Error Range (± 52%)</th>
<th>Output Flow Future Conditions (ft3/day)</th>
<th>Flow Increase (ft3/day)</th>
<th>Percentage Flow Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 15, 1995</td>
<td>6,048,000</td>
<td>2,534,000 to 8,026,000</td>
<td>6,674,000</td>
<td>625,000</td>
<td>10%</td>
</tr>
<tr>
<td>September 22, 1995</td>
<td>2,925,000</td>
<td>1,142,000 to 3,618,000</td>
<td>3,428,000</td>
<td>503,000</td>
<td>17%</td>
</tr>
</tbody>
</table>

The Table 4 model results indicate that the change in groundwater flow to the downgradient boundary (the eastern model boundary) following the completed excavation of Pit E will be an increase of approximately 10% during high-water conditions and an increase of approximately 17% during low-water conditions. This increase in flow occurs throughout the total thickness of the aquifer beneath the project area (estimated to be 300 feet) due to the increased gradient east of the excavation (see Figures 12b and 13b).

Evaluation of Model Results

The downgradient pumps in the SDIC are designed to lower the water table below natural levels by pumping from the surface. It follows that changes to the flow system that cause the water table to rise will result in increased pumping to maintain the desired...
elevation for SDIC operations. It also follows that the volume of increased pumping is related to the amount of water table rise that occurs within the drained area. Therefore it is relevant to evaluate the actual volume of water that will need to be pumped as a consequence of the increased flow. This volume should be significantly less than shown in Table 4 since only the uppermost few feet of aquifer are affected by drainage pumping.

MODFLOW computed water-level changes (drawdown), which corresponds to a change in the position of the water table. The values can be positive (water-level rise) or negative (water-level decline). As shown in Figures 12c and 13c, the model predicts a maximum 0.8 feet water-level rise on the downgradient side (east side) of Pit E and a maximum water-level decline of 0.8 feet on the upgradient side (west side) of Pit E. Both of these maximum changes occur within the boundary of Pit E and attenuate rapidly with distance from the site. For example, in the area immediately downgradient (east) of Pit E, an increase of 0.2 feet is predicted at a distance of approximately 1,500 feet east of the site. Correspondingly, a decrease of 0.2 feet is predicted to occur approximately 3,000 feet northeast of the site in the upgradient area.

The maximum predicted change in water level that occurs outside the Pit E boundary is 0.6 feet. This change is predicted as a water-table rise up to 400 feet east of the site boundary, and as a water-table decline occurring up to 300 feet west of the site boundary. The insertion of the excavated area into the model has the effect of flattening the water table across the excavation (which is open water) and increasing the flow gradients both upstream and downstream of the new pit (see Figure 14a).
Only the additional flow volume caused by a water-table rise and saturation of previously dry soil will need to be pumped to maintain the lowered water-table elevation desired by the SDIC. This flow can be estimated by determining the downgradient cross-sectional area that became saturated as the result of mining, and calculating, using Darcy’s Law, the groundwater flow rate through this area.

Using the water-table change contours and gradients on Figures 12c and 13c, and the cross-section lines indicated on each Figure, and using and hydraulic conductivity values confirmed by field measurements and numerical modeling, the additional pumpage requirements are calculated and listed in Table 5 below (see also Figure 14b).

With regard to the potential for the mine expansion to cause increased flooding, the limited amount of additional saturation in the downgradient areas is unlikely to increase flooding potential. This conclusion is based on the small increase in pumpage requirements by the SDIC and the small surface area affected by the downgradient water-table rise.

Table 5. Additional Groundwater Pumpage Requirements

<table>
<thead>
<tr>
<th>Simulation Date</th>
<th>Estimated Cross-Sectional Area (ft²)</th>
<th>Pumpage Rate Increase (gpm)</th>
<th>Error Range (± 52%) (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 15, 1995</td>
<td>3,030</td>
<td>12</td>
<td>6 to 18</td>
</tr>
<tr>
<td>September 22, 1995</td>
<td>2,550</td>
<td>10</td>
<td>5 to 15</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Discussion of Model Results

The results of the work described in this report indicate that the effect of introducing a large-scale mining excavation in the Columbia River floodplain on the local groundwater flow system is limited. The additional pumping required to remove the additional flow created by Pit E is roughly equivalent to the average domestic well (5 to 18 gpm). For the Scappoose Drainage Improvement Company, which operates a system designed to lower the water table beneath agricultural land downgradient from Pit E and maintains a total pumping capacity of over 130,000 gpm, this amount of increased flow is not significant.

Conclusions

Groundwater occurs in a sand and gravel aquifer that extends to a depth of approximately 300 feet beneath the site. A review of field observations and drillers’ logs for area wells indicates the aquifer contains numerous lenses and layers of coarse sand and gravel, and discontinuous cemented zones. Although the cemented zones can perch and locally confine groundwater, the aquifer is considered a single regional groundwater system.

The hydraulic conductivity of the sediments that make up the aquifer varies due to silt and clay content and variable cementation. According to investigations by others, the estimated hydraulic conductivity of the most coarse-grained portions of the aquifer may be as high as 6 ft/minute and the hydraulic conductivity of the fine-grained or cemented material may be as low as 0.05 ft/minute (Keener, 1983).

Groundwater occurrence and movement in the area is primarily influenced by:

- Precipitation in the highlands to the west of the project area and in the project area itself.
• Dewatering pumping in agricultural lands east of the project area.
• Proximity of the extensive groundwater reservoir of the Columbia River system.

It is concluded from data compiled for this project that recharge to the aquifer beneath the site originates primarily in highlands to the west of the site but also occurs from surface infiltration. It is concluded from site data that SDIC pumping operations interfere with the influence of the Columbia River system on groundwater occurrence and movement within the project area. To a large extent, groundwater movement in the project area is influenced by dewatering conducted to allow agriculture in the floodplain. The SDIC pumps water from drainage canals east of Jackson Creek, thereby effectively lowering groundwater elevations on the east side of the creek and creating a relatively constant-head boundary condition at the eastern side of the site. The predominant direction of groundwater movement beneath the site is inferred to be to the southeast toward the SDIC at a gradient of approximately 0.0002 to 0.0004. This gradient remains relatively constant throughout the year, although water levels in site wells fluctuate as much as 2 feet annually. As long as the SDIC continues to dewater farmland east of Jackson Creek, groundwater will likely continue to move towards this area of extraction.

Average groundwater elevations at 11 monitoring points established on and around the Pit E site range from 3.9 to 4.9 feet MSL, based on measurements obtained between April 1993 and September 1995. The average surface water elevation for four stream gages installed in Jackson Creek (south and east of the site) range from 3.7 to 4.0 feet MSL, based on measurements during the same time period.

The mine expansion is expected to create an approximately 100-feet deep, 360-acre pond. A MODFLOW model indicates that groundwater flow within the aquifer
beneath the site and the SDIC may be increased by 10 to 17%, based on “before and after” model simulations performed for both high and low water conditions. This increased flow would be distributed throughout the full thickness of the aquifer (estimated to be approximately 300 feet) and would occur gradually over the planned 20-year operational life of the mine. The increased pumping that may be required within the SDIC boundaries as the result of this increased groundwater flow is estimated to be approximately 5 to 18 gallons/minute). Model results predict that the maximum change in water levels resulting from the increase in flow that could occur in the SDIC would be: 1) an increase of approximately 0.8 feet for a limited area on the downgradient (east) side of Pit E; and, 2) a decrease of approximately 0.8 feet for a limited area on the upgradient (west) side of Pit E. The maximum changes in water levels predicted to occur outside the Pit E boundary are predicted by the model to be approximately 0.6 feet. This change, which attenuates with distance from the site boundary, is predicted to occur as a water-table rise up to 400 feet east of the eastern site boundary and as a water-table decline up to 300 feet west of the western site boundary.

CHAPTER 5: DISCUSSION OF UNCERTAINTY/MODEL LIMITATIONS

Since assumptions are used in estimating the characteristics of aquifer materials, and in simplifying conditions for the model’s governing equations, a discussion of uncertainty relative to these assumptions is warranted.

As stated previously, numerical models provide non-unique solutions to groundwater problems. A different set of conditions could be created that would duplicate the results found in this study. Therefore, a sensitivity analysis was conducted
on selected hydraulic parameters used in the model. The results of this analysis are summarized in Table 6 and detailed in Appendix D.

Table 6. Sensitivity Analysis and Calibration Summary

<table>
<thead>
<tr>
<th>Model Changed</th>
<th>Parameter Changed</th>
<th>Flow Increase (%)</th>
<th>Water-Level Change (feet)</th>
<th>AFM (feet)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-May</td>
<td>Final Models Current Conditions</td>
<td>10</td>
<td>-0.8 to 0.8</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Future Conditions Current Conditions</td>
<td>17</td>
<td>-0.6 to 0.7</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Model K Increased 1000% Current Conditions</td>
<td>10</td>
<td>-0.7 to 0.7</td>
<td>0.48</td>
<td>Subsurface flow increases. Change resulting from Pit E approximately the same as Final Models.</td>
</tr>
<tr>
<td>15-May</td>
<td>Future Conditions Current Conditions</td>
<td>17</td>
<td>-0.5 to 0.6</td>
<td>0.42</td>
<td>Slightly closer calibration but less water-level change than Final Models.</td>
</tr>
<tr>
<td>15-May</td>
<td>Model K Decreased 1000% Current Conditions</td>
<td>1</td>
<td>-1.1 to 1.0</td>
<td>1.28</td>
<td>Subsurface flow decreases. Change in flow resulting from Pit E much less than Final Models.</td>
</tr>
<tr>
<td>15-May</td>
<td>Future Conditions Current Conditions</td>
<td>2</td>
<td>3.8 to 6.9</td>
<td>1.31</td>
<td>Water-level change for 9/22 model much larger. Calibration error much higher.</td>
</tr>
<tr>
<td>15-May</td>
<td>Gradient Increased by 33% Current Conditions</td>
<td>11</td>
<td>-1.3 to 1.3</td>
<td>1.40</td>
<td>Subsurface flow increases. Change resulting from Pit E approximately the same as Final Models.</td>
</tr>
<tr>
<td>15-May</td>
<td>Future Conditions Current Conditions</td>
<td>17</td>
<td>-0.5 to 0.6</td>
<td>1.01</td>
<td>Calibration error much higher.</td>
</tr>
<tr>
<td>15-May</td>
<td>Recharge increased by 100% Current Conditions</td>
<td>10</td>
<td>-0.9 to 0.8</td>
<td>0.63</td>
<td>Subsurface flow increases. Change resulting from Pit E approximately the same as Final Models.</td>
</tr>
<tr>
<td>15-May</td>
<td>Future Conditions Current Conditions</td>
<td>16</td>
<td>-0.6 to 0.7</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Aquifer Thickness 100 feet Current Conditions</td>
<td>11</td>
<td>-0.8 to 0.8</td>
<td>0.60</td>
<td>Subsurface flow decreases. Change resulting from Pit E approximately the same as Final Models.</td>
</tr>
<tr>
<td>15-May</td>
<td>Future Conditions Current Conditions</td>
<td>18</td>
<td>-0.8 to 0.8</td>
<td>0.48</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1) Residual Mean based on a comparison of field-measured water levels for 5/15/95 and 9/22/95 with MODFLOW generated water-levels from the current-conditions models.
2) Water-level change based on MODFLOW generated drawdown data from future-conditions models.
The sensitivity analysis shows the model to be most sensitive to changes in hydraulic conductivity. The value of hydraulic conductivity selected that resulted in the best fit between model-generated heads and field measurements was 1,225 ft/day. This value was used for subsequent groundwater flow modeling. Morgan and McFarland (1996) estimate the median hydraulic conductivity value (based on an analysis of data from 90 drillers' logs) for the Unconsolidated Sediments aquifer to be 250 ft/day, significantly less than the value used for this study. However, 1,225 ft/day used for this study is within the range examined by the USGS and close to the 75th percentile of all the values. Therefore, the value used for this study is justified, particularly since it is based on actual field data.

The degree of calibration of the current-conditions models to site conditions can be examined in Table 5 Absolute Residual Mean (ARM) and a comparison of the conceptual model water balance with model generated groundwater flows in Table 5. The highest ARM for the final models is 0.55 feet. This is within 10% of the average field-measured water level.

In Chapter 4 a range of error of ± 52% was determined based on the potential error that exists for each measured parameter (Winter, 1981). This is the range of uncertainty associated with the model results and the estimated effect of the mine expansion. The calculated conceptual groundwater flow rate, including this error range, encompasses the flow rates produced by the current conditions models (see Table 4). This indicates reasonably good agreement between the conceptual water balance and the
model-generated results, within the range of uncertainty. Even when this rather large range of uncertainty, the resulting range of impacts is not significant.

CHAPTER 6: REFERENCES

Project Location and Vicinity Map

Figure 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Figure 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Portland Basin Stratigraphy

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>SERIES</th>
<th>GEOLOGIC UNIT West</th>
<th>HYDROGEOLIC UNIT East</th>
<th>LITHOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUATERNARY</td>
<td>Holocene</td>
<td>Quaternary alluvium</td>
<td>Unconsolidated sedimentary fill</td>
<td>Silt, sand, and clay comprise flood plain deposits of the Columbia and Willamette Rivers. Alluvium along major tributaries is sandy gravel. Late Pleistocene catastrophic floods of the Columbia River deposits on the basin floor are bouldery gravel, sandy gravel, and sand with sandy silt extending to 400-foot altitude. Late Pleistocene terrace deposits are weakly consolidated thin sand and gravel beds.</td>
</tr>
<tr>
<td></td>
<td>Pleistocene</td>
<td>Pleistocene</td>
<td>Troublle gravel aquifer</td>
<td>Pleistocene volcaniclastic conglomerates derived from the Cascade Range are weakly to well consolidated sandy gravel with lithic sandstone lenses and beds. Troutdale Formation is cemented basaltic gravel with quartzite pebbles and micaceous sand matrix and lenses, as well as minor lithic-vitric sand beds. Boring lava that erupted from vents in the Portland area is fine to medium olivine basalt and basaltic andesite lava flows with less abundant pyroclastics. High Cascade Range volcanics are olivine basalt and basaltic andesite flows that erupted, and for the most part deposited east of the Sandy River. The upper 10 to 100 feet of the aquifer is weathered loess and residual soil.</td>
</tr>
<tr>
<td></td>
<td>? ?</td>
<td>Confining unit 1</td>
<td>Troublle gravel aquifer</td>
<td>Bedded micaceous arkosic siltstone and sandstone with some thin lenses of lithic and vitric sandy tuffaceous silt and sandstone, and clay.</td>
</tr>
<tr>
<td></td>
<td>Tertiary</td>
<td>Pleistocene</td>
<td>Troublle gravel aquifer</td>
<td>Coarse vitric sandstone and basaltic conglomerate interlayered with siltstone, sandstone, and claystone.</td>
</tr>
<tr>
<td></td>
<td>? ?</td>
<td>Confining unit 2</td>
<td>Troublle gravel aquifer</td>
<td>Bedded micaceous siltstone and sandstone with some thin lenses of lithic and vitric sand, tuffaceous silt and sandstone, and clay.</td>
</tr>
<tr>
<td></td>
<td>? ?</td>
<td>Confined sediments</td>
<td>Troublle gravel aquifer</td>
<td>Discontinuous beds of micaceous sand, gravel, and silt with localized vitric sandstone lenses. Upper part is gravelly along the Columbia River in east part of study area; elsewhere, upper part is interlayered with micaceous sand, silt, and clay.</td>
</tr>
<tr>
<td></td>
<td>? ?</td>
<td>Confining unit 3</td>
<td>Troublle gravel aquifer</td>
<td>Sand and gravel aquifer</td>
</tr>
<tr>
<td></td>
<td>? ?</td>
<td>Confining unit 4</td>
<td>Troublle gravel aquifer</td>
<td></td>
</tr>
<tr>
<td>TERTIARY</td>
<td>Oligocene</td>
<td>Columbia River Basalt Group</td>
<td>Rhododendron Formation consists of lava flows and dense volcanic breccia. Columbia River Basalt Group is a series of basalt flows, some have fractured scoriaceous tops and bases. Marine sedimentary rocks are predominantly dense siltstones and sandstones. Skamania volcanics are dense flow rock, breccia and volcaniclastic sediment. Older basalts are sequences of flows with some breccia and sediment.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eocene</td>
<td>Older rocks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Notes:
1) Cross-section alignment also shown on Plate 1
2) Well and boring locations shown on Plate 1
3) Boring logs and driller's logs contained in Appendix C

Geologic Cross-Section B-B'
(South-North)
Notes: 1) P3 data not used for analysis.
2) More data than shown on graph. All data listed in Table A1.

Hydrographs

Figure 6
EXPLANATION

- MONITORING WELL OR PIEZOMETER AND MAY 15, 1995 WATER-LEVEL ELEVATION
- STREAM GAGE AND MAY 15, 1995 WATER-LEVEL ELEVATION
- SCAPPOOSE DRAINAGE DISTRICT (SDD) PUMP STATION
- INFERRED WATER-LEVEL ELEVATION CONTOUR FOR MAY 15, 1995 (0.25-FOOT CONTOUR INTERVAL)
- INFERRED DIRECTION OF GROUNDWATER MOVEMENT

NOTES:
1) No data for HL-1 or P-6
2) Data for P-3 not included
3) Water-level data are provided in Appendix B.
4) Elevations are feet Mean Sea Level

Water-Level Map for May 15, 1995
Conceptual Model Block Diagram

Figure 9

K = 1,225 ft/day

Groundwater Flow Direction

EXPLANATION

Sand and Gravel with Interbeds and Lenses of silt and sand
EXPLANATION

- ACTIVE MODEL CELLS ASSIGNED HYDRAULIC CONDUCTIVITY OF 1225 FT/DAY
- ACTIVE MODEL CELLS ASSIGNED HYDRAULIC CONDUCTIVITY OF 1 X 10^-6 FT/DAY
- NO-FLOW (INACTIVE) CELLS
- SPECIFIED-HEAD CELLS ASSIGNED HYDRAULIC CONDUCTIVITY OF 1225 FT/DAY
- NO-FLOW BOUNDARY

NOTES:

1) Model details are provided in Appendix E.
2) Cell dimensions are 250' by 250'
3) Model dimensions are 71 rows by 73 columns by 2 layers
4) Model cells assigned hydraulic conductivity of 1225 ft/day in simulated unmined areas. Cells assigned hydraulic conductivity of 1 x 10^-6 ft/day in simulated mined areas.
EXPLANATION
- ACTIVE MODEL CELLS ASSIGNED HYDRAULIC
 CONDUCTIVITY OF 1225 FT/DAY
- ACTIVE MODEL CELLS ASSIGNED HYDRAULIC
 CONDUCTIVITY OF 1 X 10^9 FT/DAY
- NO-FLOW (INACTIVE) CELLS
- SPECIFIED-HEAD CELLS ASSIGNED HYDRAULIC
 CONDUCTIVITY OF 1225 FT/DAY
- NO-FLOW BOUNDARY

MONITORING WELL OR PIEZOMETER
STREAM GAGE
- SCAPPOOSE DRAINAGE DISTRICT (SDD)
PUMP STATION

NOTES:
1) Model details are provided in Appendix E.
2) Cell dimensions are 250' by 250'.
3) Model dimensions are 71 rows by 73 columns by 2 layers.
4) Model cells assigned hydraulic conductivity of 1225 ft/day in simulated unfilled areas. Cells assigned hydraulic conductivity of 1 x 10^9 ft/day in simulated mined areas.

MODFLOW Design for
Future-Conditions Models

Figure 11
NOTES:
1) Water-level data generated by MODFLOW
2) Specified-head boundary values are based on May 15, 1995 Water-Level conditions.
3) Elevations are in feet Mean Sea Level (MSL)
EXPLANATION

- WATER-LEVEL ELEVATION CONTOUR FROM MODFLOW RESULTS (0.5-FOOT CONTOUR INTERVAL)
- SPECIFIED-HEAD CELLS
- NO-FLOW BOUNDARY
- INFERRED DIRECTION OF GROUNDWATER MOVEMENT
- MONITORING WELL OR PIEZOMETER AND WATER-LEVEL ELEVATION FROM MODFLOW
- STREAM GAGE AND WATER-LEVEL ELEVATION FROM MODFLOW
- SCAPPOOSE DRAINAGE DISTRICT (SDD) PUMP STATION

NOTES:

1) Water-level data generated by MODFLOW
2) Specified-head boundary values are based on May 15, 1995 Water-Level conditions.
3) Elevations are in feet Mean Sea Level (MSL)

Future-Conditions Model
MODFLOW High-Water Conditions Simulation

FIGURE 12b
EXPLANATION

- WATER-LEVEL CHANGE CONTOUR
 FROM MODFLOW RESULTS
 (0.2-FOOT CONTOUR INTERVAL)

- SPECIFIED-HEAD CELLS

- NO-FLOW BOUNDARY

- MONITORING WELL OR PIEZOMETER
 AND WATER-LEVEL CHANGE (feet)

- STREAM GAGE AND
 WATER-LEVEL CHANGE (feet)

- SCAPPOOSE DRAINAGE DISTRICT (SDD)
 PUMP STATION

NOTES:
1) Water-level change data generated by MODFLOW
2) Specified-head boundary values are based on
 May 15, 1995 Water-Level conditions.
3) Elevations are in feet Mean Sea Level (MSL)
EXPLANATION

- WATER-LEVEL ELEVATION CONTOUR FROM MODFLOW RESULTS
 (0.5-FOOT CONTOUR INTERVAL)
- SPECIFIED-HEAD CELLS
- NO-FLOW BOUNDARY
- INFERRED DIRECTION OF GROUNDWATER MOVEMENT
- MONITORING WELL OR PIEZOMETER AND WATER-LEVEL ELEVATION FROM MODFLOW
- STREAM GAGE AND WATER-LEVEL ELEVATION FROM MODFLOW

SCAPPOOSE DRAINAGE DISTRICT (SDD) PUMP STATION

NOTES:
1) Water-level data generated by MODFLOW
2) Specified-head boundary values are based on September 22, 1995 Water-Level conditions.
3) Elevations are in feet Mean Sea Level (MSL)
EXPLANATION

- WATER-LEVEL ELEVATION CONTOUR
 FROM MODFLOW RESULTS
 (0.5-FOOT CONTOUR INTERVAL)

- SPECIFIED-HEAD CELLS

- NO-FLOW BOUNDARY

- INFERRED DIRECTION OF
 GROUNDWATER MOVEMENT

- MONITORING WELL OR PIEZOMETER
 AND WATER-LEVEL ELEVATION
 FROM MODFLOW

- STREAM GAGE AND WATER-LEVEL
 ELEVATION FROM MODFLOW

- SCAPPOOSE DRAINAGE DISTRICT (SDD)
 PUMP STATION

NOTES:

1) Water-level data generated by MODFLOW
2) Specified-head boundary values are based on
 September 22, 1995 Water-Level conditions.
3) Elevations are in feet Mean Sea Level (MSL)
EXPLANATION

- WATER-LEVEL CHANGE CONTOUR FROM MODFLOW RESULTS (0.2-FOOT CONTOUR INTERVAL)
- SPECIFIED-HEAD CELLS
- NO-FLOW BOUNDARY

- MONITORING WELL OR PIEZOMETER AND WATER-LEVEL CHANGE (feet) FROM MODFLOW
- STREAM GAGE AND WATER-LEVEL CHANGE (feet) FROM MODFLOW
- SCAPPOOSE DRAINAGE DISTRICT (SDD) PUMP STATION

NOTES:
1) Water-level change data generated by MODFLOW
2) Specified-head boundary values are based on September 22, 1995 Water-Level conditions.
3) Elevations are in feet Mean Sea Level (MSL)

Predicted Water-Level Changes
MODFLOW Low-Water Conditions Simulation
(a)

Pre-Mining Water Table

Post-Mining Water Table

Water Table Decline

PIT E EXCAVATION

Water Table Rise

WEST

EAST

(b)

Water-Level Change Contour

Post-Mining Water Table

Pre-Mining Water Table

High-Water Conditions = 0.6 ft

Low-Water Conditions = 0.4 ft

Saturation due to Mining

South

C

North

C'
APPENDIX A

ANNOTATED BIBLIOGRAPHY
A number of technical studies relating to aggregate mining have been conducted in the study area. These studies have addressed issues regarding the quantity and quality of aggregate in the area; the presence, quality and use of surface water and groundwater; and environmental concerns. Since 1992, DNA produced several reports (published and unpublished) for GNW’s existing and planned mining sites in the project area. The following investigations are related to project-area geology and hydrogeology. These references were relied on for this investigation and are listed in the Bibliography section of this report.

In 1980, Northwest Testing Laboratories conducted an aggregate resource evaluation of the Santosh Pits, which were owned at that time by Cascade Aggregate, Inc. The purpose of the study was to investigate the extent of the sand and gravel deposits, and to establish quantitative and qualitative values for the deposits. Borings completed at the site were used to define geologic units beneath the site and quantify the particle-size distribution of the deposits (Northwest Testing Laboratories, 1980).

Geo Recon International completed a geophysical exploration of the proposed expansion property in 1980. They took vertical electrical soundings and placed borings across the site to define the subsurface geologic features (Geo Recon International, 1980).

Quentin R. Keener, a consultant, conducted several analyses of sediment samples in the area of Santosh Pits A and B as part of a preliminary 1983 feasibility study of dewatering Pit B (Keener, 1983).

In 1986, Cascade Aggregate drilled borings on the Pit E property and conducted grain size analyses of selected samples from these borings (Cascade Aggregate, 1986).

Ogden Beeman & Associates conducted a groundwater study prior to excavating Santosh Pit A below the water table (Ogden Beeman & Associates, 1989).

Geotechnical Resources, Incorporated conducted preliminary seepage and water quality studies in 1992. This investigation looked at potential changes to the flow of Jackson Creek as well as impacts to upgradient domestic wells that could result from the excavation of the proposed expansion area (Geotechnical Resources, Inc., 1992).

DNA issued a hydrogeologic report in 1994. This report included evaluations of potential groundwater impacts to the area resulting from the excavation of the proposed expansion area, based on numerical modeling (DNA, 1994a).

In 1994, DNA conducted an aggregate resource investigation in the area of LSNW’s existing Pits A through D and the proposed expansion area. This investigation characterized the geology and aggregate reserves encountered, and evaluated the geographic and stratigraphic conditions of cemented gravel encountered at depth in the existing mining pits. A total of 17 Becker Hammer borings were drilled, including four borings within the proposed expansion area (94M1, 94M2, 94M3, 94M4; see Plate 1 and Appendix B).
Laboratory analyses to characterize physical properties were performed on representative formation samples (DNA, 1994b).

In 1995, DNA completed a mineral and aggregate evaluation for the proposed expansion area. This report summarized the results of a geologic investigation and material testing of representative samples from the site. This work by Columbia County regulations in order to have the site listed in the significant resource inventory (DNA, 1995).

In 1996, DNA completed a preliminary geotechnical investigation report for the planned Pit E extension. This report characterized geographic, geologic and hydrologic conditions, evaluated the quantity of mineral resource, and analyzed slope stability (DNA, 1996).
Table B1

Project Area

Groundwater Elevation Data

<table>
<thead>
<tr>
<th>Date</th>
<th>P-1</th>
<th>P-2</th>
<th>P-3</th>
<th>P-4</th>
<th>P-5</th>
<th>P-6</th>
<th>P-7</th>
<th>P-8</th>
<th>MW-1</th>
<th>MW-2</th>
<th>MW-3</th>
<th>MW-4</th>
<th>4/1-31cd (Havlic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/7/93</td>
<td>4.84</td>
<td>4.87</td>
<td>5.70</td>
<td>5.22</td>
<td>5.08</td>
<td>5.27</td>
<td>4.59</td>
<td>5.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/15/93</td>
<td>5.14</td>
<td>4.87</td>
<td>5.10</td>
<td>5.72</td>
<td>5.08</td>
<td>5.87</td>
<td>4.99</td>
<td>6.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/28/93</td>
<td>5.04</td>
<td>4.87</td>
<td>5.00</td>
<td>5.62</td>
<td>5.08</td>
<td>5.57</td>
<td>4.99</td>
<td>5.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/03/93</td>
<td>5.04</td>
<td>4.77</td>
<td>5.00</td>
<td>5.22</td>
<td>4.98</td>
<td>5.47</td>
<td>4.89</td>
<td>5.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/10/93</td>
<td>5.04</td>
<td>5.12</td>
<td>5.00</td>
<td>5.42</td>
<td>5.03</td>
<td>5.37</td>
<td>4.99</td>
<td>5.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/17/93</td>
<td>4.84</td>
<td>4.77</td>
<td>4.70</td>
<td>5.12</td>
<td>4.88</td>
<td>5.07</td>
<td>4.84</td>
<td>5.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/24/93</td>
<td>4.90</td>
<td>4.85</td>
<td>4.91</td>
<td>5.23</td>
<td>4.94</td>
<td>5.18</td>
<td>4.95</td>
<td>5.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/1/93</td>
<td>5.00</td>
<td>4.96</td>
<td>5.18</td>
<td>5.28</td>
<td>5.04</td>
<td>5.23</td>
<td>4.95</td>
<td>5.05</td>
<td>5.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/8/93</td>
<td>4.78</td>
<td>4.54</td>
<td>4.86</td>
<td>5.18</td>
<td>4.82</td>
<td>5.13</td>
<td>4.84</td>
<td>5.00</td>
<td>5.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/15/93</td>
<td>4.66</td>
<td>4.63</td>
<td>5.49</td>
<td>5.02</td>
<td>4.74</td>
<td>4.93</td>
<td>4.89</td>
<td>4.59</td>
<td>5.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/09/93</td>
<td>4.34</td>
<td>4.15</td>
<td>5.02</td>
<td>5.58</td>
<td>4.39</td>
<td>4.45</td>
<td>4.55</td>
<td>5.05</td>
<td>5.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/16/93</td>
<td>3.86</td>
<td>3.93</td>
<td>5.04</td>
<td>4.09</td>
<td>3.99</td>
<td>3.63</td>
<td>4.25</td>
<td>4.05</td>
<td>4.32</td>
<td>4.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/14/93</td>
<td>3.32</td>
<td>3.26</td>
<td>5.19</td>
<td>3.23</td>
<td>3.44</td>
<td>3.37</td>
<td>3.74</td>
<td>3.41</td>
<td>3.70</td>
<td>3.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/22/93</td>
<td>3.52</td>
<td>3.43</td>
<td>4.70</td>
<td>3.70</td>
<td>3.54</td>
<td>3.22</td>
<td>3.29</td>
<td>3.52</td>
<td>3.77</td>
<td>4.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/01/93</td>
<td>3.46</td>
<td>3.43</td>
<td>4.63</td>
<td>3.58</td>
<td>3.50</td>
<td>3.49</td>
<td>3.40</td>
<td>3.92</td>
<td></td>
<td>3.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/00/93</td>
<td>4.44</td>
<td>4.51</td>
<td>5.82</td>
<td>4.78</td>
<td>4.61</td>
<td>4.70</td>
<td>4.22</td>
<td>4.93</td>
<td></td>
<td>5.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/18/94</td>
<td>4.72</td>
<td>4.66</td>
<td>5.97</td>
<td>5.09</td>
<td>4.97</td>
<td>4.98</td>
<td>4.95</td>
<td>5.17</td>
<td></td>
<td>5.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/10/94</td>
<td>4.96</td>
<td>4.79</td>
<td>6.10</td>
<td>5.40</td>
<td>4.92</td>
<td>5.28</td>
<td>5.05</td>
<td>5.38</td>
<td>4.97</td>
<td>4.88</td>
<td>5.02</td>
<td>5.50</td>
<td></td>
</tr>
<tr>
<td>4/11/94</td>
<td>4.67</td>
<td>4.58</td>
<td>6.00</td>
<td>5.42</td>
<td>4.74</td>
<td>4.87</td>
<td>4.69</td>
<td>5.08</td>
<td>4.65</td>
<td>4.00</td>
<td>4.68</td>
<td>5.47</td>
<td></td>
</tr>
<tr>
<td>8/22/95</td>
<td>5.00</td>
<td>4.88</td>
<td>6.12</td>
<td>5.02</td>
<td>4.87</td>
<td>5.44</td>
<td>5.15</td>
<td>5.26</td>
<td>5.15</td>
<td>5.16</td>
<td>4.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/15/95</td>
<td>5.42</td>
<td>5.40</td>
<td>6.59</td>
<td>5.44</td>
<td>5.46</td>
<td>5.50</td>
<td>5.37</td>
<td>5.73</td>
<td>5.42</td>
<td>5.39</td>
<td>5.47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/18/95</td>
<td>4.90</td>
<td>4.90</td>
<td>4.92</td>
<td>4.86</td>
<td>4.76</td>
<td>5.23</td>
<td>5.06</td>
<td>4.85</td>
<td>4.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/22/95</td>
<td>3.64</td>
<td>3.56</td>
<td>4.72</td>
<td>3.68</td>
<td>3.72</td>
<td>3.50</td>
<td>4.17</td>
<td>3.81</td>
<td>3.95</td>
<td>3.62</td>
<td>3.56</td>
<td>3.66</td>
<td></td>
</tr>
</tbody>
</table>

Table B2

Project Area

Surface-Water Elevation Data

<table>
<thead>
<tr>
<th>Date</th>
<th>WL-1</th>
<th>WL-5</th>
<th>SG-1</th>
<th>SG-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/24/93</td>
<td>3.85</td>
<td>4.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/1/93</td>
<td>4.35</td>
<td>4.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/8/93</td>
<td>2.97</td>
<td>3.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/15/93</td>
<td>3.65</td>
<td>4.15</td>
<td>4.65</td>
<td>4.27</td>
</tr>
<tr>
<td>7/7/93</td>
<td>3.93</td>
<td>4.36</td>
<td>4.35</td>
<td>4.40</td>
</tr>
<tr>
<td>8/16/93</td>
<td>2.94</td>
<td>3.73</td>
<td>3.90</td>
<td>3.80</td>
</tr>
<tr>
<td>9/14/93</td>
<td>3.04</td>
<td>3.15</td>
<td>3.09</td>
<td></td>
</tr>
<tr>
<td>10/22/93</td>
<td>3.40</td>
<td>3.45</td>
<td>3.47</td>
<td></td>
</tr>
<tr>
<td>11/18/93</td>
<td>3.32</td>
<td>3.45</td>
<td>3.45</td>
<td></td>
</tr>
<tr>
<td>12/20/93</td>
<td>4.15</td>
<td>4.44</td>
<td>4.39</td>
<td></td>
</tr>
<tr>
<td>1/18/94</td>
<td>3.65</td>
<td>3.90</td>
<td>3.65</td>
<td></td>
</tr>
<tr>
<td>3/10/94</td>
<td>3.56</td>
<td>3.90</td>
<td>3.35</td>
<td></td>
</tr>
<tr>
<td>4/11/94</td>
<td>4.45</td>
<td>4.80</td>
<td>5.84</td>
<td></td>
</tr>
<tr>
<td>5/23/94</td>
<td>4.23</td>
<td>4.26</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>8/4/94</td>
<td>2.41</td>
<td>2.81</td>
<td>2.85</td>
<td></td>
</tr>
<tr>
<td>11/1/94</td>
<td>4.73</td>
<td>4.76</td>
<td>4.80</td>
<td></td>
</tr>
<tr>
<td>3/22/95</td>
<td>4.14</td>
<td>3.87</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>5/15/95</td>
<td>5.22</td>
<td>5.10</td>
<td>2.22</td>
<td></td>
</tr>
<tr>
<td>8/19/95</td>
<td>4.71</td>
<td>4.45</td>
<td>4.73</td>
<td></td>
</tr>
<tr>
<td>9/22/95</td>
<td>3.14</td>
<td>3.45</td>
<td>3.28</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1) WL-1 (Jackson Creek stream gage) destroyed 9/93.
APPENDIX C

WATER WELL REPORTS, BORING LOGS AND WELL CONSTRUCTION LOGS
WATER WELL REPORT

STATE OF OREGON

WATER WELL REPORTS

<table>
<thead>
<tr>
<th>STATE ENGINEER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ありません。</td>
</tr>
</tbody>
</table>

OWNER: Gerald M. Johnson

ADDRESS: PO Box 621, Saugus, CA 91352

WATER WELL REPORT

LOCATION OF WELL:

<table>
<thead>
<tr>
<th>County</th>
<th>Cal</th>
<th>Section</th>
<th>T</th>
<th>R</th>
<th>N</th>
<th>W</th>
<th>Bearing and distance from section of subdivision corner</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------</td>
<td>-----</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 ft. N. of East Boundary of Columbia County Airport</td>
</tr>
</tbody>
</table>

TYPE OF WORK (check):

- New Well
- Deepening
- Recompletion
- Abandon
- Replacement of casing
- Drawdown

PROPOSED USE (check):

- Domestic
- Irrigation
- Municipal
- Industrial
- Other

CASING INSTALLED:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Length</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 in.</td>
<td>17 ft.</td>
<td>Steel</td>
</tr>
</tbody>
</table>

PERFORATIONS:

<table>
<thead>
<tr>
<th>Percor</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SCREENS:

<table>
<thead>
<tr>
<th>Manufacturer's Name</th>
<th>Screen Type</th>
<th>Slot size</th>
<th>Set from</th>
<th>Tolerance</th>
<th>Depth of screen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSTRUCTION:

- Well gravel packed: Yes
- Well depth: 17.5 ft.
- Water level: 0 ft. below land surface

WATER LEVELS:

<table>
<thead>
<tr>
<th>Depth below land surface</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ft.</td>
<td></td>
</tr>
</tbody>
</table>

WELL LOG:

<table>
<thead>
<tr>
<th>Material</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand & Gravel</td>
<td>26 ft.</td>
<td>80 ft.</td>
</tr>
</tbody>
</table>

PUMP:

<table>
<thead>
<tr>
<th>Manufacturer's Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

NAME: Svend A. Hald

Address: Box 1267, Saugus, CA 91352

Driller's number: 5

License No.: 261

Date: 3/5/61
NOTICE TO WATER WELL CONTRACTOR

The original and first copy of this report are to be filed with the
TATE ENGINEER SALEM, OREGON 97303

with 20 days from the date of completion

WATER WELL REPORT

STATE OF OREGON

State Permit No. **3/1-w-6**

1) **OWNER:**

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) **LOCATION OF WELL:**

<table>
<thead>
<tr>
<th>Driller's well number</th>
<th>Section</th>
<th>T.</th>
<th>R.</th>
<th>W.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) **TYPE OF WORK (check):**

- New Well
- Deepening
- Reconditioning
- Abandon

4) **PROPOSED USE (check):**

- Domestic
- Industrial
- Municipal
- Rotary
- Driven

5) **TYPE OF WELL:**

- Jet
- Dug
- Bore

6) **CASING INSTALLED:**

<table>
<thead>
<tr>
<th>Diam. from</th>
<th>Ft.</th>
<th>Gage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7) **PERFORATIONS:**

<table>
<thead>
<tr>
<th>Type of perforation used</th>
<th>by in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8) **SCREENS:**

- Well screen installed? Yes No

<table>
<thead>
<tr>
<th>Manufacturer's Name</th>
<th>Type</th>
<th>Model No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9) **CONSTRUCTION:**

- Well seal - Material used in seal
- Depth of seal
- Diameter of well bore to bottom of seal
- Was any loose strata cemented off? Yes No Depth
- Was a drive shoe used? Yes No
- Was well gravel packed? Yes No Size of gravel
- Gravel placed from:
- Any strata contain unusable water? Yes No
- Use of water:
- Method of sealing strata off

10) **WATER LEVELS:**

<table>
<thead>
<tr>
<th>Static level</th>
<th>Ft. below land surface</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11) **WELL TESTS:**

- Drawdown a amount water level is lowered below static
- Was a pump test made? Yes No If yes by whom
- Yes gas man with R. drawdown after

12) **WELL LOG:**

- Diameter of well below casing
- Depth drilled
- Depth of completion
- Formation: Describe by color, character, type of material and structure of stratum penetrated, width at least one entry for each change of formation

<table>
<thead>
<tr>
<th>MATERIAL FROM</th>
<th>TO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13) **PUMP:**

<table>
<thead>
<tr>
<th>Manufacturer's Name</th>
<th>Type</th>
<th>HP.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water Well Contractor's Certification:

This well was drilled under my jurisdiction and this report true to the best of my knowledge and belief.

NAME:

Address:

Drilling Machine Operator's License No. **3/1-6ab2**

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>(1) OWNER:</th>
<th>Name: Charles E. Carrell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address: Box 9, Scappoose, Or</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2) TYPE OF WORK (check):</th>
<th>New Well X</th>
<th>Deepening</th>
<th>Reconditioning</th>
<th>Abandon</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>If abandonment, describe material and procedure in Item 12.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| (3) TYPE OF WELL: | 1. CASING INSTALLED: | Threaded | Welded | |
| --- | Diam. from 0 ft. to 20 ft. Gap | Diam. from 20 ft. to 40 ft. Gap | Diam. from 40 ft. to 100 ft. Gap | |</p>
<table>
<thead>
<tr>
<th>(4) PROPOSED USE (check):</th>
<th>Rotary</th>
<th>Driven</th>
<th>Septic</th>
<th>Industrial</th>
<th>Municipal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dug</td>
<td>Bored</td>
<td>Irrigation</td>
<td>Test Well</td>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(5) SCREENS:</th>
<th>Well screen installed</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer's Name:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type:</td>
<td>Model No.</td>
<td></td>
</tr>
<tr>
<td>Diam.</td>
<td>Slot size</td>
<td>Set from</td>
</tr>
<tr>
<td>Diam.</td>
<td>Slot size</td>
<td>Set from</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(6) WATER LEVEL:</th>
<th>Completed well.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ft. level</td>
<td>3/2 ft. below land surface</td>
</tr>
<tr>
<td>Artesian pressure</td>
<td>lbs. per square inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(7) PERFORATIONS:</th>
<th>Perforated</th>
<th>Yes X No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of perforation used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size of perforations in. by in.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>______ perforations from ______ ft. to ______ ft.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>______ perforations from ______ ft. to ______ ft.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>______ perforations from ______ ft. to ______ ft.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>______ perforations from ______ ft. to ______ ft.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(8) WELL LOG:</th>
<th>Diameter of well below casing</th>
<th>Depth drilled</th>
<th>Depth of completed well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formation: Describe color, texture, grain size and structure of materials and show thickness and nature of each stratum and aquifer penetrated with at least one entry for each change of formation. Report each change in position of Static Water Level as drilling proceeds. Note drilling rate.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>From</th>
<th>To</th>
<th>Sw.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Clay</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sand and Gravel</td>
<td>2</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Water Table</td>
<td>14</td>
<td>24</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(9) WELL TESTS:</th>
<th>Drawdown is amount water level is lowered below static level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was a pump test made?</td>
<td>Yes X No</td>
</tr>
<tr>
<td>If yes, by whom?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gal./min. with 10 ft. drawdown after 1 hrs.</td>
</tr>
<tr>
<td></td>
<td>20 gal./min. with 10 ft. drawdown after 1 hrs.</td>
</tr>
<tr>
<td>Artesian flow</td>
<td>g.p.m.</td>
</tr>
<tr>
<td>Temperature of water</td>
<td>Well's chemical analysis made?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(10) CONSTRUCTION:</th>
<th>Water Well Contractor's Certification:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth of seal</td>
<td>This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.</td>
</tr>
<tr>
<td>Diameter of well below bottom of seal</td>
<td>Water Well Contractor's Certification:</td>
</tr>
<tr>
<td>Are any loose strata cemented off?</td>
<td>Name: —— A. Held</td>
</tr>
<tr>
<td>Did any strata contain unusable water?</td>
<td>Address: Box 1347, St. Helens, Or.</td>
</tr>
<tr>
<td>Type of water</td>
<td>(Water Well Contractor)</td>
</tr>
<tr>
<td>Method of sealing strata off</td>
<td>(Signed) A. Held</td>
</tr>
<tr>
<td>Was well gravel packed?</td>
<td>Date 3/31-6ab3</td>
</tr>
<tr>
<td>Site of gravel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(11) LOCATION OF WELL:</th>
<th>Driller's well number</th>
</tr>
</thead>
<tbody>
<tr>
<td>County</td>
<td>92</td>
</tr>
<tr>
<td>1/4 Section</td>
<td>6</td>
</tr>
<tr>
<td>Bearing and distance from section or subdivision corner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(12) WATER WELL REPORT</th>
<th>Diameter of completed well</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth drilled</td>
<td>70</td>
</tr>
<tr>
<td>Date well drilling machines moved off well</td>
<td>2-20-60</td>
</tr>
</tbody>
</table>

Drilling Machine Operator's Certification: This well was constructed under my direct supervision. Materials used and information reported above are true to my best knowledge and belief. (Drilling Machine Operator) (Signed) A. Held Date 3-22-60 12

Drilling Machine Operator's License No. 149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT
STATE OF OREGON

(1) OWNER:
Name: COLUMBIA CO. OR.
Address:

(2) LOCATION OF WELL:
County: Cl
Owner's number, if any:
N.W. N.M. Section 7a T. 3 N. R. 1 W. W.M.
WELL IS LOCATED 263 FT N.W. OF W.R.
53.127 SOUTH 29.24 WEST FROM THE
S.W. CORNER OF JOHN McPHERSON D.
1. C. SECTION 6 T. 3 N. RAMP.

(3) TYPE OF WORK (check):
New Well
Deepening
Reconditioning
Abandon
If abandonment, describe material and procedure in Item 13.

(4) PROPOSED USE (check):
Domestic
Industrial
Municipal
Irrigation
Ten Well
Other

(5) TYPE OF WELL:
Rotary
Driven
Cable
Jetted
Dug
Bored

(6) CASING INSTALLED:
Threaded
Welded
Diam. from ft. to ft. Gage
Diam. from ft. to ft. Gage
Diam. from ft. to ft. Gage

(7) PERFORATIONS:
Perforated
Type of perforator used

(8) SCREENS:
Well screen installed

(9) CONSTRUCTION:
Was well gravel packed?
If so, No Size of gravel:
Gravel placed from ft. to ft.
Was a surface seal provided?
If so, No To what depth? ft.
Material used in seal:
Did any strange or unusual water enter?
If so, No
Type of water?
Depth of stratum
Method of sealing stratum off:

(10) WATER LEVELS:
State level ft. below land surface Date 9 Aug 39
Artesian pressure ft. per square inch Date

(11) WELL TESTS:
Drawdown is amount water level is lowered below static level.

(12) WELL LOG:

(13) PUMP:
Manufacturer's Name
Type:

Well Driller's Statement:
This well was drilled under my jurisdiction and this report true to the best of my knowledge and belief.

NAME
Address
Driller's well number
License No.

77
Water Well Report

1. Owner:
- Name: [Handwritten]
- Address: [Handwritten]

2. Type of Work (check):
- New Well
- Deepening
- Reconditioning
- Abandon

3. Type of Well:
- Domestic
- Industrial
- Municipal
- Irrigation
- Test Well
- Other

4. Proposed Use (check):
- Domestic
- Industrial
- Municipal
- Irrigation
- Test Well
- Other

5. Casing Installed:
- Threaded
- Welded
- Other

6. Perforations:
- Percut? Yes / No
- Size of perforations:
 - Type of perforator

7. Screens:
- Well screen installed? Yes / No
- Manufacturer's Name
- Screen installed? Yes / No
- Slot size
 - Set from...
 - Set to...

8. Water Level:
- Complete well
- S.l. Level: [Handwritten]
- Depth drilled
- Depth of completed well
- Depth of screen
- Pressure
- Date

9. Well Tests:
- Drawdown is amount water level is lowered below static level
- Was a pump test made? Yes / No
- If yes, by whom.
- Date well drilling machine moved off of well
- Temperature of water
- Was a chemical analysis made? Yes / No

10. Construction:
- Well seal: [Handwritten]
- Material used
- Depth of seal
- Diameter of well bore to bottom of seal
- Type of strata
- Method of sealing strata off
- Was well gravel packed? Yes / No
- Type of gravel
- Depth of gravel

11. Location of Well:
- County
- Section
- Driller's well number
- State Permit No.

12. Well Log:
- Diameter at well below casing
- Depth drilled
- Depth of completed well
- Formation: Describe color, texture, grain size, and structure of strata.
- Artesian pressure
- Date

13. Other:
- Work started
- Completed
- Date
- Machine used
- Well constructed under my jurisdiction.
- This report is true to the best of my knowledge and belief.

Signatures:
- [Handwritten]
- Water Well Contractor's License No.
- Water Well Contractor's Certification
- [Handwritten]
- [Handwritten]

This is a water well report for a new well. It includes details about the type of well, proposed use, screens, water level, well tests, construction, and location. The report is signed by the contractor and includes various measurements and descriptions of the conditions at the site.
STATE OF OREGON
WATER WELL REPORT

1. OWNER:
Name:
Address:
Street, City, State:
Zip:

2. TYPE OF WORK:
New Well ○ Deepening ○ Alteration (repair/reconstruction) ○ Abandonment ○ Other

3. DRILL METHOD:
Rotary Air ○ Rotary Mud ○ Cable ○ Auger ○ Other

4. PROPOSED USE:
Domestic ○ Community ○ Industrial ○ Irrigation ○ Other

5. BORE HOLE CONSTRUCTION:
Special Construction approval ○ Yes ○ NG Depth of Completed Well: ft.
Explosives used ○ Yes ○ NG Type: Amount:

6. HOLE SEAL:
Diameter: From to ft. Material: From to Sacs or pounds:

7. HOW SEAL PLACED:
Method: ○ A ○ B ○ C ○ D ○ E ○ Other:

8. BORE HOLE CONSTRUCTION:
Special Construction approval ○ Yes ○ NG Depth of Completed Well: ft.
Explosives used ○ Yes ○ NG Type: Amount:

9. LOCATION OF WELL by legal description:
County: Township: Range: Section: Lot: Block: Subdivision:
Street Address of Well or nearest address:

10. STATIC WATER LEVEL:
Depth at which water was first found: ft.

11. WATER BEARING ZONES:
Depth: From To Estimated Flow Rate:

12. WELL LOG:
Material: From To

13. PERFORATIONS/SCREENS:

14. WELL TESTS: Minimum testing time is 1 hour

15. WATER WELL CONSTRUCTOR CERTIFICATION:
I certify that the work I performed on the construction, alteration, or abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are true to the best of my knowledge and belief.

16. WATER WELL CONSTRUCTOR CERTIFICATION:
I accept responsibility for the construction, alteration, or abandonment of this well during the construction dates shown above. All work performed during this time is in compliance with Oregon water supply well construction standards. This report is true to the best of my knowledge and belief.

Signed:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT
STATE OF OREGON

<table>
<thead>
<tr>
<th>Description</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) OWNER:</td>
<td>Name: Ernest Bailey</td>
</tr>
<tr>
<td></td>
<td>Address: 9540 NW Williams</td>
</tr>
</tbody>
</table>
| 2) LOCATION OF WELL: | County:
| | Driller's well number:
| | Bearing and distance from section or subdivision corner: |
| 3) TYPE OF WORK (check): | Well □ Deepening □ Reconditioning □ Abandon □ Other □ Devel □ Re-Drill □ Other □ Recon □ Abandon, describe material and procedure in Item 12. |
| 4) PROPOSED USE (check): | Domestic □ Industrial □ Municipal □ Cable □ Jetted □ Test Well □ Other □ Dug □ Bored □ Drilled □ Other □ Other □ Other |
| 5) TYPE OF WELL: | Rotary □ Dug □ Jetted □ Test Well □ Other □ Threaded □ Welded □ Other □ Other |
| 6) CASING INSTALLED: | Diam. from 0 ft. to 81 ft. Gage: 250 |
| 7) PERFORATIONS: | Perforated? □ Yes □ No □ Other □ Other |
| 8) SCREENS: | Well screen installed? □ Yes □ No □ Other □ Other |
| 9) CONSTRUCTION: | Well seal—Material used in seal:
| | Depth of seal: 26 ft.
| | Diameter of well bore at bottom of seal: 12 in.
| | Were any loose strata cemented off? □ Yes □ No □ Other □ Other |
| | Was a drive shoe used? □ Yes □ No □ Other □ Other |
| | Was well gravel packed? □ Yes □ No □ Other □ Other |
| | Gravel placed from:
| | Did any strata contain usable water? □ Yes □ No □ Other □ Other |
| | Method of sealing strata off:
| 10) WATER LEVELS: | Static level: -36.9 ft. below land surface
| | Date: 4/1/60 |
| 11) WELL TESTS: | Drawdown: 97 ft. water level lowered below static level.
| | Was a pump test made? □ Yes □ No
| | Yield:
| | Azimuth:
| | Temperature of water:
| | Was a chemical analysis made? □ Yes □ No |
| 12) WELL LOG: | Diameter of well below casing:
| | Depth drilled:
| | Ft. Depth of completed well: |
| 13) PUMP: | Work turned:
| | Date well drilled:
| | Manufacturer's Name:
| | Type:
| Water Well Contractor's Certification: | This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
| | Name:
| | Address:
| | Drilling Machine Operator's License No.:
| | [Signed]
| | Water Well Contractor's Certificate:
| | Date:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Location: Columbia, WA

Date: 12/14/84

Well No.: 174

Contractor: SPACO

Well Description: Domestic Water R. - N.

Hole Construction:

<table>
<thead>
<tr>
<th>Material</th>
<th>Seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bentonite</td>
<td>18</td>
</tr>
<tr>
<td>Sacks</td>
<td></td>
</tr>
</tbody>
</table>

Perforations/Screen:

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Depth at which water was first found</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3 ft. below land surface</td>
</tr>
</tbody>
</table>

Wells: LID:

<table>
<thead>
<tr>
<th>Material</th>
<th>From</th>
<th>To</th>
<th>SWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Clay Gravel</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Gravel, Sand</td>
<td>16</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Gravel, Clean</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Declaration:

I certify that the work I performed on the construction, alteration, or abandonment of this well is in compliance with Oregon well construction standards. Materials used and information reported above are true to my best knowledge and belief.

Certificate:

[Signature] 12/23/94

Date started: 12/14/84
Completed: 12/23/94

Note: Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>(1) OWNER:</th>
<th>Well Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| (2) TYPE OF WORK: |
| --- | --- |
| New Well | Deepen |
| Recession | Abandon |

| (3) DRILL METHOD: |
| --- | --- |
| Rotary Air | Rotary Mud |
| Cable | Other |

| (4) PROPOSED USE: |
| --- | --- |
| Domestic | Community |
| Industrial | Irrigation |
| Thermal | Injection |
| Other | |

| (5) BORE HOLE CONSTRUCTION: |
| --- | --- |
| Special Construction approval: | Yes | No |
| Depth of Completed Well: 35 ft. |
| Explosives used: | Yes | No |

| (6) CASING/LINER: |
| --- | --- |
| Diameter | From | To |
| Casing | 6 | 18 |
| Liner | 0 | 18 |

| (7) PERFORATIONS/SCREENS: |
| --- | --- |
| Method | |
| Type | |

| (8) WELL TESTS: Minimum testing time is 1 hour |
| --- | --- |
| Flowing | Artesian |
| Pump | Bailer |
| Air | |

| Temperature of Water | 52°F |
| Depth Artesian Flow Found | |

| (9) LOCATION OF WELL by legal description: |
| --- | --- |
| Township | 35 | Range | 5S |
| Section | 35 | E | 5N |

| (10) STATIC WATER LEVEL: |
| --- | --- |
| Depth at which water was found: | 30 |

| (11) WATER BEARING ZONES: |
| --- | --- |
| From | To | Estimated Flow Rate |
| 30 | 35 | 1 |

| (12) WELL LOG: |
| --- | --- |
| Ground water: | |

<table>
<thead>
<tr>
<th>Material</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw Clay</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Blue Clay</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>Aquad</td>
<td>30</td>
<td>35</td>
</tr>
</tbody>
</table>

| (13) LOCATION OF WATER Bender: |
| --- | --- |
| Depth at which water was found: | 30 |

<table>
<thead>
<tr>
<th>Date received:</th>
<th>OCT 31 1992</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Resources Dept.</td>
<td>SALEM, OREGON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date received:</th>
<th>9-24-92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed:</td>
<td>9-24-92</td>
</tr>
</tbody>
</table>

(bonded) Water Well Constructor Certification: I certify that the work I performed on the construction, alteration, or abandonment of this well is in accordance with Oregon well construction standards. I have used and information reported above are true to the best of my knowledge and belief. |

Signed: |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td></td>
</tr>
</tbody>
</table>

(bonded) Water Well Constructor Certification: I accept responsibility for the construction, alteration, or abandonment of this well. All work performed during this time is in accordance with Oregon well construction standards. I have used and information reported above are true to the best of my knowledge and belief. |

Signed: |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT

STATE OF OREGON

TYPE OF WORK (check):
- Deepening
- Reconditioning
- Abandon

PROPOSED USE (check):
- Domestic
- Industrial
- Municipal
- Irrigation
- Test Well
- Other

CASING INSTALLED:
- Threaded
- Welded

PERFORATIONS:
- Perforated: Yes
- No

SCREENS:
- Well screen installed: Yes
- No

WELL TESTS:
- Drawdown is amount water level is lowered below static level
- a pump test made: Yes

CONSTRUCTION:
- Well seal - Material used: Cement grout & gravel
- Well sealed from land surface to 148 ft
- Diameter of well bore to bottom of seal 10 in
- Diameter of well bore below seal 6 in
- Number of sacks of cement used at well seal 25
- Bottom seal @ 148' placed
- Gravel placed in land surface 20 sacks
- Was a drive shoe used? Yes
- No
- Plugs: None
- Site location
- Any strata contain unusable water? Yes
- No
- Depth of strata
- Method of sealing strata off
- Gravel placed from ft to ft

LOCATION OF WELL:
- County: Columbia
- Driller's well number

WATER LEVEL:
- Depth at which water was first found: 70 ft
- Static level: 45 ft below land surface

WELL LOG:
- Depth drilled: 150 ft
- Diameter of well below casing
- Depth of completed well: 149 ft

FORMATION:
- Brown clay & gravel
- Brown cemented gravel
- Gray cemented gravel
- Gray sand & gravel
- Gray cemented sand & gravel
- Water-bearing

WATER RESOURCES DEPARTMENT
SALEM, OREGON 97301

OWNER:
- Elmer Warren
- 185 S. 4th Street
- St. Helens, Oregon 97051

MATERIAL From To FP
- Brown clay & gravel 0 1
- Brown cemented gravel 1 12
- Gray cemented gravel 12 70
- Gray sand & gravel 70 90 w.b.
- Gray cemented sand & gravel 90 135
- Water-bearing 135 150 90

RECEIVED
DEC 1979

Drilling Machine Operator's License No. 523

Drilling Machine Operator's Certification:
- This well was constructed under my direct supervision.
- Materials used and information reported above are true to the best of my knowledge and belief.

Contractor's License No. 79

A. H. JANSEN WELL DRILLING CO., INC.

Contractor's License No.

Date 12/27/79

83
WATER WELL REPORT
STATE OF OREGON

1) OWNER:
Charles Mitchellknaus
Route 1, Box 212
Scappoose, Oregon

2) LOCATION OF WELL:
Columbia, Owner's number if any:
Section 1, T 3 N R 2 W W M

3) OWNER:

4) TYPE OF WORK (check):
New Well □ Reconditioning □ Abandon □

5) PROPOSED USE (check):
Domestic □ Industrial □ Municipal □ Drilled □ Dug □ Bored □
Other □

6) CASING INSTALLED:
Threaded □ Welded □
6" Diam. from 3 ft to 22-1/2 ft Gage 250

7) PERFORATIONS:
Perforated? □ Yes □ No
Type of perforator used:

8) SCREENS:
Well screen installed □ Yes □ No
Manufacturer's Name
Type
Slot size
Diam.

9) CONSTRUCTION:
Well gravel packed? □ Yes □ No
Size of gravel:
Drill placed from:
A surface seal provided? □ Yes □ No
To what depth?:
Material used in well:
Did any strata contain unusable water? □ Yes □ No
Type of water?

10) WATER LEVELS:
Static level ft below land surface Date 8/30/57
Static pressure lbs. per square inch Date

11) WELL TESTS:
Drawdown is amount water level is lowered below static level Was a pump test made? □ Yes □ No If yes by whom:
Yield gal min with ft drawdown after hr

12) WELL LOG:
Depth drilled ft. Depth of completed well ft.
Formation: Describe by color, character, size of material and structure, and show thickness of aquifers and the kind and nature of the material in each stratum penetrated, with at least one entry for each change of formation:

13) PUMP:
Manufacturer's Name Montgomery Ward
Type Jet

Well Driller's Statement:
This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

NAME: Steinman Bros.
Address: 5112 S.E. McLoughlin Blvd., Milwaukie, Or
Driller's well number 31-57

(Signed) (Well Driller)

License No. Date Sept. 3 Date 3/2-1ba

(USE ADDITIONAL SHEETS IF NECESSARY)

3/2-1ba
WATER WELL REPORT
STATE OF OREGON

1) OWNER:
Name: Dorothy Buff

2) LOCATION OF WELL:
County: Columbia

3) TYPE OF WORK (check):
New Well □ Deepening □ Reconditioning □ Abandon □
If abandonment, describe material and procedure in Item II.

4) PROPOSED USE (check):
Domestic □ Industrial □ Municipal □ Rotary □ Driven □ Cable □ Jetted □
Irrigation □ Test Well □ Other □

5) TYPE OF WELL:
Rotary □ Driven □ Cabled □ Jetted □
Dug □ Bored □

6) CASING INSTALLED:
Type of casing used □ Threaded □ Welded □
Diam. from ___ ft. to ___ ft. Gage __________

7) PERFORATIONS:
Type of perforator used □ Perforated? □ Yes □ No
Size of perforations 1/8 in. by 1/2 in.
1 per foot perforations from ___ ft. to ___ ft. Gage ___
perforations from ___ ft. to ___ ft. Gage ___
perforations from ___ ft. to ___ ft. Gage ___
perforations from ___ ft. to ___ ft. Gage ___

8) SCREENS:
Well screen installed □ Yes □ No
Manufacturer's Name
Type
Diam. from ___ ft. to ___ ft. Gage ___
Slot size ___ set from ___ ft. to ___ ft. Gage ___

9) CONSTRUCTION:
Was well gravel packed? □ Yes □ No
Size of gravel: ___ ft. to ___ ft.
Gravel placed from ___ ft. to ___ ft.
Was a surface seal provided? □ Yes □ No
To what depth? ___ ft.
Material used in seal: __________
Did any strata contain unusable water? □ Yes □ No
Type of water: __________
Depth of strata __________
Method of sealing strata __________

10) WATER LEVELS:
Water level ___ ft. below land surface Date 7-25-60
Mean pressure ___ lb. per square inch Date __________

Log Accepted by:
(Signed) __________ Date ________ 19__

11) WELL TESTS:
Drawdown is amount water level is lowered below static level.
Was a pump test made? □ Yes □ No
If yes, by whom? __________
Yield gal./min. with ___ ft. drawdown after ___ hr.
Basin test ___ gal./min. with ___ ft. drawdown after ___ hr.
Aspen Flow ___ q.m. Date __________
Temperature of water: __________

12) WELL LOG:
Diameter of well ___ inches
Depth drilled ___ ft. Depth of completed well ___ ft.
Formation: Describe by color, character, use of material and structure, and show thickness of payers and the kind and nature of the material in section penetrated, with at least one entry for each change of formation.

13) PUMP:
Manufacturer's Name __________
Type __________ H.P. __________
Well Driller's Statement:
This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

NAME __________
Address __________
Driller's well number __________
(Signed) __________
License No. __________ Date __________

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
STATE OF OREGON
WATER WELL REPORT
(as required by ORS 533.176)

(1) OWNER:
Name: Robert G. & Gloria A. Wenborn
Address: 50625 S.W. Old Portland Rd., Scappoose, OR 97051

(2) TYPE OF WORK:
□ New Well □ Deeper □ Recondepth □ Abandon

(3) DRILL METHOD
□ Rotary Air □ Rotary Mud □ Cable
□ Other

(4) PROPOSED USE:
□ Domestic □ Commercial □ Industrial □ Irrigation
□ Thermal □ Injection □ Other

(5) BORE HOLE CONSTRUCTION:
Special Construction approval Yes □ No □ Depth of Completed Well 295 ft.
Explosives used □ Yes □ No □ Type □ Amount □

<table>
<thead>
<tr>
<th>Hole Diameter From To</th>
<th>Material SEAL From To</th>
<th>Amount backfill placed</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 20 395</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How was seal placed: Method □ A □ B □ C □ D □ E
Other □
Backfill placed from ft. to ft. Material#
Gravel placed from ft. to ft. Size of gravel#

(6) CASING/LINER:
Casing □ Yes □ No □ Diameter □ From To
□ Steel □ Plastic □ Welded □ Threaded
□
□

Liner □ Yes □ No □ Diameter □ From To
□ Steel □ Plastic □ Welded □ Threaded
□
□
Final location of show(s) above

(7) PERFORATIONS/SCREENS:
□ Perforations □ Screen
□ Method □ Drill
□
□
From To Slot Diameter Telepipe size Casing Liner
□ 240 280 40 5/8 □ □ □ □

(8) WELL TESTS: Minimum testing time is 1 hour
□ Pump □ Bailer □ Air □ Artesian
Yield gallons Drawdown Drill stem at Time
□ 15 □ 205 □ 1 hr.

Temperature of water Depth Artesian Flow Found
□
Was a water analysis done? □ Yes □ By whom
□
Did any tests contain water not suitable for intended use? □ Too little
□ Saty □ Muddy □ Odor □ Colored
□ Other

(9) LOCATION OF WELL by legal description:
Tax Lot 3061 Lot 16 Block 1 Section 3 N 36° 20' 53" W
Town 3 N 36° 20' 53" W
Range 3 NW locality

(10) STATIC WATER LEVEL:
242.5 ft. below and surface
Artesian pressure □ in per sq. ft.

(11) WATER BEARING ZONES:
Depth at which water was first found 265

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Elevation From</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>245</td>
<td>290</td>
<td>15</td>
<td>25</td>
</tr>
</tbody>
</table>

(12) WELL LOG:
Ground elevation

<table>
<thead>
<tr>
<th>Material</th>
<th>From To</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data started ____________________ Completed ____________________

(13) UNBonded WATER WELL Constructor Certification:
I certify that the work I performed on the construction, alteration, or abandonment of this well is in compliance with Oregon water well construction standards. Materials used and information reported above are true to my knowledge and belief.

Signed ____________________ Date __________

(14) Bonded WATER WELL Constructor Certification:
I accept responsibility for the construction, alteration, or abandonment of this well during the construction phase and must report above work performed during this time is in compliance with Oregon construction standards. This report is true to the best of my knowledge and belief.

Signed ____________________ Date __________

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
STATE OF OREGON
WATER WELL REPORT

(1) OWNER:
W A T E R W E L L C O M P A N Y

(2) TYPE OF WORK:
□ New Well □ Repair □ Abandon

(3) DRILL METHOD
□ Rotary □ Auger □ Cable

(4) PROPOSED USE:
□ Domestic □ Industrial □ Irrigation □ Other

(5) BORE HOLE CONSTRUCTION:
□ Yes □ No Depth of Completed Well: 120 ft

(6) CASING/LINER:
□ Steel □ Plastic □ Welded □ Threaded

(7) PERFORATIONS/SCREENS:
□ Percussion Method: □ Percussion
□ Screen Type: □ Screen

(8) WELL TESTS: Minimum testing time is 1 hour
□ Pump □ Bored □ Artesian

(9) LOCATION OF WELL by legal description:
□ Legal Description □ Address

(10) STATIC WATER LEVEL:
□ Depth below land surface

(11) WATER BEARING ZONES:
□ Material From To

(12) WELL LOG:
□ Material From To

(bonded) Water Well Constructor Certification:
I certify that the work I performed on the construction, alteration, or abandonment of this well is in compliance with Oregon well construction standards. Materials used and information reported above are true to my knowledge and belief.

WPC Number __________________________

(bonded) Water Well Constructor Certification:
I accept responsibility for the construction, alteration, or abandonment of this well during the construction dates reported above. The work performed during this time is in compliance with Oregon well construction standards. This report is true to the best of my knowledge and belief.

WPC Number: __________________________

Signed __________________________ Date: ____________

87
STATE OF OREGON
WATER WELL REPORT

OWNER: A. GRABHORN

TYPE OF WORK: New Well

DRILL METHOD: Rotary Air

PROPOSED USE: Domestic

BORE HOLE CONSTRUCTION:
- Explosives used: No
- Depth of Completions: 120 ft.
- Size of gravel: 0 to 20

CASING/LINER:
- Material: Gravel
- Diameter: 30 to 120

WELL LOG:
- Ground elevation: 0 to 120
- Material: Clay Gravel

WELL TESTS:
- Minimum testing time: 1 hour
- Yield: 80 gpm

SIGNATURE:
I certify that the work performed on this well is in compliance with Oregon well construction standards. Materials used and information reported above are true to the best of my knowledge and belief.

DATE: Feb. 9, 1993

WATER RESOURCES DEPT.

WATER RESOURCES DEPT.

REPRODUCED WITH PERMISSION OF THE COPYRIGHT OWNER. FURTHER REPRODUCTION PROHIBITED WITHOUT PERMISSION.
STATE OF OREGON
WATER WELL REPORT
(As required by ORS 537.748)

(1) OWNER: CHARLES F. STULLNES
Address: P.O. BOX 3119
SCAPOOSE, State OR 97056

(2) TYPE OF WORK: New Well
(3) DRILL METHOD: Rotary Air

(4) PROPOSED USE: Domestic

(5) BORE HOLE CONSTRUCTION:
Special Construction approval: Yes No
Depth of Completed Well: 263.5 ft.

<table>
<thead>
<tr>
<th>HOLE</th>
<th>Diameter From</th>
<th>To</th>
<th>Material From</th>
<th>To</th>
<th>Amount backfill pounda</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>174.190</td>
<td></td>
<td>174.190</td>
<td></td>
<td>47</td>
</tr>
</tbody>
</table>

How was seal placed: Method: A B C D E

(6) CASING/LINER:
Depth of Casing: 174.190 ft.

(7) PERFORATIONS/SCREENS:
Perforations Method: DRILL

(8) WELL TESTS: Minimum testing time is 1 hour

(u)brashed) Water Well Contractor Certification:
I certify that the work I performed on this well during this time is in compliance with Oregon well construction standards. This report is true to the best of my knowledge and belief.

(bonded) Water Well Contractor Certification:
I accept responsibility for the construction, alteration, abandonment of this well as is in compliance with Oregon well construction standards. This report is true to the best of my knowledge and belief.

Date started: 8-1-88
Completed: 8-5-88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
STATE OF OREGON
WATER WELL REPORT
(As required by ORS 327.703)

(1) OWNER:

(2) TYPE OF WORK:

(3) DRILL METHOD:

(4) PROPOSED USE:

(5) BORE HOLE CONSTRUCTION:

(6) CASING/LINER:

(7) PERFORATIONS/SCREENS:

(8) WELL TESTS: Minimum testing time is 1 hour

(9) LOCATION OF WELL by legal description:

(10) STATIC WATER LEVEL:

(11) WATER BEARING ZONES:

(12) WELL LOG:

Water Well Constructor Certification:

I accept responsibility for the construction, alteration, or abandonment of this well and the work performed on this well during the construction dates reported above. This report is true to the best of my knowledge and belief.

Signed

WPC Number

(257) Water Well Constructor Certification:

I certify that the work I performed on the construction, alteration, abandonment of this well is in compliance with Oregon well construction standards. Materials used and information reported above are true to my knowledge and belief.

Signed

WPC Number

(297) Bonded Water Well Constructor Certification:

I certify that the work I performed on the construction, alteration, or abandonment of this well during the construction dates reported above is in compliance with Oregon well construction standards. The report is true to the best of my knowledge and belief.

Signed

WPC Number

(337) Unbonded Water Well Constructor Certification:

I accept responsibility for the construction, alteration, or abandonment of this well and the work performed on this well during the construction dates reported above. This report is true to the best of my knowledge and belief.

Signed

WPC Number

(377) Unbonded Water Well Constructor Certification:

I certify that the work I performed on the construction, alteration, abandonment of this well is in compliance with Oregon well construction standards. Materials used and information reported above are true to my knowledge and belief.

Signed

WPC Number

(417) Unbonded Water Well Constructor Certification:

I accept responsibility for the construction, alteration, or abandonment of this well during the construction dates reported above. This report is true to the best of my knowledge and belief.

Signed

WPC Number

(457) Unbonded Water Well Constructor Certification:

I certify that the work I performed on the construction, alteration, abandonment of this well during the construction dates reported above is in compliance with Oregon well construction standards. The report is true to the best of my knowledge and belief.

Signed

WPC Number

(497) Unbonded Water Well Constructor Certification:

I accept responsibility for the construction, alteration, or abandonment of this well and the work performed on this well during the construction dates reported above. This report is true to the best of my knowledge and belief.

Signed

WPC Number

(537) Unbonded Water Well Constructor Certification:

I certify that the work I performed on the construction, alteration, abandonment of this well is in compliance with Oregon well construction standards. Materials used and information reported above are true to my knowledge and belief.

Signed

WPC Number

(577) Unbonded Water Well Constructor Certification:

I accept responsibility for the construction, alteration, or abandonment of this well during the construction dates reported above. This report is true to the best of my knowledge and belief.

Signed

WPC Number

(617) Unbonded Water Well Constructor Certification:

I certify that the work I performed on the construction, alteration, abandonment of this well during the construction dates reported above is in compliance with Oregon well construction standards. The report is true to the best of my knowledge and belief.

Signed

WPC Number

(657) Unbonded Water Well Constructor Certification:

I accept responsibility for the construction, alteration, or abandonment of this well and the work performed on this well during the construction dates reported above. This report is true to the best of my knowledge and belief.

Signed

WPC Number

(697) Unbonded Water Well Constructor Certification:

I certify that the work I performed on the construction, alteration, abandonment of this well is in compliance with Oregon well construction standards. Materials used and information reported above are true to my knowledge and belief.

Signed

WPC Number

(737) Unbonded Water Well Constructor Certification:

I accept responsibility for the construction, alteration, or abandonment of this well during the construction dates reported above. This report is true to the best of my knowledge and belief.

Signed

WPC Number

(777) Unbonded Water Well Constructor Certification:

I certify that the work I performed on the construction, alteration, abandonment of this well during the construction dates reported above is in compliance with Oregon well construction standards. The report is true to the best of my knowledge and belief.

Signed

WPC Number

(817) Unbonded Water Well Constructor Certification:

I accept responsibility for the construction, alteration, or abandonment of this well and the work performed on this well during the construction dates reported above. This report is true to the best of my knowledge and belief.

Signed

WPC Number

(857) Unbonded Water Well Constructor Certification:

I certify that the work I performed on the construction, alteration, abandonment of this well is in compliance with Oregon well construction standards. Materials used and information reported above are true to my knowledge and belief.

Signed

WPC Number

(897) Unbonded Water Well Constructor Certification:

I accept responsibility for the construction, alteration, or abandonment of this well during the construction dates reported above. This report is true to the best of my knowledge and belief.

Signed

WPC Number

(937) Unbonded Water Well Constructor Certification:

I certify that the work I performed on the construction, alteration, abandonment of this well during the construction dates reported above is in compliance with Oregon well construction standards. The report is true to the best of my knowledge and belief.

Signed

WPC Number

(977) Unbonded Water Well Constructor Certification:

I accept responsibility for the construction, alteration, or abandonment of this well and the work performed on this well during the construction dates reported above. This report is true to the best of my knowledge and belief.

Signed

WPC Number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
A's well gravel packed? □ Yes □ No. Scale of gravel:

- Method of sealing strata off:
- Cond. of well bore to bottom of seal:
- Diameter of well bored below seal:
- Water level:
- Depth of strata:
- Depth of gravel:
- Water placed from:
- Perforations:
- Method of perforation:
- Diameter of perforations:
- Muds used:
- Well screen installed:
- Well screen used:
- Construction:
- Driller's well number:
- County:
- Drilling运营商's Name:
- Address:
- Contactor's License No.:
- Operator's License No.:
- Depth drilled:
- Diameter of well below casing:
- Depth of completed well:
- Depth of strata encountered:
- Water level:
- Static level:
- Depth below land surface:
- Depth to water:
- Diameter of well bored below seal:
- Muddy sand & gravel mix:
- Muddy coarse gravel w/some cobble:
- Muddy brown sand & mixed coarse gravel:
- Fine gravel:
- Mix of fine to fine gravel:
- Fine to coarse brown sand:
- Mix of fine to mixed coarse gravel:
- Cemented gravel:
- Coarse sand & fine gravel:
- Cemented gravel:
- Fine to coarse gray sand:
- Muddy coarse gray sand:
- Muddy sand & gravel mix:
- Fine to mixed coarse gravel:
- Cemented gravel:
- Well test:
- Through:
- Depth drilled:
- Date:
- Depth of completed well:
- Drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
- Drilling Operator's License No.:
- Water level on and indicated principal water-bearing strata:
- Water level:
- Dewatering performed:
- Date:
- Drilling Operator's Certification:
- Forming: Describe color, texture, grain size and structure of materials and show thickness and nature of each stratum and aquifer penetrated, with at least one entry for each change of formation. Report each change in position of static water level and indicate principal water-bearing strata.
- Water well contractor's certification:
- This was drilled under my jurisdiction and jurisdiction and this report is true to the best of my knowledge and belief.
- Drilling machine operator's certification:
- This well was constructed under my direct supervision. Materials used and information reported above are true to the best of my knowledge and belief.

(Copy additional sheets if necessary)
1. **Owner:** Gus H. Wagner

2. **Type of Work (check):**
 - New Well
 - Deepening
 - Reconditioning
 - Abandon

3. **Type of Well:**
 - Shale
 - Drilled
 - Jetted
 - Bored
 - Domestic
 - Industrial
 - Municipal
 - Irrigation
 - Test Well

4. **Proposed Use (check):**
 - Domestic
 - Industrial
 - Municipal
 - Irrigation
 - Test Well
 - Other

5. **Casing Installed:**
 - Threaded
 - Welded

6. **Perforations:**
 - Perforated: Yes / No
 - Type of perforator used
 - Size of perforations in. by in.
 - Perforations from ft. to ft.

7. **Screens:**
 - Well screen installed: Yes / No
 - Manufacturer's Name
 - Diam. ft.
 - Slot size
 - Set from ft. to ft.
 - Diam. ft.
 - Slot size
 - Set from ft. to ft.

8. **Well Tests:**
 - Drawdown at menacing water level is lowered below static level
 - Was a pump test made: Yes / No
 - If yes, by whom
 - Yield gal./min. with ft. drawdown after hrs.
 - Artesian flow g.p.m.
 - Temperature of water
 - Depth of artesian flow encountered ft.

9. **Construction:**
 - Well seal Material used
 - Well sealed from land surface to ft.
 - Diameter of well bore from bottom of seal in.
 - Diameter of well bore below seal in.
 - Number of sacks of cement used in well seal
 - Number of sacks of bentonite used in well seal
 - Brand name of bentonite
 - Number of pounds of bentonite per 100 gallons of water
 - Was a drive shoe used: Yes / No
 - Plug Size: location ft.
 - Any strata contain unusable water: Yes / No
 - Type of water
 - Depth of strata
 - Method of sealing strata off
 - Was well gravel packed: Yes / No
 - Size of gravel
 - Gravel placed from ft. to ft.

10. **Location of Well:**
 - County
 - Section
 - Driller's well number

11. **Water Level:**
 - Depth at which water was first found ft.
 - Static level ft. below land surface Date
 - Artesian pressure lbs. per square inch Date

12. **Well Log:**
 - Diameter of well below casing ft.
 - Depth drilled ft.
 - Depth of completed well ft.
 - Formation Description: color, texture, grain size, and structure of materials and age of strata and aquifer, penetrated with at least one entry for each change of formation.
 - Report each change in position of Static Water Level and indicate principal water-bearing strata.

Material:
- Fine to med. coarse gravel 110 119
- Muddy gray sand 123 127
- Med. fine to coarse gravel 129 138 100

Other Information:
- Work started 19
- Date well drilling machine moved off well 19
- Drilling Machine Operator's Certification:
 - This well was constructed under my direct supervision.
 - Name __________________________ Date ____________
- Drilling Machine Operator's License No. __________________________
- Water Well Contractor's Certification:
 - This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
 - Name __________________________ (Type or print)
 - Address __________________________
 - Contractor's License No. 3/12 ad
 - Date 19

Additional Sheets:
- Use additional sheets if necessary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT

STATE OF OREGON

Owner: Jean Hebelson
Street: Somemakers Rd., Scappoose
City: OR

2) TYPE OF WORK (check):
□ New Well □ Deepening □ Reconditioning □ Abandon □
Abandonment: Describe material and procedure in Item 12.

3) TYPE OF WELL:
(4) PROPOSED USE (check):
□ Rotary □ Jetted □ Domestic □ Industrial □ Municipal □
Dug □ Bore □ Irrigation □ Test Well □ Other □

3) TYPE OF WELL:
(4) PROPOSED USE (check):
□ Rotary □ Jetted □ Domestic □ Industrial □ Municipal □
Dug □ Bore □ Irrigation □ Test Well □ Other □

CASING INSTALLED:
Threads □ Welded □
Diam. from ___ ft. to ___ ft. Gage ___

PERFORATIONS:
□ Perforated □ Yes □ No
Type of perforation used: Burning Torch
Size of perforations __ in. by __ in.
12 perforations from ___ ft. to ___ ft.
perforations from ___ ft. to ___ ft.
perforations from ___ ft. to ___ ft.

SCREES:
□ Well screen installed □ Yes □ No
Manufacturer's Name:
Diam. ___ Slot size ___ Set from ___ ft. to ___ ft.
Diam. ___ Slot size ___ Set from ___ ft. to ___ ft.

WELL TESTS:
□ Yes □ No
If yes, by whom?
Yield: gal./min. with ___ ft. drawdown after ___ hrs.

Water test: gal./min. with ___ ft. drawdown after ___ hrs.
Artesian flow: ___ g.p.m.
Temperature of water: ___ °F
Depth artesian flow encountered: ___ ft.

CONSTRUCTION:
Well seal—Material used: Bentonite
Well sealed from land surface ___ ft. to ___ ft.
Diameter of well bored to bottom of seal: ___ in.
Diameter of well bored below seal: ___ in.
Number of sacks of cement used in well seal: ___ sacks
Number of sacks of bentonite used in well seal: ___ sacks
Brand name of bentonite: Yellowstone-Wyoming
Number of pounds of bentonite per 100 gallons: ___ lb.

Topsoil: 0 2
Clay, red: 2 25
Clay, silty: 25 40
Clay, blue: 40 60
Gravel, cemented: 60 90
Gravel, candy: 50 94

MATERIAL
FROM TO XXXX

Water Well Contractor's Certification:
This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
Name: Farrell McHale
Address: 520 Industrial Way, Longview, WA
Date: 7-3-74
Contractor's License No. 438

Drilling Machine Operator's License No. 697

Drilling Machine Operator's Certification:
This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
Name: Farrell McHale
Drilling Machine Operator's License No. 697
Date: 7-3-74

County: Columbia
Driller's well number:

LOCATION OF WELL:

□ Depth of completed well: 94 ft.
□ Depth at which water was first found: 29 ft.
□ State level: 32 ft. below land surface
□ Date: 7-3-74

Water pressure at the date of this report:
□ Topsoil: 0 2
□ Clay, red: 2 25
□ Clay, silty: 25 40
□ Clay, blue: 40 60
□ Gravel, cemented: 60 90
□ Gravel, candy: 50 94

Date well drilling machine moved off of well: 7-3-74

Work started 7-2-74
Completed 7-3-74
Date well drilling machine moved off of well 7-3-74

Drilling Machine Operator's License No. 697

Water Well Contractor's Certification:
This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
Name: Farrell McHale
Date: 7-3-74

Contractor's License No. 438
Date: 7-3-74

93
WATER WELL REPORT

(Proprietary Use: Oregon State Well Drilling Report)

(1) OWNER:
Name: SCAPCOSE HIGH SCHOOL
Address: SCAPCOSE, OREGON

(2) TYPE OF WORK (check):
New Well □ Deepening □ Reconditioning □ Abandon □
If abandonment, describe material and procedure in Item 12.

(3) TYPE OF WELL:
Type of perforator used ________________________________

(T) CASING INSTALLED:
Threaded □ Threadless □ Welded □ Driven □ Bored □
Diameter of well from ______ ft. to ______ ft.

(5) PERFORATIONS:
Diameter of perforations 3/16 in. by 1/14 in.
740 perforations from 137 ft. to 157 ft.
840 perforations from 157 ft. to 172 ft.

(7) SCREENS:
Well screen installed? □ Yes □ No
Manufacturer's Name ____________________________

(8) WELL TESTS:
Drawdown is amount water level is lowered below static level.

(9) CONSTRUCTION:
Well sealed from land surface to ______ ft.
Diameter of well bore to bottom of seal ______ ft.
Number of sacks of cement used in well seal ______ sacks
Number of sacks of bentonite used in well seal ______ sacks
Brand name of bentonite ________________
Number of pounds of bentonite per 100 gallons of water __________ lbs./100 gals.
Type of water? □ Artesian □ Depth of strata ______ ft.

(10) LOCATION OF WELL:
County: COLUMBIA
Drilling well number: 55/54
Location: S.W. SE. Section 12, T. 31, R. 26W

(11) WATER LEVEL: Completed well.
Depth at which water was first found ______ ft.
Static level ______ ft. below land surface Date _______

(12) WELL LOG:
Diameter of well below casing ______ ft.
Depth of completion ______ ft.
Formation: Describe color, texture, grain size and structure of materials, and show thickness and nature of each stratum and aquifer penetrated with at least one entry for each change of formation. Report each change in position of Static Water Level and indicate principal water-bearing strata.

MATERIAL
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SWL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drilling Machine Operator's Certification:
This well was constructed under my direct supervision.
Materials used and information reported above are true to my best knowledge and belief.
(Signed) ____________________________ Date _______
Drilling Machine Operator's License No. _______

Water Well Contractor's Certification:
This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
Name ____________________________
Address ____________________________
Contractor's License No. _______ Date _______

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Owner:
Steinfeld Pickle Co.

Address:
P.O. Box 2889 Portland 3, Oregon.

Location of Well:
Columbia. Owner's number, if any—
2872-Pick La Co., Oregon.

Well on the south City limits of Scappoose, Oregon.

Type of Work:
- Reconditioning
- Abandon

Proposed Use:
- Domestic
- Industrial
- Municipal
- Irrigation
- Test Well
- Other

Equipment:
- Rotary
- Cable
- Dug Well

Casing Installed:
- Threaded
- Welded

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Diameter (in)</th>
<th>Gravel packed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 164</td>
<td>none</td>
<td></td>
</tr>
</tbody>
</table>

Perforations:
- Holes Knife

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>In length by</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 155</td>
<td>4 in</td>
</tr>
</tbody>
</table>

Screens:
- Give Manufacturer's Name, Model No. and Size

Construction:
- As a surfacial sanitary seal provided
- To at least 1 ft
- Yes, note depth of strata

Method of Sealing:
- Filled around pipe

Water Levels:
- Static 39 ft

Well Tests:
- Pacific Pumping Co.'s pump
- Was a pump test made? Yes
- Was the yield satisfactory? Yes
- Yield 300 gpm
- Full size drawn after 1 hour

Temperatures at Water:
- 495°F

Well Log:
- Diameter of well 8 in
- Total depth 151 ft
- Depth of completed well 154 ft

Formation:
- Describes by color, character, size of material and structure, and show the grade of gravel and the rock and nature of the material in each stratum penetrated, with at least one entry for each change of formation.

Screens:
- Give Manufacturer's Name, Model No. and Size

Well Driller's Statement:
- This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

Name:
Steinman Bros.

Address:
8332 S. 316th Ave., Portland 2.

Driller's well number:
1556

License No.:
1

Dated:
Sept. 12, 1956

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
NOTICE TO WATER WELL CONTRACTOR

The original and true copy of this report are to be filed with the

STATE ENGINEER, OREGON 97318

within 30 days from the date of well completion

(1) OWNER:
- **Name:** Cascade Materials Construction Co.
- **Address:** P. O. Box 583, Scappoose, Oregon

(2) **TYPE OF WORK (check):**
- New Well
- Deepening
- Reconditioning
- Abandon

(3) **TYPE OF WELL:**
- **Casing Installed:**
- **PERFORATIONS:**
- **Screens:**
- **WATER LEVEL:**
- **WELL LOG:**
- **LOCATION OF WELL:**
- **CONSTRUCTION:**
- **PROPOSED USE:**

(4) **PROPOSED USE (check):**
- Domestic
- Industrial
- Municipal

SCREENS:
- **Manufacturer's Name:**
- **Model No.:**
- **Diam.:**
- **Slot size:**
- **Set from:**

WATER LEVEL:
- **Completed well:**
- **Datum level:**
- **ft. belowland surface:**
- **Depth:**
- **ft. below datum:**
- **Date:**

WELL TESTS:
- **Drawdown test:**
- **Artesian flow:**
- **Temperature of water:**
- **Chemical analysis:**

CONSTRUCTION:
- **Well seal:**
- **Material used:**
- **Depth:**
- **Diameter of well:**
- **Drilled through:**
- **Gravel:**
- **Gravel placed:**

TABLE:

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Place</th>
<th>To</th>
<th>ft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large gravel</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Clean gravel</td>
<td>9</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Loose gravel with blue clay</td>
<td>25</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Blue clay</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td>15</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Sandstone</td>
<td>15</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Hard packed gravel</td>
<td>53</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Sand and gravel</td>
<td>60</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Sand & gravel (red brown)</td>
<td>68</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

SIGNATURE:
- **Name:**
- **Title:**
- **Date:**

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT
STATE OF OREGON

OWNER:
Name: Cascade Aggregates, Inc.
Address: 6450 Gorge Rd., Scappoose, Oregon 97056

2) TYPE OF WORK (check):
New Well X Deepening X Reconditioning X Abandon X
If abandonment, describe material and procedure in Item 12.

3) TYPE OF WELL: (4) PROPOSED USE (check):
Deep Well X Dry Well X Domestic X Industrial X Municipal X Other X
Low Water X Bore X Thermal X Other X

5) CASING INSTALLED: Stab X Plastic X Rigid X Threaded X Welded X

5 - 9. Diam. from Plus f.t. to X ft. Gauge X
Zero X 33 X 250 X

8) LINER INSTALLED:

8 - 9. Diam. from Plus f.t. to X ft. Gauge X
Zero X 33 X 250 X

6) PERFORATIONS:
Type of perforator used:

7) SCREENS:
Well screen installed? X Yes X No
Manufacturer's Name X
Type X Model No X
Diam. X Slot Size X Set from X ft. to X ft.
Diam. X Slot Size X Set from X ft. to X ft.

(5) WELL TESTS:
Was a pump test made? X Yes X No
If yes, by whom:

(9) CONSTRUCTION:
Screen standards: Yes X No X
Well seal: Material used:
Cement X
Well sealed from land surface to:
20 X ft.
Diameter of well below seal to:
10 X in.
Number of washes of cement used:
11 X
How was cement grout placed?
Damed from 20 ft. to surface

10) LOCATION OF WELL:
County: Columbia
Section: 31 T 4 N R. 1 W.
Tax Lot: 7
Lot: 2
Block: S
Subdivision: None

11) WATER LEVEL: Completed well.
Depth at which water was first found:
21 X ft. below land surface Date 12/25/79
Arterial pressure:

12) WELL LOG: Diameter of well below casing:
Depth drilled:
35 X ft. Depth of completed well:
33 X ft.
Formation:
Describe rock, soil, sand or gravel, and structure of materials, and
structure and nature of each stratum and aquifer penetrated, with at least one for each
change of formation. Report each change in position of Static Water Level and
indicate principal water-bearing strata.

MATERIAL

From	To	2-
Medium gravels w/fine brown sand	0	6
Medium gravels w/fine gray sand	6	14
Medium gravels w/large boulders	14	29
Medium gravels w/brown clays	29	31
Coarse gravels w/fine gray sand	31	35

Drilling Machine Operator's Certification:
This well was constructed under my direct supervision. Materials and
information reported above are true to the best of my knowledge and belief.
(Signed)___
______________________Drilling Machine Operator___________
Drilling Machine Operator's License No: 1471

Water Well Contractor's Certification:
This well was drilled under my jurisdiction and this report is true
to the best of my knowledge and belief.
Name: A. M. JENSEN WELL DRILLING CO., D.C.
Address: 21075 SW Tualatin Valley Hwy., Aloha, Or
(Signed) C. M. JENSEN
Contractor's License No: 79 Date: 12/29/80

Notice to Water Well Contractor:
The original and three copies of this report
are to be filed with the

WATER RESOURCES DEPARTMENT
SALEM OREGON 97302

4/1-31/ad2

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT

(9) CONSTRUCTION:

Well seal—Material used: Cement grout & 5% gel depth 20 ft.

Well sealed from land surface to depth 20 ft. below land surface. Diameter of well bore to bottom of seal 10 in. Diameter of well bore below seal 6 in. Number of sacks of cement used in well seal 6 Sacks How was cement grains placed? Trenched into dry annular bore 20 ft. below land surface

If a drive was used? Yes / No Plugs Size location

If dry annular space contains unusable water? Yes / No

Type of water: Depth of strata

Method of assuring grout off

Was well gravel packed? Yes / No Bore of gravel:

Gravel screen from

(10) LOCATION OF WELL:

County: Columbia Driller’s well number:

Section 31 3 NW 1 1/4

Bearing and distance from section or subdivision center

(11) WATER LEVEL:

Completed well. Depth at which water was first found 25 ft.

Static level: 3 ft. below land surface Date 6/4/5

Artesian pressure

Artesian pressure

(12) WELL LOG:

Diameter of well below casing 6 in.

Depth drilled: 120 ft. Depth of completed well 118 ft.

Formation. Describe color, texture, grain size and structure of materials and show thickness and nature of each stratum and aquifer generally with at least one entry for each change of formation. Report each change of formation. Indicate principal water-bearing strata and position of Static Water Level and indicate principal water-bearing strata.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown silty clay w/sand layers</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Coarse sands</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>Coarse gravels w/ cement</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>Layers</td>
<td>29</td>
<td>53</td>
</tr>
<tr>
<td>Coarse gravels w/brown sand</td>
<td>53</td>
<td>86</td>
</tr>
<tr>
<td>Coarse gravels w/ cement</td>
<td>86</td>
<td>97</td>
</tr>
<tr>
<td>Coarse gravels w/muddy gravel</td>
<td>97</td>
<td>115</td>
</tr>
</tbody>
</table>

MATERIAL: From To Water Well Contract No. 523

Drilling Machine Operator's Certification: This well was drilled under my direct supervision. Material used and information reported are true to the best of my knowledge and belief.

(Signed)_________________________ Date 6/9/30 19

Drilling Machine Operator's License No. 523

Water Well Contractor's Certification: This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

(Name, firm or corporation)_________________________ Date 6/9/30 19

Contractor’s license No. 79 Date 6/9/30 19

SALEM, OREGON

6/9/30

19

5/5/80

19

Drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

Address 21075 S. Tualatin Valley Hwy. Aloha, Or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT
STATE OF OREGON

(10) LOCATION OF WELL:
County Columbia Driller's well number
Section 31 T 3 N R 24 W

Bearing and distance from section or subdivision corner

(11) WATER LEVEL: Completed well.
Depth at which water was first found
Static level: ft. below land surface
Artesian pressure lbs. per square inch

(12) WELL LOG: Diameter of well below casing
Depth drilled 50 ft. Depth of completed well
Formation: Describe color, texture, grain size and structure of materials
and show thickness and nature of each stratum and aquifer generically,
with at least one entry for each change of formation. Report each change
position of Static Water Level and indicate principal water-bearing strata.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previolii well</td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td>Coarse sand w/brown sand and</td>
<td>85</td>
<td>97</td>
</tr>
<tr>
<td>cemented layers</td>
<td>97</td>
<td>110</td>
</tr>
<tr>
<td>Coarse gravel w/muddy gravel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ABANDONMENT DUG TO BROKEN CASING	03	
FID. WELL DRILLING - break at 55'	and possible breaks at 80' to 90'	
Casing removed from 55 ft. to 0'	55	
Cement grout 14 sacks retarded	55	
through casing at 55'	55	
below 55' caved closed		
Bentonite slurry	25	55
Cement grout (15 sacks tamped in place	0	25

Wells started 5/29/30 19 Completed 6/4/90 19
Date well drilling machine moved off of well 6/2/90 19

Drilling Machine Operator's Certification:
This was constructed under my direct supervision.
Materials used and information reported above are true to the best of my knowledge and belief.

(Signed) Date 6/9/90 19
Drilling Machine Operator's License No. 523

Water Well Contractor's Certification:
This was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

Name J. JANSINNI, ELLI POTTER CO., INC
Address 21075 SW FUALATIN VALLEY HWY, Aloha

(Signed) Address 4/1-31bd
Contractor's License No. 79 Date 6/9/90 19
OWNER: Walter & Marjorie Erickson
Mailing Address:

LOCATION OF WELL: Owner's No. 2
CITY AND LOCATION OF WELL: Owner's No. 2

N. 1/4 SW. 1/4 Sec. 31, T. 4 N., R. 1 W., W.M.

Bearing and distance from section or subdivision

Altitude at well

TYPE OF WELL: Drilled
Date Constructed: 8/10/51

Depth drilled: 127 ft., Depth cased: 127 ft.

CASING RECORD: 10 inch

FINISH:

AQUIFERS:

WATER LEVEL: 40 ft.

PUMPING EQUIPMENT: Type Pacific
Capacity: 48 G.P.M.

WELL TESTS:

Drawdown: 20 ft. after 50 hours

Drawdown: 10 ft. after 50 hours

USE OF WATER: Irrigation - 8 ac.
Temp. °F.

SOURCE OF INFORMATION: GR-511

ADDITIONAL DATA:
Log Water Level Measurements Chemical Analysis Aquifer Test

REMARKS:

4/1-31cb
NOTICE TO WATER WELL CONTRACTOR
The original and true copy
of this report are to be
filed with the
within 30 days from the date
of well completion

WATER WELL REPORT
STATE OF OREGON
(Please type of print)

1) OWNER:
 Name: John Hauge
 Address: Columbia Ore.

2) LOCATION OF WELL:
 County: Columbia
 Driller's well number: 3.2
 Section: 7 T
 R. 4 N W. 1
 Bearing and distance from section or subdivision corner: 66° 31

3) TYPE OF WORK (check):
 New Well □ Deepening □ Reconditioning □ Abandon □

4) PROPOSED USE (check):
 Domestic □ Industrial □ Municipal □ Rotary □ Driven □
 Irrigation □ Test Well □ Other □ Dug □ Bored □

5) TYPE OF WELL:
 Screen □ Driven □ Cable Jetted □
 Dug □ Bored □

6) CASING INSTALLED:
 Threaded □ Welded □
 Dia. from _______ ft. to _______ ft. Gage 25 C

7) PERFORATIONS:
 Perforated? □ Yes □ No
 Type of perforator used _______
 Dia. from _______ ft. to _______ ft.
 Dia. from _______ ft. to _______ ft.
 Dia. from _______ ft. to _______ ft.

8) SCREENS:
 Well screen installed? □ Yes □ No
 Manufacturer's Name _______
 Model No. _______
 Slot size _______ ft. to _______ ft.
 Dia. _______ ft. to _______ ft.

9) CONSTRUCTION:
 Well seal. Material used in seal _______
 Depth of seal _______ ft.
 Diameter of well bore to bottom of seal _______ ft.
 Was any Iowa screen cemented off? □ Yes □ No
 Was a drive shoe used? □ Yes □ No
 Was well gravel packed? □ Yes □ No
 Size of gravel _______ ft.
 Well placed from _______ ft. to _______ ft.
 Any strata contain unusable water? □ Yes □ No
 Type of water _______
 Method of sealing grout off _______

10) WATER LEVELS:
 Static level _______ ft. below land surface Date 2/13/62

11) WELL TESTS:
 Drawdown to amount water over a
 lowered below static level _______
 Was a pump test made? □ Yes □ No □ If yes, by whom _______
 Yield _______ g.p.m. with _______ ft. drawdown after _______
 Boiler test _______ g.p.m. with _______ ft. drawdown after _______
 Artesian flow _______
 Temperature of water _______

12) WELL LOG:
 Diameter of well below casing _______
 Depth drilled _______ ft. Depth of completed well _______
 Formation: _______
 Perforation: Describe by color, character, size of material and structure, in:

13) PUMP:
 Manufacturer's Name _______
 Type _______
 Horsepower _______
 Water Well Contractor's Certification:

This well was drilled under my jurisdiction and this report:
true to the best of my knowledge and belief.

NAME _______
Address _______
Drilling Machine Operator's License No. _______

(Signed) _______
Date _______

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
STATE OF OREGON
WATER WELL REPORT

1) OWNER:
Name:
Address:
City:
State: OR

2) TYPE OF WORK (check):
- Drilling
- Reconditioning
- Abandonment

3) MANNER OF DRILLING (check):
- Diamond
- Rotary
- Mud

4) TYPE OF WELL (check):
- Residential
- Commercial
- Industrial
- Irrigation
- Other

5) PROPOSED USE (check):
- Drinking
- Industrial
- Irrigation
- Residential
- Other

6) CASING INSTALLED:
- Steel
- Plastic
- Other
- Diameter
- Length

7) Liner INSTALLED:
- Steel
- Plastic
- Other
- Diameter
- Length

8) PERFORATIONS:
- Perforated
- Screened
- Other

9) SCREENS:
- Well screen installed?
- Manufacturer's Name:
- Type:
- Screen:
- Net Area:
- Diameter:
- Length:

10) LOCATION OF WELL by legal description:

11) WATER LEVEL of COMPLETED WELL:
- Depth:
- Water level of completed well:

12) WELL LOG:
- Diameter of well bore:
- Depth of completed well:
- Formation:
- Description of strata, geology, geology and stratigraphy of materials and strata:
- Description of strata, geology, geology and stratigraphy of materials and strata:

13) MATERIAL:
- Source:
- T.:
- W.

14) DATE WELD COMPLETED:
- Date:

15) LOCATION:
- Site:

16) CONSTRUCTION:
- Material used:
- Construction:
- Inspector:

17) SIGNATURE:
- Owner:
- Operator:
- Inspector:
- Additional Information:

18) WATER RESOURCES DEPT
SALEM, OREGON 97301

4/1-31da1

102
W A T E R W E L L R E P O R T

STATE O F O R E G O N

W A T E R R E S O U R C E S D E P T

S A L E M, O R E G O N

NOV 8 1982

O W N E R:

A l l i n W e d n e s d a y

P.O. B O X N 2 6 7

S T A T E O F O R E G O N

2) T Y P E O F W O R K (c h e c k):

De e p e n i n g l

Re p r e s e n t a t i v e l

A b a n d o n e d

3) T Y P E O F W E L L (c h e c k):

D e e p w e l l

Dem e n i a g e

Thermal

M onu me n t

W e l l R e p o r t

P R O S E S S U S E (c h e c k):

G a u g e

M o t o r

W a t e r F i l t e r

4) P R O S E S S U S E (c h e c k):

G a u g e

M o t o r

W a t e r F i l t e r

5) C A S I N G I N S T A L L E D:

S t e e l

P l a s t i c

C o m p o s i t e

6) L I N E R I N S T A L L E D:

S t e e l

P l a s t i c

7) P E R F O R A T I O N S:

P e r f o r a t e d

B l o c k e d

8) S C R E E N S:

M a n u f a c t u r e r

M a n u f a c t u r e r ’ s

N a m e

M a n u f a c t u r e r ’ s

M o d e l

3) W E L L T E S T S:

D r i l l i n g a c c o m p l i s h

W a t e r L e v e l

9) C O N S T R U C T I O N:

S p e c i a l s t a n d a r d s

M o n o l o g y

1 0 7
(1) OWNER:
Name: Mike Webage
Address: Freeman Rd. Scappoose, Oregon

(2) TYPE OF WORK (check):
- New Well
- Deepening
- Reconditioning
- Abandoned

(3) TYPE OF WELL:
- Rotary
- Driven
- Bored
- Domestic
- Industrial
- Municipal
- Irrigation
- Test Well
- Other

(4) PROPOSED USE (check):
- Domestic
- Municipal
- Industrial
- Artesian
- Test well
- Other

(5) CASING INSTALLED:
- Threaded
- Welded
- Material, Diameter, Length

(6) PERFORATIONS:
- Type of perforator used
- Site of perforations
- Perforations from
- Perforations to

(7) SCREENS:
- Well screen installed
- Manufacturer's Name
- Type
- Diameter
- Slot size
- Model No.

(8) WELL TESTS:
- Drawdown: Is amount of water level is lowered below static level
- Pump test made
- Yield (gpm, mln)
- Static level
- Drawdown
- Recovery rate
- Temperature of water
- Depth of artesian flow encountered

(9) CONSTRUCTION:
- Well seal—Material used
- Well sealed from land surface to
- Diameter of well bore to bottom of seal
- Diameter of well bore below seal
- Number of layers of cement used in well seal
- How was cement grout placed
- Pumped

(10) LOCATION OF WELL:
- County
- Location of Well
- Driller's well number
- Bearing and distance from section or subdivision corner

(11) WATER LEVEL:
- Completed well
- Depth at which water was first found
- Static level
- Artesian pressure

(12) WELL LOG:
- Diameter of well below casing
- Drawdown
- Depth drilled
- Formation
- Material
- Soil
- Brown sandy
- Clay
- Brown sandy
- Boulders
- Gravel
- Red sandy
- Sand
- Fine gravel
- Gravel
- Depth of artesian flow encountered
- Date started
- Date completed
- Water well contractor's certification
- Name: Guy A. Luttrell, Well Drilling
- Address: Rt. 1 Box 1630 St. Helens, Oregon
- Signed: [Signature]

[State Well No.]
[State Permit No.]

[Signature]
WATER WELL REPORT
STATE OF OREGON
STATE ENGINEER

(1) OWNER:
Name: Hudson Rayl Co.
Address: P.O. Box 391

(2) TYPE OF WORK (check): New Well □ Deepening □ Reconditioning □ Abandon □
If abandonment, describe material and procedure in Item 12.

(3) TYPE OF WELL:
Type: Jetted □ Bored □ Grouted □ Waterflushed □ Other □

(4) PROPOSED USE (check):
Irrigation □ Test Well □ Other □ Municipal □ Industrial □ Domestic □ Residential □

(5) CASING INSTALLED:
Threaded □ Welded □ Driven □ Other □

(6) PERFORATIONS:
Type of perforator used: Perforated? □ Yes □ No

(7) SCREENS:
Well screen installed? □ Yes □ No
Manufacturer's Name:
Diam. □ Slot size □ Set from □ To □ ft.

(8) WELL TESTS:
Drawdown is amount water level is lowered below static level.
Was a pump test made? □ Yes □ No If yes, by whom?
Test: □ G1 gal/min with 13 ft. drawdown after 1 hr.

(9) CONSTRUCTION:
Well seal—Material used: Bentonite
Well sealed from land surface to □ ft.
Diameter of well bored below seal □ ft.
Number of sheets of cement used in well seal □ ft.
Number of sheets of bentonite used in well seal □ ft.
Brand name of bentonite:
Number of pounds of bentonite per 100 gallons of water □ lbs/100 gal.

(10) LOCATION OF WELL:
County: Columbia Driller's well number: 377
T, R, Sec: 22 T, 42 R, 32 S
Bearing and distance from section of subdivision corner:

(11) WATER LEVEL: Completed well.
Depth at which water was first found □ ft.
Static level □ ft. below land surface Date 11/17
Artesian pressure lbs. per square inch Date:

(12) WELL LOG:
Formation: Describe color, texture, grain size and structure of material, and show thickness and nature of each stratum and aquifer penetrated with at least one entry for each change of formation. Report each change in position of Static Water Level and indicate presence of water-bearing strata.

MATERIAL
From □ To □ Yards

[Table with columns for material, thickness, and yardage]

Drilling Machine Operator's Certificate:
This work was completed under my direct supervision.
Materials used and information reported above are true to the best of my knowledge and belief.
(Signed) Date 11/8/19
Drilling Machine Operator's License No. 231

Water Well Contractor's Certificate:
This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
Name: □ Water Well D. L. Inc.
Address: 417 S. 5th Street
Contractor's License No. 4/1-32bb
Date 11/8/19
WATER WELL REPORT

STATE OF OREGON

(Do not write above line)

(Do not write above line)

OWNER:

Name: WARREN G. DEVER
Address: 273 SCRAPPED, OR 97606

2) TYPE OF WORK (check):

- New Well □
- Deepening □
- Reconditioning □
- Abandon □

If abandonment, describe material and procedure in Item 12.

3) TYPE OF WELL:

- Rotary □
- Driven □
- Domestic □
- Industrial □
- Municipal □
- Irrigation □
- Test Well □
- Other □

4) PROPOSED USE (check):

- Artesian □
- Domestic □
- Irrigation □
- Municipal □
- Other □

5) CASING INSTALLED:

- Threaded □
- Welded □
- Casing Diameter: ft.
- Casing Length: ft. Gage

6) PERFORATIONS:

- Perforated □
- Yes □
- No □

Type of perforation used:
Size of perforations: in.

7) SCREENS:

- Well screen installed □
- Yes □
- No □

Type:
Manufacturer:

8) WELL TESTS:

- Drawdown is amount water level is lowered below static level
- Was a pump test made? □ Yes □ No
- If yes, by whom?

Artesian:

- g.m.

9) CONSTRUCTION:

- Well sealed-Material used: CEMENT
- Well sealed from surface to

10) LOCATION OF WELL:

11) WATER LEVEL:

- Completed well
- Depth at which water was first found

12) WELL LOG:

- Diameter of well below casing
- Depth drilled

MATERIAL

<table>
<thead>
<tr>
<th>FORMATION</th>
<th>From</th>
<th>To</th>
<th>PV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artesian pressure</td>
<td>lbs. per square inch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drilling Machine Operator's Certification:

- Name: RON EDGELL
- Address: P.O. BOX 675, CASTLE ROCK, OR

Contractor's License No.:
Date:

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT

STATE OF OREGON

(Please type or print)

(Do not write above this line)

1) OWNER:
 Name: Reichold Chemical, Inc.
 Address: P. O. Box 810
 St. Helens, Oregon 97051

2) TYPE OF WORK (check):
 New Well □ Drilling □ Reconditioning □ Abandon □
 If abandonment, describe material and procedure in Item 12.

3) TYPE OF WELL: (check):
 Domestic □ Industrial □ Municipal □
 Irrigation □ Test Well □ Other □

4) PROPOSED USE (check):
 Drinking □ Domestic □ Irrigation □ Mining □
 Other □

5) CASING INSTALLED:
 Diameter from
 1 ft. to 10 ft. Gage 250
 10 ft. to 14 ft. Gage 300
 14 ft. to 16 ft. Gage 350
 ... etc. ...

6) PERFORATIONS:
 Perforated □ Yes □ No □
 Yes □ No □

7) SCRENS:
 Well screen installed? □ Yes □ No □
 Type: Name □
 Model No. □
 Screen material □
 Screen thickness □
 Screen diameter □

8) TESTS:
 Water level: Feet below grade □
 Static level □
 Diameter of casing: Feet □
 Diameter of well: Feet □

9) CONSTRUCTION:
 Material used: Gypsum, gravel & crush gravel
 Water level: Feet below grade □
 Depth of strata: Feet □
 Depth of water: Feet □

10) LOCATION OF WELL:
 County: Columbia
 Location: Driller's well number
 State: Oregon
 Permit No.

11) WATER LEVEL:
 Depth at which water was first found: 80 ft.
 Depth drilled: 109 ft.
 Depth of completed well: 106 ft.

12) WELL LOG:
 Material:
 Brown clay w/gravel
 Med. gravel-occ.coarse w/sand
 Brown sandy clay
 Fine to coarse gravel-occ.
 Boulder (dry)
 Med. to coarse gravel w/finer
 Tamper sand-occ. clay
 Tight brown sand & gravel
 Silty
 Brown sand & gravel
 Brown silty sand & gravel
 Depth drilled: 109 ft.
 Depth of completed well: 106 ft.
 Water level: Feet below grade □
 Static level: Feet below grade □
 Date well drilled: 9/12/79
 Date well completed: 9/13/79

13) WATER WELL REPORT
 Work started: 8/6/79
 Completed: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

14) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

15) WATER WELL CONTRACTOR
 Name:
 Address:

16) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

17) WATER WELL CONTRACTOR
 Name:
 Address:

18) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

19) WATER WELL CONTRACTOR
 Name:
 Address:

20) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

21) WATER WELL CONTRACTOR
 Name:
 Address:

22) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

23) WATER WELL CONTRACTOR
 Name:
 Address:

24) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

25) WATER WELL CONTRACTOR
 Name:
 Address:

26) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

27) WATER WELL CONTRACTOR
 Name:
 Address:

28) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

29) WATER WELL CONTRACTOR
 Name:
 Address:

30) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

31) WATER WELL CONTRACTOR
 Name:
 Address:

32) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

33) WATER WELL CONTRACTOR
 Name:
 Address:

34) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

35) WATER WELL CONTRACTOR
 Name:
 Address:

36) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

37) WATER WELL CONTRACTOR
 Name:
 Address:

38) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

39) WATER WELL CONTRACTOR
 Name:
 Address:

40) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

41) WATER WELL CONTRACTOR
 Name:
 Address:

42) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

43) WATER WELL CONTRACTOR
 Name:
 Address:

44) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

45) WATER WELL CONTRACTOR
 Name:
 Address:

46) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

47) WATER WELL CONTRACTOR
 Name:
 Address:

48) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

49) WATER WELL CONTRACTOR
 Name:
 Address:

50) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

51) WATER WELL CONTRACTOR
 Name:
 Address:

52) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

53) WATER WELL CONTRACTOR
 Name:
 Address:

54) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

55) WATER WELL CONTRACTOR
 Name:
 Address:

56) WATER RESOURCES DEPT
 Date well drilling machine moved off well:
 Date: 9/13/79
 Driller's well number:
 State: Oregon
 Permit No.

57) WATER WELL CONTRACTOR
 Name:
 Address:
WATER WELL REPORT
STATE OF OREGON

(1) **OWNER:**
Reichold Chemical, Inc.
Address: St. Helens, Oregon 97051

(2) **TYPE OF WORK (check):**
New Well, Deepening, Reconditioning, Abandon

(3) **TYPE OF WELL:**
Rotary, Driven, Bored

(4) **PROPOSED USE (check):**
Domestic, Industrial, Municipal, Irrigation, Test Well, Other

(5) **CASING INSTALLED:**
Threaded, Welded

(6) **PERFORATIONS:**
Perforated? Yes, No

(7) **SCREENS:**
Manufacturer’s Name, Type, Model No.

(8) **WELL TESTS:**
Well screen installed? Yes, No

(9) **CONSTRUCTION:**
Well seal material used, Diameter of well bore to bottom of seal, Diameter of well bore below seal, Number of sacks of cement used in well seal, How was cement placed and pressurized.

(10) **LOCATION OF WELL:**
County, Driller’s name number, or number

(11) **WATER LEVEL:**
Static level, Artesian pressure

(12) **WELL LOG:**
Material, Diameter, Depth drilled

(13) **ABANDONED PROCEDURE:**
Drilling Machine Operator's Certification:
This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

Name: J. JANSSON, WELL DRILLING CO., INC.
Address: 21075 SW Tualatin Valley Hwy, Aloha, OR.

(Signed) J. JANSSON, WELL DRILLING CO., INC.
Date: 4/1/33

108
STATE OF OREGON
WATER WELL REPORT
as required by ORA 137.745.

(1) OWNER:

(2) TYPE OF WORK:

(3) DRILL METHOD:

(4) PROPOSED USE:

(5) BORE HOLE CONSTRUCTION:

(6) CASING/LINER:

(7) PERFORATIONS/SCREENS:

(8) WELL TESTS: Minimum testing time is 1 hour

(9) LOCATION OF WELL by legal description:

(10) STATIC WATER LEVEL:

(11) WATER BEARING ZONES:

(12) WELL LOG:

I certify that the work performed on the construction, alteration, or abandonment of this well is in compliance with Oregon well construction standards. Materials used and information reported above are true to the best of my knowledge and belief.

(Water Well Contractor Certification):

(Water Well Contractor Certification):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT

STATE OF OREGON
STATE ENGINEER, SALEM, OREGON 97301

1. OWNER: SALEM, OREGON
Name: JACOBS, WALTER J.
Address: 2029 FLORENCE AVE.

2. TYPE OF WORK (check):
New Well o Deepening o Reconditioning o Abandon o
If abandonment, describe material and procedure in Item 12.

3. TYPE OF WELL: (4) PROPOSED USE (check):
Rotary o Driver o Domestic o Irrigation o Test Well o Other o
Drilled o Jetted o Industrial o Municipal o Other o
Casing Installed:
Threaded o Welded o Domestic o Irrigation o Test Well o Other o

4. PERFORATIONS:
Type of perforator used

5. SCREENS:
Manufacturer's Name
Model No.
Slot size
Set from to
Diam.
Slot size
Set from to

6. WELL TESTS:
Drawdown is amount water level is lowered below static level.
Was a pump test made? o Yes o No

7. CONSTRUCTION:
Well seal—Material used
Concret
Well sealed from land surface to
Diameter of well bore to bottom of seal
In.
Diameter of well bore below seal
In.
Number of packs of cement used in well seal

8. WATER LEVEL: Completed well.
Depth at which water was first found
Statue level
ft below land surface.
Date

9. ARTESIAN PRESSURE:

10. LOCATION OF WELL:
County: SALEM, OREGON

drill or section

11. WATER LEVEL:

12. WELL LOG:

(USE ADDITIONAL SHEETS IF NECESSARY)
BORING LOGS
KEY TO BORING LOGS

PROJECT NUMBER: 420-106
BORING LOG: LEGEND

LOCATION: Approx location of boring
TOTAL DEPTH: Depth to bottom hole
DIAMETER: OD. drillpipe
ELEVATION: feet above MSL
DRILLING CONTRACTOR: Beck Environmental Contracting
METHOD: type of drill
START DATE: on-site drilling
FINISH DATE: off-site
WATER LEVEL AND TIME: feet below surface, time, date
LOGGED BY: on-site geologist/techno

BORING LOGS

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Well Graded Gravels, Gravel - Sand Mixtures</td>
<td>Clean gravels with gravel framework bound together with sand and silica cement</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Poorly Graded Gravels, Gravel framework</td>
<td>little or no fines</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Gravels w/ >15% fines</td>
<td>Gravel > 50% coarse fraction larger than 6" sieve (2")</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Blades and Gravels</td>
<td>Blades > 50% coarse fraction smaller than a 6" sieve (2")</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Well Graded Sands, Gravelly Sands</td>
<td>Clean sands with gravel framework bound together with sand and silica cement</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Poorly Graded Sands, Gravelly Sands</td>
<td>little or no fines</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Gravels w/ >15% fines</td>
<td>Gravel > 50% coarse fraction larger than a 6" sieve (2")</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Sand Gravel Material</td>
<td>Clean sands with gravel framework bound together with sand and silica cement</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Clean Sands, Poorly Graded Sand</td>
<td>Sand with over 15% fines</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Gravel Mixtures</td>
<td>Poorly Graded Sand - Silt Mix</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Clean Gravels</td>
<td>Clean gravels with gravel framework bound together with sand and silica cement</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Silt Mixtures</td>
<td>Silt and Clays Liquid Limit < 50%</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Inorganic Silts.</td>
<td>Inorganic Silts. of low to med. plasticity.</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Clean sands with little or no fines</td>
<td>Clean sands with little or no fines</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Gravelly Sands</td>
<td>Gravelly Sands</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Inorganic Clays</td>
<td>Inorganic Clays of low to med. plasticity.</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Lean Clays</td>
<td>Lean Clays</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Cemented Sand and Gravel</td>
<td>Strongly cemented sand and gravel: similar but harder than cemented sand and gravel</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Cemented Sand</td>
<td>Cemented Sand</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Groundwater level at time of exploration or as noted</td>
<td>Groundwater level at time of exploration or as noted</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Bulk sample location obtained by collecting soil cuttings in a plastic bag or fiberglass sack</td>
<td>Bulk sample location obtained by collecting soil cuttings in a plastic bag or fiberglass sack</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>Sample number</td>
<td>Sample number</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Sample depth interval</td>
<td>Sample depth interval</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
B = BAG SAMPLE
ST = SHELBY TUBE
SS = SPLIT SPOON
SK = BULK SAMPLE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94B1

LOCATION: N. of Pt B
TOTAL DEPTH: 219 ft
ELEVATION: 9.58 ft MSL

METHOD: Becker hammer drill
START DATE: 1/6/94
FINISH DATE: 1/6/94

PROJECT: Loose Star - Saniosh
DIAMETER: 6 5/8 in.

WATER LEVEL AND TIME: 5 ft at 8:50 1/6

LOGGED BY: J. Laves

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>842</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>846</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>852</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>854</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>855</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>856</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>857</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>858</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>859</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>860</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>861</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>862</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>863</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>864</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>865</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>866</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>867</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>868</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td>869</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>870</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>871</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>872</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>873</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>874</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>875</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>876</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>877</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td>878</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>879</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>880</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td>881</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td>882</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td>883</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td>884</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td>885</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td>886</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td>887</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td>888</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td>889</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>890</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPOON
- BK = BULK SAMPLE

DESCRIPTION
- WELL-GRADED GRAVEL w/ SAND (GW), grey-brown, damp to wet, med. dense, occ. loose, rounded gravels to >4 in. max. dimensions
- becomes grey, slightly sandier
- becoming silty, water return dark grey
- SILT w/ GRAVEL (ML), dark grey, wet, soft to firm, tr. sand

COMMENTS
- Blow Counts: 39, 49, 55, 46, 34, 43, 23, 15, 17, 32, 30, 10, 5, 32, 33, 34, 36, 15, 37

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.

Page 1 of 6
BORING LOG

LOCATION: N. of P. B
ELEVATION: 958 ft MSL
METHOD: Becker hammer drill
START DATE: 1/6/94
FINISH DATE: 1/6/94
DRILLING CONTRACTOR: Beck Environmental
PROJECT NUMBER: 420-106
PROJECT: Lone Star - Sanbor
TOTAL DEPTH: 210 ft
DIAMETER: 6 5/8 in

WATER LEVEL AND TIME: 11/8 150 1/6
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>TIME</th>
<th>NO AND TYPE</th>
<th>TYPE/LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
<th>BLOW COUNTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>918</td>
<td></td>
<td></td>
<td>becoming sandier, more gravelly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td>grades to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td>SANDY SILT w/ GRAVEL (ML), black to dark grey, wet, soft</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>928</td>
<td></td>
<td></td>
<td>rounded gravel to 3-4 in. max</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55</td>
<td>929</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>934</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td>POORLY-GRADED SAND w/ GRAVEL (SP), grey, occ. grey-green, wet, med. dense, tr. silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRADED GRAVEL w/ SAND (GW), dark grey-green, wet, med. dense, tr. silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65</td>
<td>935</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRADED GRAVEL w/ SAND (GW), dark grey-green, wet, med. dense, tr. silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>945</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td>POORLY-GRADED SAND (SP), grey to grey-green, wet, loose, tr. gravel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>949</td>
<td></td>
<td></td>
<td>POORLY-GRADED SAND (SP), grey to grey-green, wet, loose, tr. gravel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRADED GRAVEL w/ SAND (GW), dark grey, wet, med. dense, tr. silt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>959</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B - BAG SAMPLE
- ST - SHELBY TUBE
- SS - SPLIT SPOON
- BK - BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

LOCATION: N. 1/2 Pt B
ELEVATION: 938 ft. MSL
TOTAL DEPTH: 219 ft.
DIAMETER: 6 5/8 in.
PROJECT: Lone Star - San Jose
DRILLING CONTRACTOR: Beck Environmental
PROJECT NUMBER: 420-106
BORING NUMBER: 94B1
METHOD: Becker hammer drill
START DATE: 1/6/94
FINISH DATE: 1/6/94
WATER LEVEL AND TIME: 5 ft, 8:30 1/6

LOGGED BY: J. Lawes

SAMPLE

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>1002</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>1010</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>1014</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>1026</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>1030</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>1042</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>1055</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>1107</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPOON
- SK = SIDEKICK SAMPLE

DESCRIPTION

19 - occ. boulders, appx. 40% sand
39 - very sandy (50%), boulders
49 - well-graded sand w/ gravel (SW), grey to green, wet, med. dense to dense
59 - more gravelly
69 - cemented, well-graded gravel w/ sand (GW), dark green, wet, very dense, occ. boulders > 10 in. max.
79 - poorly-graded sand (SP), green, wet, loose to med. dense, very fine sand w/ tr. gravels

COMMENTS

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94B1

LOCATION: N. ar Pit B
TOTAL DEPTH: 219 ft.
DIAMETER: 6 5/8 in.

ELEVATION: 9.58 ft. MSL
DRILLING CONTRACTOR: Beck Environmental

METHOD: Becker hammer drill
START DATE: 1/6/94
FINISH DATE: 1/6/94

WATER LEVEL AND TIME: 75 ft @ 850 1/6
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DESCRIPTION</th>
<th>BLOW COUNTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>CEMENTED, WELL-GRADED GRAVEL w/ SAND (GW), green, wet, very dense, cemented</td>
<td>90</td>
</tr>
<tr>
<td>122</td>
<td>large boulders</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>becomes very well cemented, extremely dense</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>very gravelly, large boulders</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>POORLY-GRADED SAND (SP), green, wet, med. dense to loose, tr. gravel</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B - BAG SAMPLE
- ST - SHELBY TUBE
- SS - SPLIT SPOON
- SK - BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

LOCATION: N. of Pt B
TOTAL DEPTH: 219 ft
ELEVATION: 9.58 ft MSL
DIAMETER: 6 5/8 in

PROJECT: Looe Sur - Sanari
PROJECT NUMBER: 420-1M

METHOD: Becker hammer drill
START DATE: 1/6/94
FINISH DATE: 1/6/94

WATER LEVEL AND TIME: 5 ft at 850 1/6
LOGGED BY: L. Lawes

SAMPLE

<table>
<thead>
<tr>
<th>SAMPLE DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td></td>
<td></td>
<td></td>
<td>tr. silt, more gravelly</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td></td>
<td></td>
<td></td>
<td>grades to POORLY GRADED SAND w GRAVEL (SP), green, wet, dense to loose, wood chips - interbedded with WELL-GRADED SAND w GRAVEL (SW), green, wet, dense, tr. silt</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES: B - BAG SAMPLE ST - SHELBY TUBE SS - SPLIT SPOON BK - BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

LOCATION: N ct Pt B
ELEVATION: 9.58 ft. MSL
METHOD: Becker hammer drill
START DATE: 1/6/94
FINISH DATE: 1/6/94

PROJECT NUMBER: 420-106
BORING NUMBER: 94B1
DIAMETER: 6 5/8 in.

WATER LEVEL AND TIME: 7.5 ft. at 830 1/6

LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DESCRIPTION</th>
<th>Blow Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td><20% gravel</td>
<td>13</td>
</tr>
<tr>
<td>202</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>203</td>
<td><20% (?) gravel</td>
<td>12</td>
</tr>
<tr>
<td>204</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>205</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>206</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>207</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>208</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>209</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>210</td>
<td>Grades to POORLY-GRADED SAND (SP), gray-green, wet, loose.</td>
<td>12</td>
</tr>
<tr>
<td>211</td>
<td>gravel</td>
<td>15</td>
</tr>
<tr>
<td>212</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>213</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>214</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>215</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>216</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>217</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>218</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>219</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>220</td>
<td>TD @ 219 ft. at 1447</td>
<td>1/6/94</td>
</tr>
<tr>
<td>221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES: B = BAG SAMPLE ST = SHELBY TUBE SS = SPLIT SPOON SK = BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M1

LOCATION: SE portion Meier prop
ELEVATION: approx. 13 ft MSL

PROJECT: Lone Star - Meier Property
DRILLING CONTRACTOR: Beck Environmental

TOTAL DEPTH: 215 ft
DIAMETER: 6 5/8 in.

METHOD: Becker hammer drill

START DATE: 1/25/94
FINISH DATE: 1/27/94

WATER LEVEL AND TIME: 17 ft @ 11:25 1/25
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
<th>BLOW COUNTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>SILT (ML) with some ELASTIC SILT (ML), brown, moist, and some roots and plant fragments in upper 6 in. plastic to very plastic (topsoil)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRATED GRAVEL w/ SILT (GW-GM), brown, moist, and medium dense</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>94M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>0'-20'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>28</td>
<td>94M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>29</td>
<td>20-40'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>30</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td>SILT SAND w/ GRAVEL (SM), brown, moist to wet, and dense to loose, occasional gravels or cobbles to >4 in. max.</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B - BAG SAMPLE
- ST - SHELBY TUBE
- SS - SPLIT SPOON
- SK - BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M1
PROJECT: Lone Star - Meier Property
LOCATION: SE portion Meier prop
TOTAL DEPTH: 215 ft.
DIAMETER: 6 5/8 in.
ELEVATION: app. 13 ft. MSL
DRILLING CONTRACTOR: Beck Environmental
METHOD: Becker hammer drill
START DATE: 1/25/94
FINISH DATE: 1/27/94
WATER LEVEL AND TIME: 17 ft @ 11:25 1/25
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (ft)</th>
<th>No. and Type</th>
<th>Time</th>
<th>Graphic Log</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td>SILTY GRAVEL (GM), brown, wet, med. dense to dense, tr. sand</td>
<td>14</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
<td></td>
<td>1228</td>
<td></td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>46</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td>SILTY GRAVEL w/ SAND (GM) as above, sandier</td>
<td>45</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>49</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>155</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td></td>
<td>1231</td>
<td></td>
<td>WELL-GRADED GRAVEL w/ SAND (GW), grey, wet, dense</td>
<td>180</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>52</td>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>53</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>122</td>
</tr>
<tr>
<td>54</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
<td></td>
<td>1230</td>
<td></td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>56</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>57</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>59</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td>40-90</td>
<td>1304</td>
<td></td>
<td>WELL-GRADED SAND w/ GRAVEL (SW), grey, wet, med.</td>
<td>47</td>
</tr>
<tr>
<td>61</td>
<td>61</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>62</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>63</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>64</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>65</td>
<td>65</td>
<td></td>
<td>1305</td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>66</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td>POORLY-GRADED SAND w/ GRAVEL (SP), grey, wet, med. dense to dense, occ. boulders</td>
<td>89</td>
</tr>
<tr>
<td>67</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>68</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>69</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
<td></td>
<td>1315</td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>71</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>72</td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>73</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>74</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>75</td>
<td>75</td>
<td></td>
<td>1320</td>
<td></td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>76</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>77</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>78</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>79</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td></td>
<td>1335</td>
<td></td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
B = BAG SAMPLE
ST = SHELBY TUBE
SS = SPLIT SPOON
SK = BULK SAMPLE

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
Boring Log

Location: SE portion Meier prop
Total Depth: 215 ft.
Elevation: approx. 13 ft MSL
Method: Becker hammer drill

Water Level and Time: 17 ft. @ 1125 1/25
Logged By: J. Lawes

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>No and Type</th>
<th>Time</th>
<th>Graphic Log</th>
<th>Description</th>
<th>Comments</th>
<th>Blow Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td>very dark brown</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>183</td>
</tr>
<tr>
<td>84</td>
<td>94M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>85</td>
<td>40-90°</td>
<td>1548</td>
<td></td>
<td>more gravelly</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>86</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRADED GRAVE w/ SILT & SAND (GW-GM), brown to moist, med. dense to dense</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>94M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>90-100°</td>
<td>1417</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRADED GRAVE w/ SAND (GW), brown to grey-brown, wet, med. dense to loose</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>94M1</td>
<td></td>
<td></td>
<td>sandier, grades to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>100-110°</td>
<td>1439</td>
<td></td>
<td>WELL-GRADED SAND w/ GRAVEL (SW), dark gold-brown, wet, dense to med. dense, w/ silt</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td>CEMENTED, WELL-GRADING THRACE w/ SAND (GW), v. dark green, wet, very dense, cemented to well cemented</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>189</td>
</tr>
<tr>
<td>115</td>
<td>94M1</td>
<td></td>
<td></td>
<td>Shut down @ 1512 1/25 Drilling @ 1220 1/26</td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>116</td>
<td>110-215°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>117</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>127</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109</td>
</tr>
</tbody>
</table>

Sample Types: B = Bag Sample
Notes: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M1
PROJECT: Lone Star - Meier Property

LOCATION: SE portion Meier prop
TOTAL DEPTH: 215 ft.
DIAMETER: 6 5/8 in.

ELEVATION: appx. 13 ft MSL
DRILLING CONTRACTOR: Beck Environmental

METHOD: Becker hammer drill
START DATE: 1/21/94
FINISH DATE: 1/27/94

WATER LEVEL AND TIME: 17 ft. @ 1125 1/25

Logged by: J. Lawes

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td></td>
<td>1501</td>
<td></td>
<td>sandier, less well cemented</td>
<td></td>
</tr>
<tr>
<td></td>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td></td>
<td>1315</td>
<td></td>
<td>gravelly</td>
<td></td>
</tr>
<tr>
<td></td>
<td>131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>135</td>
<td></td>
<td>1322</td>
<td></td>
<td>very well cemented, dark grey-green</td>
<td></td>
</tr>
<tr>
<td></td>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>94M1</td>
<td>1352</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>141</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>145</td>
<td></td>
<td>1446</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td></td>
<td>1507</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>155</td>
<td></td>
<td>1553</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160</td>
<td></td>
<td>909</td>
<td></td>
<td>Shut down @ 1600 1/26 Drilling @ 903 1/27</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B - BAG SAMPLE
- ST - SHELBY TUBE
- SS - SPLIT SPOON
- SK - BULK SAMPLE

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M1
PROJECT: Lone Sater - Meier Property
LOCATION: SE portion Meier prop
TOTAL DEPTH: 215 ft
DIAMETER: 6 1/8 in.
ELEVATION: appx. 13 ft MSL
METHOD: Becker hammer drill
START DATE: 1/25/94
FINISH DATE: 1/27/94
WATER LEVEL AND TIME: 17 ft (3) 1/25
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sandy, grey, weakly cemented</td>
<td>180</td>
</tr>
<tr>
<td>162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>grey-green to dark green, well cemented</td>
<td>53</td>
</tr>
<tr>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>weakly cemented</td>
<td>49</td>
</tr>
<tr>
<td>164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>making great amounts of water - sand washing out of sample</td>
<td>105</td>
</tr>
<tr>
<td>165</td>
<td></td>
<td></td>
<td>922</td>
<td></td>
<td>POORLY-GRADED SAND w/ GRAVEL (SP). very dark green, wet, med. dense fine to very fine sand</td>
<td>134</td>
</tr>
<tr>
<td>166</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>155</td>
</tr>
<tr>
<td>167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>more water</td>
<td>180</td>
</tr>
<tr>
<td>168</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CEMENTED. WELL- GRADED SAND w/ GRAVEL (GW).</td>
<td>91</td>
</tr>
<tr>
<td>169</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>93</td>
</tr>
<tr>
<td>170</td>
<td></td>
<td></td>
<td>943</td>
<td></td>
<td>less water</td>
<td>104</td>
</tr>
<tr>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>less water</td>
<td>57</td>
</tr>
<tr>
<td>172</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, med. dense fine to very fine sand</td>
<td>37</td>
</tr>
<tr>
<td>173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>46</td>
</tr>
<tr>
<td>174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>42</td>
</tr>
<tr>
<td>175</td>
<td></td>
<td></td>
<td>1006</td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>57</td>
</tr>
<tr>
<td>176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>34</td>
</tr>
<tr>
<td>177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>36</td>
</tr>
<tr>
<td>178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>40</td>
</tr>
<tr>
<td>179</td>
<td>94M1</td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>28</td>
</tr>
<tr>
<td>180</td>
<td>110-215"</td>
<td>SK</td>
<td>1014</td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>27</td>
</tr>
<tr>
<td>181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>54</td>
</tr>
<tr>
<td>182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>41</td>
</tr>
<tr>
<td>183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>72</td>
</tr>
<tr>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>41</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td></td>
<td>1018</td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>76</td>
</tr>
<tr>
<td>186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>81</td>
</tr>
<tr>
<td>187</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>140</td>
</tr>
<tr>
<td>188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>184</td>
</tr>
<tr>
<td>189</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>180</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
<td>1024</td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>180</td>
</tr>
<tr>
<td>191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>180</td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>180</td>
</tr>
<tr>
<td>193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>180</td>
</tr>
<tr>
<td>194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>125</td>
</tr>
<tr>
<td>195</td>
<td></td>
<td></td>
<td>1058</td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>180</td>
</tr>
<tr>
<td>196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>180</td>
</tr>
<tr>
<td>197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>180</td>
</tr>
<tr>
<td>198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>94</td>
</tr>
<tr>
<td>199</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>180</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td>1125</td>
<td></td>
<td>very dark green, wet, very dense, tr. silt, well cemented.</td>
<td>180</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
B = BAG SAMPLE
ST = SHELBY TUBE
SS = SPLIT SPOON
SK = BULK SAMPLE

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 410-106
BORING NUMBER: 94M1
PROJECT: Lone Star • Meter Property
LOCATION: SE portion Meier prop
TOTAL DEPTH: 215 ft.
DIAMETER: 6 5/8 in.
ELEVATION: approx. 13 ft. MSL
METHOD: Becker hammer drill
DRILLING CONTRACTOR: Beck Environmental
START DATE: 1/25/94
FINISH DATE: 1/27/94
WATER LEVEL AND TIME: 17 ft. @ 1125 1/25
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>BLOW COUNTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206-207</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRADED GRAVEL w SILT & SAND (GW-GM), dark green, med. dense to very dense, tr. cement, hard silt chunks</td>
<td>58</td>
</tr>
<tr>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td>CEMENTED, WELL-GRADED SAND wGRAVEL (SW), dark green, wet, med. dense to dense, cemented: very gravely, grades between (SW) and WELL-GRADED GRAVEL wSAND (GW), as above but dense to very dense</td>
<td>45</td>
</tr>
<tr>
<td>209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48</td>
</tr>
<tr>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>211-212</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>126</td>
</tr>
<tr>
<td>213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>216-217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>218-219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>221-222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>223</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>226-227</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>228-229</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>230-231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>232-233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>234-235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>236-237</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>238-239</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPOON
- SK = BULK SAMPLE

COMMENTS:
TD @ 215 ft. at 1204
1/27/94

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106 **BORING NUMBER:** 94M2

PROJECT: Lone Star - Meier Property

LOCATION: SW portion Meier prop

TOTAL DEPTH: 135 ft

DIAMETER: 6 5/8 in.

ELEVATION: appx. 36 ft MSL

METHOD: Becker hammer drill

START DATE: 1/28/94 **FINISH DATE:** 1/31/94

DRILLING CONTRACTOR: Beck Environmental

WATER LEVEL AND TIME: 3 ft 1038 1/28

LOGGED BY: J. Lawes

SAMPLE DESCRIPTION COMMENTS

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>949</td>
<td></td>
<td>SILT w/ GRAVEL (ML), brown, moist, hard, tr. sand, low plasticity, subangular to rounded gravels to 3 in. max. (upper 6 in. topsoil)</td>
<td>Blow Counts</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1006</td>
<td></td>
<td>WELL-GRADED GRAVEL w SILT & SAND (GW-GM), brown, damp, med. dense to dense, occ. boulders to >10 in. max.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>94M2</td>
<td></td>
<td>WELL-GRADED GRAVEL w SAND (GW), brown, moist, med. dense, much pea gravel, occ. cobbles to 8 in. max, tr. silt becomes wet</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0-50/60-80</td>
<td>1016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1033</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1036</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1044</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPOON
- SK = BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only to the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106

BORING NUMBER: 94M2

LOCATION: SW portion Meier prop

TOTAL DEPTH: 135 ft

DIAMETER: 6 3/8 in

ELEVATION: approx. 36 ft MSL

DRILLING CONTRACTOR: Beck Environmental

METHOD: Becker hammer drill

START DATE: 1/28/94

FINISH DATE: 1/31/94

WATER LEVEL AND TIME: 3 ft @ 1018 1/28

LOGGED BY: J Lawes

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>0-50/50-80</td>
<td>1041</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>94M2</td>
<td>55</td>
<td>1055</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>58</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>61</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>66</td>
<td>67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>75</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>78</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:

- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPoon
- SK = BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT: Lone Star - Meier Property

LOCATION: SW portion Meier prop

TOTAL DEPTH: 135 ft

ELEVATION: approx 36 ft MSL

DIAMETER: 6 5/8 in

METHOD: Becker hammer drill

START DATE: 1/28/94

FINISH DATE: 1/31/94

WATER LEVEL AND TIME: 3 ft 10 1/2 1/28

LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td></td>
<td></td>
<td>traces of brown (weathered?) cement</td>
<td>18</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td>becomes weakly cemented, brown</td>
<td>23</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>1135</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>1215</td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td>Shut down @ 1239 1/28 Drilling @ 925 1/31</td>
<td>103</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>94</td>
<td>94M2</td>
<td>945</td>
<td>CEMENTED, WELL-GRADED SAND w/ GRAVEL (SW), brown to bronze-brown, wet, very dense, well cemented, tr. silt</td>
<td>180</td>
</tr>
<tr>
<td>95</td>
<td>94M2</td>
<td>945</td>
<td>brown to bronze-brown, wet, very dense, well cemented, tr. silt</td>
<td>180</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>99</td>
<td>94M2</td>
<td>1009</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>100</td>
<td>80-135'</td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>101</td>
<td>SK</td>
<td></td>
<td>becomes less well cemented</td>
<td>180</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>1026</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>1039</td>
<td>POORLY-GRADED SAND w/ GRAVEL (SP), bronze-brown, wet, med. dense to dense, tr. silt, occ. cement</td>
<td>33</td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>1039</td>
<td>wet, med. dense to dense, tr. silt, occ. cement</td>
<td>31</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>1042</td>
<td>CEMENTED, WELL-GRADED SAND w/ GRAVEL (SW), brown, occ. grey-brown, wet, dense to very dense, cemented</td>
<td>90</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td>1042</td>
<td>brown, occ. grey-brown, wet, dense to very dense, cemented</td>
<td>102</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td>126</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>120</td>
<td>1057</td>
<td></td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

SAMPLE TYPES: B = BAG SAMPLE ST = SHELBY TUBE SS = SPLIT SPOON SK = BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.

Page 3 of 4
Boring Log

Project: Lone Star - Meier Property
Boring Number: 94M2

Location Details
- Location: SW portion Meier prop
- Elevation: approx. 36 ft. MSL
- Project: Lone Star - Meier Property

Boring Details
- Total Depth: 135 ft.
- Diameter: 6 5/8 in.

Drilling Details
- DRILLING CONTRACTOR: Beck Environmental
- METHOD: Becker hammer drill

Water Level and Time
- Water Level and Time: 37 ft @ 1038 1/28

Sample Log

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>No. and Type</th>
<th>Time</th>
<th>Graphic Log</th>
<th>Description</th>
<th>Comments</th>
<th>Blow Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>1106</td>
<td></td>
<td>well cemented, very dense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>94M2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>80-140'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>1124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Types:
- B - Bag Sample
- ST - Shelby Tube
- SS - Split Spoon
- SK - Bulk Sample

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Boring Log

Project Number: 420-106
Boring Number: 94M3
Location: Westside Meier property
Total Depth: 118 ft
Diameter: 6 ½ in
Elevation: approx. 39 ft MSL
Drilling Contractor: Beck Environmental
Start Date: 1/31/94
Finish Date: 2/1/94

Sample Description Comments

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>No. and Time</th>
<th>Graphic Log</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>144</td>
<td></td>
<td>SilT (ML), black, moist, soft root hairs (topsoil)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Well-graded gravel w/ sand & silt (GW-GM), grey brown, damp, med. dense to dense</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>less silt</td>
</tr>
<tr>
<td>4</td>
<td>145</td>
<td></td>
<td>Pea gravel, very silty</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td></td>
<td>Becomes wet</td>
</tr>
</tbody>
</table>

Sample Types:
- B = Bag Sample
- ST = Shelby Tube
- SS = Split Spoon
- SK = Bulk Sample

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94MJ

PROJECT: Lone Star - Meier Property

LOCATION: West side Meier prop

TOTAL DEPTH: 118 ft
DIAMETER: 6 5/8 in.

ELEVATION: approx. 39 ft MSL

METHOD: Becker hammer drill

START DATE: 1/31/94
FINISH DATE: 2/1/94

WATER LEVEL AND TIME: 3 ft @ 1521 1/31

LOGGED BY: J. Lawes

PROJECT NUMBER: 420-106
BORING NUMBER: 94MJ

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>94MJ</td>
<td>150</td>
<td></td>
<td>POORLY-GRATED GRAVEL w/ SAND (GP) grey-brown</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0-50'</td>
<td>152</td>
<td></td>
<td>wet, loose to med. dense, much pea gravel, occ. gravel</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>SK</td>
<td></td>
<td></td>
<td>>4 in. max dimension</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td>152</td>
<td></td>
<td>Shut down @ 1533 1/31 Drilling @ 851 2/1</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>94MJ</td>
<td>900</td>
<td></td>
<td>WELL-GRATED GRAVEL w/ SAND & SILT (GW-GM),</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>50-100'</td>
<td>94</td>
<td></td>
<td>brown to grey-brown, wet, med. dense to dense</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>1055</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>1010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>1025</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPOON
- SK = BULK SAMPLE

Note: The log of subsurface conditions shown hereon applies only to the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td>much sand - almost WELL-GRADED SAND w/ GRAVEL (SW), similar to above</td>
<td>133</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>1024</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>89 94M3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114</td>
</tr>
<tr>
<td>90 50-100'</td>
<td></td>
<td>1024</td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>91</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>1032</td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td>CEMENTED, WELL-GRADED SAND w/ GRAVEL (SW), grey to grey-brown, wet, dense to very dense, cemented to weakly cemented</td>
<td>141</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>1032</td>
<td></td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>1059</td>
<td></td>
<td>becomes green to grey-green</td>
<td>73</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>88</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>108 94M3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>109 100-118'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>110 SK</td>
<td></td>
<td>1113</td>
<td></td>
<td>well cemented</td>
<td>84</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>156</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>1126</td>
<td></td>
<td></td>
<td>121</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>188</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td>TD @ 188 ft. at 1133</td>
<td>2/1/94</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/1/94</td>
</tr>
</tbody>
</table>

SAMPLE TYPES: B = BAG SAMPLE ST = SHELBY TUBE SS = SPLIT SPOON SK = BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.

Page 3 of 3
Location
NE portion Meier prop

Project
Lone Stai - Meier Property

Total Depth
145 ft.

Elevation
(approx 27 ft MSL)

Method
Becker hammer drill

Drilling Contractor
Beck Environmental

Project Number
420-106

Boring Number
94M-

Sample Types
- B = Bag Sample
- ST = Shelby Tube
- SS = Split Spoon
- SK = Bulk Sample

Boring Log

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>No. and Type</th>
<th>Time</th>
<th>Graphic Log</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1432</td>
<td></td>
<td>WELL-GRATED GRAVEL w/ SAND (GW), brown, moist, loose to dense, tr. silt, rounded gravels to > 4 in. max. dimensions</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>1434</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1435</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1436</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1446</td>
<td></td>
<td>becomes grey-brown</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1446</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>1500</td>
<td></td>
<td>WELL-GRATED GRAVEL w/ SAND (GW) brown, moist, loose to dense, tr. silt, rounded gravels to > 4 in. max. dimensions</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>1500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>1500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>94M-</td>
<td>1502</td>
<td></td>
<td>SANDIER</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0-50'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>1502</td>
<td></td>
<td>grades to SILTY GRAVEL w/ SAND (GM), brown, wet, loose to med. dense</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1502</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>1502</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>1502</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1508</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>1508</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>1508</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>1508</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>1508</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>1509</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>1509</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>1509</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>1509</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>1509</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>1512</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
- The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M4
PROJECT: Lone Star - Meier Property
LOCATION: NE portion Meier prop
TOTAL DEPTH: 145 ft
DIAMETER: 6 5/8 in.
ELEVATION: approx. 27 ft MSL
DRILLING CONTRACTOR: Beck Environmental
METHOD: Becker hammer drill
START DATE: 2/1/94
FINISH DATE: 2/2/94
WATER LEVEL AND TIME: 2 ft @ 1507 2/1/94

LOGGED BY: J Lawes

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DESCRIPTION</th>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td></td>
<td>94M4</td>
<td>1514</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td>SK</td>
<td>1512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPOON
- SK = BULK SAMPLE

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.

Page 2 of 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M4

LOCATION: NE portion, Meier property
TOTAL DEPTH: 145 ft
DIAMETER: 6 5/8 in.

ELEVATION: appx. 2' 6 MSL
DRILLING CONTRACTOR: Beck Environmental

METHOD: Becker hammer drill
START DATE: 2/1/94
FINISH DATE: 2/2/94

WATER LEVEL AND TIME: 1507 2/1/94
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO. AND TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td></td>
<td></td>
<td>POORLY-GRADED SAND w/ GRAVEL (SP), grey to grey-brown, wet, med. dense, tr. silt, much gravel (40-50%)</td>
<td>23</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td>Shut down @ 1556 2/1 Drilling @ 834 2/2</td>
<td>22</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td>very dark brown, < 30% gravel</td>
<td>20</td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>85</td>
<td>834</td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>90</td>
<td>851</td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td>03</td>
</tr>
<tr>
<td>95</td>
<td>857</td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>99</td>
<td>94M4</td>
<td></td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>100</td>
<td>70-120'</td>
<td></td>
<td>large boulders</td>
<td>47</td>
</tr>
<tr>
<td>101</td>
<td>SK</td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td>175</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>105</td>
<td>940</td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>110</td>
<td>1019</td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td>traces of cement, brown (weathered?)</td>
<td>117</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td>124</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td>65</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
B = BAG SAMPLE
ST = SHELBY TUBE
SS = SPLIT SPON
SK = BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
Boring Log

Project Number: 420-106
Boring Number: 94M4
Project: Lone Star - Meier Property

Location: NE portion Meier prop
Total Depth: 145 ft
Diameter: 6 5/8 in
Elevation: approx. 27 ft MSL
Method: Becker hammer drill
Drilling Contractor: Beck Environmental
Start Date: 2/1/94
Finish Date: 2/2/94
Water Level and Time: 27 ft @ 1507 2/1/94
Logged By: J. Lawes

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (ft)</th>
<th>No. and Type</th>
<th>Time</th>
<th>Graphic Log</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>grades to</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td></td>
<td>1046</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>129</td>
<td>94M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>120-145'</td>
<td></td>
<td>1057</td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>131</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>1101</td>
<td></td>
<td></td>
<td>better cemented, dense</td>
<td>78</td>
</tr>
<tr>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td>1119</td>
<td></td>
<td></td>
<td>well cemented, very dense</td>
<td>180</td>
</tr>
<tr>
<td>141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TD @ 145 ft at 1256</td>
<td>2/2/94</td>
</tr>
<tr>
<td>147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Types:
B = Bag Sample
ST = Shelby Tube
SS = Split Spoon
SK = Bulk Sample

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
WELL CONSTRUCTION LOGS
Monitoring Well No. P-1

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Mitsubishi tracked excavator
INITIAL GW DEPTH: 4 ft.
DATE: 3-31-93
HOLE DIA.: 48 in.
FINAL GW: 4 ft.
HOLE ELEV.: 9.2 ft. MSL
LOGGED BY: John Lawes
SAMPLER: none

DESCRIPTION
POORLY-GRADED GRAVEL with Silt and Clay
Silty sand, brown, loose to medium dense, high to wet. Cobble to 10 inches maximum dimension

USCS CLASS
GE

GRAPHIC LOG

DEPTH
0

SAMPLE NO.

WELL CONSTRUCTION DETAIL

Notes:

DAVID J. NEWTON ASSOCIATES INCORPORATED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Monitoring Well No. P-2

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Mitsubishi tracked excavator
INITIAL GW DEPTH: 5 ft.
DATE: 3-31-93
HOLE DIA.: 48 in.
FINAL GW: 5 ft.
LOGGED BY: John Lawes
SAMPLER: none
HOLE ELEV.: 8.4 ft. MSL

DESCRIPTION

POORLY-GRADED GRAVEL with SILT to COBBLY
SILTY SAND, brown, loose to medium dense, moist to wet. Cobbles to 12 inches maximum dimension

USCS CLASS	**GRAPHIC LOG**	**DEPTH**	**SAMPLE NO.**	**WELL CONSTRUCTION DETAIL**
GR	SF	0	1	Locking Metal Well Cap
		1	2	Native Soil Backfill
		2	3	1" dia. Sch.40 Blank PVC
		3	4	Sch.40 Hand-sawn Slotted PVC
		4	5	Sand

Bottom of Hole at 10 feet

DAVID J. NEWTON ASSOCIATES INCORPORATED
Monitoring Well No. P-3

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Mitsubishi tracked excavator
INITIAL GW DEPTH: 11 ft.

DATE: 3-31-93
HOLE DIA: 48 in.
FINAL GW: 11 ft.
LOGGED BY: John Lawes
HOLE ELEV.: 8.0 ft. MSL
SAMPLER: none

DESCRIPTION
SILT with COBBLES AND BOULDERS to SILTY GRAVEL, brown, loose to medium dense, moist to wet. BOULDERS to 7 feet maximum dimension

DESIGNATION LEADER
USGS CLASS

GRAPHIC LOG

DEPTH

SAMPLE NO.

WELL CONSTRUCTION DETAIL

Bottom of Hole at 11 feet

Notes:

DAVID J. NEWTON ASSOCIATES INCORPORATED

Project No. 420-101

Page 1 of 1

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Boring Log No. P-4

PROJECT: Lone Star Northwest Pit E

EQUIPMENT: unknown

INITIAL GW DEPTH: 21 ft.

DATE: located 3-31-93

HOLE DIA: unknown

FINAL GW: 21 ft.

LOGGED BY:

SAMPLER: none

HOLE ELEV.: 27.0 ft. MSL

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USCS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
<th>REMARKS</th>
</tr>
</thead>
</table>

This piezometer was located by DNA on March 31, 1993. No exploratory boring or piezometer construction details are known.

2-in. dia., PVC - no well details known.

Bottom of Piezometer at 34 feet

DAVID J. NEWTON ASSOCIATES INCORPORATED

Notes:

Project No. 420-101

Page 1 of 1
PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Mitsubshi tracked excavator
INITIAL GM DEPTH: 5 ft.
DATE: 3-31-93
HOLE DIA: 48 in.
FINAL GM: 5 ft.
HOLE ELEV: 7.2 ft. MSL
LOGGED BY: John Lawes
SAMPLER: none

DESCRIPTION

SILT with COBBLES AND BOULDERS to SILTY GRAVEL, medium brown, loose to medium dense, moist. Cobbles to 8 inches maximum dimension.

POORLY-GRADED GRAVEL, medium brown to medium gray, loose, wet, sides caving below 4 feet. Cobbles to 8 inches max. dimension.

Bottom of Hole at 8 feet

WELL CONSTRUCTION DETAIL

- Locking Metal well Cap
- Native Soil Backfill
- 1" dia. Sch.40 Blank PVC
- Sch. 40 Hand-sawn Slotted PVC
- Sand

Notes:

Project No. 420-101
Page 1 of 1
Monitoring Well No. P-6

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Truck-mounted Hollow-stem Auger
INITIAL HOLEDEPTH: 10 ft.
FINAL HOLE DEPTH: 10 ft.
LOGGED BY: John Lawes
HOLE ELEV.: 10.0 ft. MSL
SAMPLER: None

DESCRIPTION

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USES CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE NO.</th>
<th>WELL CONSTRUCTION DETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILT with GRAVEL, dark brown, moist, fine to stiff, roots and rounded gravels and cobbles to 4 inches maximum dimension</td>
<td>LMG</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WELL-GRATED GRAVEL with SILT, brown, moist to wet, medium dense</td>
<td>MG</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLAYEY GRAVEL, grey-brown, wet, medium dense</td>
<td>GC</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom of Hole at 20 feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WELL CONSTRUCTION DETAIL

- Locking Metal well Cap
- Bentonite Seal
- 3 in. Sch.80 Pipe
- 10x20 Sand
- Sch.80 Hand-turn Slotted PVC

Notes:

Project No. 420-121

Page 1 of 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Monitoring Well No. P-7

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Truck-mounted Hollow-stem Auger
INITIAL GN DEPTH: 10 ft.
LOGGED BY: John Lawes
DATE: 4-5-93
HOLE DIA: 10 in.
FINISH GN DEPTH: 10 ft.
SAMPLER: none
HOLE ELEV.: 11.7 ft. MSL
LOGGED BY: John Lawes

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USES CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILT with GRAVEL, dark brown, moist to stiff, roots and rounded gravels and cobbles to 4 inches maximum dimension</td>
<td>ML, GM</td>
<td>ML</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>WELL-GRATED GRAVEL with SILT, brown, moist to wet, medium dense</td>
<td>GW</td>
<td>GW</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

WELL CONSTRUCTION DETAIL

- Locking Metal Well Cap
- 2" dia. Sch.80 Blk PVC
- Bentonite Seal
- 10x20 Sand
- Sch.80 Hand-sawn Slotted PVC

Notes:

Bottom of Hole at 20 feet

DAVID J. NEWTON ASSOCIATES INCORPORATED

Project No. 420-K01

Page 1 of 1
Boring Log No. P-8

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: unknown
INITIAL GW DEPTH: 43 ft.
DATE: located 8/93
LOGGED BY: John Lawes
HOLE DIA: unknown
SAbilder: none
FINAL GW: 43 ft.
HOLE ELEV: unknown

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USCS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE NO.</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>This piezometer was located by DNA in August, 1993. No exploratory boring or piezometer construction details are known.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No well details known</td>
</tr>
</tbody>
</table>

Notes:
Groundwater at 41 feet when found August 1993
Monitoring Well No. MW-1

PROJECT: Lone Star Northwest Pit E
DATE: 4-8-93
LOGGED BY: John Lawes
HOLE DIA: 10 in.
HOLE ELEV: approx. 38 ft. MSL
INITIAL GW DEPTH: 31 ft.
FINAL GW DEPTH: 31 ft.
SAMPLER: none

HOLE ELEVATION: approx. 38 ft. MSL

DESCRIPTION
SILT with GRAVEL, black, moist, fine to stiff, roots and rounded gravels and cobbles to 4 inches maximum dimension

WELL-GRADED GRAVEL with SILT, brown, moist to wet, medium dense

Notes:
Project No. 420-101
Page 1 of 2

146
Monitoring Well No. MW-1

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Truck-mounted Hollow-stem Auger
INITIAL GW DEPTH: 31 ft.

DATE: 4-9-93
HOLE DIA.: 10 in.
FINAL GW: 31 ft.

LOGGED BY: John Lawes
SAMPER: none
HOLE ELEV.: approx. 38 ft. MSL

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USGS CLS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
<th>WELL CONSTRUCTION DETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(con't) WELL-GRADED GRAVEL with SILT, brown, moist to wet, medium dense</td>
<td>GW</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td>.020 Colorado Silica Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td>Sch. 80 Machine-vietted .020-Silt PVC</td>
</tr>
<tr>
<td>Bottom of Hole at 42.5 feet</td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

DAVID J. NEWTON ASSOCIATES INCORPORATED

Project No. 420-101

Page 2 of 2

147
Monitoring Well No. MW-2

PROJECT: Lone Star Northwest Pit E

EQUIPMENT: Truck-mounted Becker Hammer Drill

INITIAL WPD DEPTH: 30 ft.

DATE: 3-2-94

HOLE DIA.: 6 5/8 in.

FINAL GW: 30 ft.

LOGGED BY: John Lawes

SEALER: none

HOLE ELEV.: approx. 28 ft. MSL

LOG

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USCS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILT with GRAVEL, black, moist, firm to stiff, roots and rounded gravels and cobbles to 4 inches maximum dimension</td>
<td>GW</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WELL-GRADED GRAVEL with SILT AND SAND, brown, moist to wet, medium dense, cobbles to 10 inches max. dimension</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WELL CONSTRUCTION DETAIL

- Locking Metal Well Cap
- Bentonite Cement Seal
- 4" dia. Sch.40 Blank PVC

DAVID J. NEWTON ASSOCIATES INCORPORATED

Notes:

Project No.: 420-101

Page 1 of 2

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Monitoring Well No. MW-2

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Truck-mounted Becker Hammer Drill
INITIAL GW DEPTH: 30 ft.
DATE: 3-2-94
HOLE DIA.: 5 5/8 in.
FINAL GW: 30 ft.
LOGGED BY: John Lawes
SAMPLER: none
HOLE ELEV.: approx. 28 ft. MSL

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USCS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
<th>WELL CONSTRUCTION DETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(con’t) Well-graded gravel with silt and sand, brown, moist to wet, medium dense, cobbles to 10 inches max. dimension</td>
<td>GW</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>IC Colorado Silica Sand</td>
</tr>
</tbody>
</table>

Sch. 40 Machine-slotted 2020-Slot PVC

Bottom of Hole at 50 feet

NOTES:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Monitoring Well No. MW-3

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Truck-mounted Becker Hammer Drill
INITIAL GW DEPTH: 30 ft.
DATE: 2-28-94
LOGGED BY: John Lawes
HOLE ELEV.: approx. 36 ft. MSL

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USCS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILT with GRAVEL, black, moist to stiff, roots and rounded gravels and cobbles to 4 inches maximum dimension</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WELL-GRADED GRAVEL with SILT AND SAND, brown, moist to wet, medium dense, cobbles to 10 inches max. dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WELL CONSTRUCTION DETAIL

- 4" dia. Sch.40 Blank PVC
- Bentonite Cement Seal
- Locking Metal Well Cap

NOTES:

- Project No. 420-101
- Page 1 of 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Monitoring Well No. MW-3

PROJECT: Lone Star Northwest Pit E
DATE: 2-28-94
LOGGED BY: John Lawes
EQUIPMENT: Truck-mounted Becker Hammer Drill
HOLE Dia.: 8 5/8 in.
INITIAL GW DEPTH: 30 ft.
FINAL GW: 30 ft.
HOLE ELEV.: approx. 38 ft. MSL
SAMPLER: none

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USGS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
<th>WELL CONSTRUCTION DETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cont') WELL GRADED GRAVEL with SILT AND SAND, brown, wet, medium dense, cobbles to 10 inches max. dimension</td>
<td>GW</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom of Hole at 55 feet

Notes:

DAVID J. NEWTON ASSOCIATES INCORPORATED

Project No. 420-101
Page 2 of 2
Monitoring Well No. MW-4

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Truck-mounted Becker Hammer Drill
INITIAL GW DEPTH: 30 ft.

DATE: 2-25-94
HOLE DIA: 6 5/8 in.
FINAL GW: 30 ft.

LOGGED BY: John Lawes
SAMPLER: none
HOLE ELEV: approx. 36 ft. MSL

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>LOGOS CLASS</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILT with GRAVEL, black, moist, firm to stiff, roots and rounded gravels and cobbles to 4 inches maximum dimension.</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WELL-GRADED GRAVEL with SILT AND SAND, brown, moist to wet, medium dense, cobbles to 10 inches max. dimension.</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WELL CONSTRUCTION DETAIL

- Locking Metal Well Cap
- Bentonite Cement Seal
- 4" dia. Sch.40 Blank PVC

NOTES:

DAVID J. NEWTON ASSOCIATES INCORPORATED

Project No. 420-101

Page 1 of 2

152
Monitoring Well No. MW-4

Project: Lone Star Northwest Pit E
Equipment: Truck-mounted Becker Hammer Drill
Initial GW Depth: 30 ft.
Date: 2-25-94
Final GW: 30 ft.
Logged By: John Lawes
Sample: None
Hole Elev.: approx. 38 ft. MSL

Description

<table>
<thead>
<tr>
<th>WELL GRADE</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WELL-GRADED GRAVEL with SILT AND SAND, brown, moist to wet, medium dense, cobble to 10 inches max. dimension</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom of Hole at 40 feet</td>
<td>40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Project No. 420-10X
Page 2 of 2

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
APPENDIX D

MODFLOW MODEL DETAILS

Disc in Pocket
Disc contains final model MODFLOW design and output files
MODFLOW Model Results and Comparisons

The following charts contain the results of the MODFLOW models. Each table compares the model output volume from the current-conditions model and the future-conditions model for each simulation date. Sensitivity Analysis was performed by adjusting selected parameters individually in the model. Certain parameters, such as hydraulic conductivity, have a significant impact on the total amount of water which flows through the model. Therefore, the sensitivity of the model to each parameter was analyzed on the basis of its impact on the percent increase in flow for each current/future model pair. A summary of the sensitivity analysis results is given in Table D1, Sensitivity Analysis and Calibration Statistics at the end of this appendix.

Final Models

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>15-May-95</th>
<th>22-Sep-95</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output Volume</td>
<td>Output Volume</td>
</tr>
<tr>
<td></td>
<td>ft³/day</td>
<td>ac-ft/day</td>
</tr>
<tr>
<td>515c</td>
<td>6,048,400</td>
<td>139</td>
</tr>
<tr>
<td>515f</td>
<td>6,673,600</td>
<td>153</td>
</tr>
<tr>
<td>Increase</td>
<td>625,200</td>
<td>14</td>
</tr>
<tr>
<td>% Increase</td>
<td>10.34</td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary= 4.75
Barge Canal=10.24
Western gw level =8.0
Surface recharge=17 in/yr

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>15-May-95</th>
<th>22-Sep-95</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output Volume</td>
<td>Output Volume</td>
</tr>
<tr>
<td></td>
<td>ft³/day</td>
<td>ac-ft/day</td>
</tr>
<tr>
<td>515chik</td>
<td>57,663,000</td>
<td>1,324</td>
</tr>
<tr>
<td>515fhik</td>
<td>63,259,000</td>
<td>1,452</td>
</tr>
<tr>
<td>Increase</td>
<td>5,596,000</td>
<td>128</td>
</tr>
<tr>
<td>% Increase</td>
<td>9.70</td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary= 4.75
Barge Canal=10.24
Western gw level =8.0
Surface recharge=17 in/yr
K1 = 12,250

Sensitivity Analysis Results

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>15-May-95</th>
<th>22-Sep-95</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output Volume</td>
<td>Output Volume</td>
</tr>
<tr>
<td></td>
<td>ft³/day</td>
<td>ac-ft/day</td>
</tr>
<tr>
<td>515chik</td>
<td>57,663,000</td>
<td>1,324</td>
</tr>
<tr>
<td>515fhik</td>
<td>63,259,000</td>
<td>1,452</td>
</tr>
<tr>
<td>Increase</td>
<td>5,596,000</td>
<td>128</td>
</tr>
<tr>
<td>% Increase</td>
<td>9.70</td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary= 4.75
Barge Canal=10.24
Western gw level =8.0
Surface recharge=17 in/yr
K1 = 12,250
15-May-95
Decreased Hydraulic Conductivity

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>515clk</td>
<td>978,490</td>
<td>22</td>
<td>8,183</td>
</tr>
<tr>
<td>515flok</td>
<td>984,460</td>
<td>23</td>
<td>8,250</td>
</tr>
<tr>
<td>Increase</td>
<td>7,970</td>
<td>0.18</td>
<td>67</td>
</tr>
<tr>
<td>% Increase</td>
<td>0.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 4.75
Barge Canal = 10.24
Western gw level = 8.0
Surface recharge = 17 in/yr
K₁ = 122.5

22-Sep-95
Decreased Hydraulic Conductivity

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>922clk</td>
<td>659,610</td>
<td>15</td>
<td>5,528</td>
</tr>
<tr>
<td>922flok</td>
<td>671,250</td>
<td>15</td>
<td>5,625</td>
</tr>
<tr>
<td>Increase</td>
<td>11,640</td>
<td>0.27</td>
<td>98</td>
</tr>
<tr>
<td>% Increase</td>
<td>1.76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 3.0
Barge Canal = 10.24
Western gw level = 8.0
Surface recharge = 17 in/yr
K₁ = 122.5

15-May-95
Increased Gradient

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>515chig</td>
<td>10,255,000</td>
<td>235</td>
<td>85,941</td>
</tr>
<tr>
<td>515fchig</td>
<td>11,320,000</td>
<td>261</td>
<td>95,201</td>
</tr>
<tr>
<td>Increase</td>
<td>1,065,000</td>
<td>25</td>
<td>9,260</td>
</tr>
<tr>
<td>% Increase</td>
<td>10.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 4.75
Barge Canal = 13.6
Western gw level = 10.6
Surface recharge = 17 in/yr

22-Sep-95
Increased Gradient

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>922chig</td>
<td>5,057,200</td>
<td>116</td>
<td>42,381</td>
</tr>
<tr>
<td>922fchig</td>
<td>5,903,100</td>
<td>136</td>
<td>49,470</td>
</tr>
<tr>
<td>Increase</td>
<td>845,900</td>
<td>19</td>
<td>7,089</td>
</tr>
<tr>
<td>% Increase</td>
<td>16.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 3.0
Barge Canal = 13.6
Western gw level = 10.6
Surface recharge = 17 in/yr

15-May-95
Increased Recharge

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>515chir</td>
<td>6,343,600</td>
<td>146</td>
<td>53,162</td>
</tr>
<tr>
<td>515fhir</td>
<td>6,982,700</td>
<td>160</td>
<td>58,518</td>
</tr>
<tr>
<td>Increase</td>
<td>639,100</td>
<td>15</td>
<td>5,356</td>
</tr>
<tr>
<td>% Increase</td>
<td>10.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 4.75
Barge Canal = 10.24
Western gw level = 8.0
Surface recharge = 34 in/yr

22-Sep-95
Increased Recharge

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>922chir</td>
<td>3,221,200</td>
<td>74</td>
<td>26,995</td>
</tr>
<tr>
<td>922fhir</td>
<td>3,737,600</td>
<td>86</td>
<td>31,323</td>
</tr>
<tr>
<td>Increase</td>
<td>516,400</td>
<td>12</td>
<td>4,328</td>
</tr>
<tr>
<td>% Increase</td>
<td>16.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 3.0
Barge Canal = 10.24
Western gw level = 8.0
Surface recharge = 34 in/yr
15-May-95
Aquifer bottom at -200 ft

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>515c200</td>
<td>4,195,500</td>
<td>98</td>
<td>35,160</td>
</tr>
<tr>
<td>515f200</td>
<td>4,655,500</td>
<td>107</td>
<td>39,015</td>
</tr>
<tr>
<td>Increase</td>
<td>460,000</td>
<td>11</td>
<td>3,855</td>
</tr>
<tr>
<td>% Increase</td>
<td>10.96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 4.75
Barge Canal = 10.24
Western gw level = 8.0
Surface recharge = 17 in/yr

22-Sep-95
Aquifer bottom at -200 ft

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>922c200</td>
<td>2,070,900</td>
<td>48</td>
<td>17,355</td>
</tr>
<tr>
<td>922f200</td>
<td>2,437,200</td>
<td>56</td>
<td>20,425</td>
</tr>
<tr>
<td>Increase</td>
<td>366,300</td>
<td>8</td>
<td>3,070</td>
</tr>
<tr>
<td>% Increase</td>
<td>17.69</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 3.0
Barge Canal = 4.37
Western gw level = 6.0
Surface recharge = 17 in/yr
Table D1. Sensitivity Analysis and Calibration Statistics

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Parameter and Amount Changed</th>
<th>Output Volume (ft³/day)</th>
<th>Volume Increase (%)</th>
<th>Water-Level Change (feet)</th>
<th>Absolute Residual Mean</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>515c</td>
<td>Final Model</td>
<td>6,048,400</td>
<td>10.34</td>
<td>-0.8 to 0.8</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>515f</td>
<td></td>
<td>6,673,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922c</td>
<td></td>
<td>3,428,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515chik</td>
<td>Hydraulic Conductivity Increased 1000%</td>
<td>57,663,000</td>
<td>9.7</td>
<td>-0.7 to 0.7</td>
<td>0.42</td>
<td>Subsurface flow increases. Percentage change resulting from Pit E approximately the same as Final Models.</td>
</tr>
<tr>
<td>515fhik</td>
<td></td>
<td>63,259,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922chik</td>
<td>Hydraulic Conductivity Increased 1000%</td>
<td>26,503,000</td>
<td>17.2</td>
<td>-0.5 to 0.6</td>
<td>0.42</td>
<td>Slightly closer calibration but less water-level change than Final Models.</td>
</tr>
<tr>
<td>922fhik</td>
<td></td>
<td>31,031,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515clol</td>
<td>Hydraulic Conductivity Decreased 1000%</td>
<td>976,490</td>
<td>1.28</td>
<td>-0.7 to 0.7</td>
<td>0.42</td>
<td>Subsurface flow decreases. Percentage change in flow resulting from Pit E much less than Final Models.</td>
</tr>
<tr>
<td>515flol</td>
<td></td>
<td>984,460</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922clol</td>
<td>Hydraulic Conductivity Decreased 1000%</td>
<td>659,610</td>
<td>1.31</td>
<td>-0.5 to 0.6</td>
<td>0.42</td>
<td>Water-level change for 9/22 model much larger. Calibration error much higher.</td>
</tr>
<tr>
<td>922flol</td>
<td></td>
<td>671,250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515chlg</td>
<td>Gradient Increased by 33%</td>
<td>10,255,000</td>
<td>10.78</td>
<td>-1.3 to 1.3</td>
<td>1.41</td>
<td>Subsurface flow increases. Percentage change resulting from Pit E approximately the same as Final Models. Calibration error much higher</td>
</tr>
<tr>
<td>515hlg</td>
<td></td>
<td>11,360,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922chlg</td>
<td>Gradient Increased by 33%</td>
<td>5,057,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922hlg</td>
<td></td>
<td>5,903,100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515chir</td>
<td>Recharge increased by 100%</td>
<td>6,343,600</td>
<td>16.73</td>
<td>-0.5 to 0.6</td>
<td>0.63</td>
<td>Subsurface flow increases. Percentage change resulting from Pit E approximately the same as Final Models.</td>
</tr>
<tr>
<td>515hir</td>
<td></td>
<td>6,982,700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922chir</td>
<td>Recharge increased by 100%</td>
<td>3,221,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922hir</td>
<td></td>
<td>3,434,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515c200</td>
<td>Decrease Aquifer Thickness by 100 feet</td>
<td>4,195,500</td>
<td>10.96</td>
<td>-0.8 to 0.8</td>
<td>0.60</td>
<td>Subsurface flow decreases. Percentage change resulting from Pit E approximately the same as Final Models.</td>
</tr>
<tr>
<td>515f200</td>
<td></td>
<td>4,655,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922c200</td>
<td>Decrease Aquifer Thickness by 100 feet</td>
<td>2,070,900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922f200</td>
<td></td>
<td>2,437,200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1) Residual Mean based on a comparison of field measured water levels for 5/15/95 and 9/22/95 with MODFLOW generated water-levels from the current-conditions models.
2) Water-level change based on MODFLOW generated drawdown data from future-conditions models.
3) Model root name prefixes: 515 = 5/15/95 conditions
 922 = 9/22/95 conditions
 c = current-conditions model
 f = future-conditions model

MODFLOW design listings and output files for the final models are on the disk in pocket.