Quantifying impacts to a floodplain groundwater system from large-scale sand and gravel mining

Thomas E. Michalek
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd
Let us know how access to this document benefits you.

Recommended Citation
Michalek, Thomas E., "Quantifying impacts to a floodplain groundwater system from large-scale sand and gravel mining" (2001). Graduate Student Theses, Dissertations, & Professional Papers. 8154.
https://scholarworks.umt.edu/etd/8154

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports.

Please check "Yes" or "No" and provide signature

Yes, I grant permission [x]

No, I do not grant permission []

Author's Signature: [Signature]

Date: [5/5/01]

Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent.
QUANTIFYING IMPACTS TO A FLOODPLAIN GROUNDWATER SYSTEM FROM LARGE-SCALE SAND AND GRAVEL MINING

By

Thomas E. Michalek

B.S. University of Wyoming, 1991 presented in partial fulfillment of the requirements for the degree of Master of Science The University of Montana May 2001

Approved by:

Chairperson

Dean, Graduate School

Date
Quantifying the Impacts to a Floodplain Groundwater System From Large-Scale Sand and Gravel Mining

Director: William W. Woessner

In order to satisfy the increasing demands of construction industries, new sources of sand and gravel (aggregate) must be continuously located and developed. Sand and gravel deposits are typically found in flood plains along active river and stream channels. Excavation can and does take place below the water table, leading to concerns about negative effects on groundwater and surface-water resources, particularly from large-scale mining. Local Residents and an adjacent drainage district were concerned that a proposed expansion of an aggregate mine, creating a 360-acre lake in the Columbia River floodplain, would raise the water table over a large area, thereby increasing flooding potential, and drainage pumping costs.

This study characterized groundwater and surface-water conditions in the area of the expansion and reviewed the drainage district's dewatering operations. A MODLFOW (McDonald and Harbaugh, 1988) model was developed and a series of simulations created to replicate existing conditions and to predict the effect of the aggregate mine excavation on the local groundwater flow system. Numerically simulating existing and future groundwater conditions showed that groundwater flow to the aquifer beneath the drainage district would increase by 10 to 17 percent. This increased flow produces additional saturation of a limited area above the current water table, resulting in additional pumpage requirements of five to eighteen gallons per minute. In addition, an increase in flooding potential due to a widespread increase in water table elevation is not predicted.
Table 6. Sensitivity Analysis and Calibration Summary

FIGURES AND PLATES

Figure 1 – Project Location and Vicinity Map
Figure 2 - Site Plan
Figure 3 – Portland Basin Stratigraphy
Figure 4 - Geologic Cross-Section A-A’; West-East
Figure 5 - Geologic Cross-Section B-B’; South-North
Figure 6 - Hydrographs
Figure 7 - Water-Level Map for May 15, 1995
Figure 8 - Water-Level Map for September 22, 1995
Figure 9 – Conceptual Model Cross-Section
Figure 10 - MODFLOW Design for Current-Conditions Models
Figure 11 - MODFLOW Design for Future-Conditions Models
Figure 12a: Current-Conditions Model, MODFLOW High-Water Conditions
12b: Future-Conditions Model, MODFLOW High-Water Conditions
12c: Predicted Water-Level Changes, MODFLOW High-Water Conditions
Figure 13a: Current-Conditions Model, MODFLOW Low-Water Conditions
13b: Future-Conditions Model, MODFLOW Low-Water Conditions
13c: Predicted Water-Level Changes, MODFLOW Low-Water Conditions
Figure 14: Evaluation of Future Conditions Model Results
Plate 1: Project Area with Well Locations (in pocket)

APPENDICES

Appendix A Annotated Bibliography
Appendix B Water-Level Data
Appendix C Driller’s Logs, Boring Logs and Well Construction Logs
Appendix D MODFLOW Model Details (Includes disc in pocket)
CHAPTER 1: INTRODUCTION

According to the USGS, each year in the U.S. over two billion tons of aggregate are produced annually (USGS, 1999). Aggregate consists of sand, gravel and crushed stone that are used in the construction of roads, structures and the manufacturing of cement products. Current projections indicate that the amount of aggregate needed to satisfy demands over the first 25 years of the 21st century will be equal to the total amount of aggregate mined during the entire 20th century (USGS, 1999). In Oregon alone, the Department of Geology and Mineral Industries predicts an increase in aggregate consumption of 0.53% annually over the next 50 years (Whelan, 1995). This means that new sources of aggregate must be located and developed in order to fulfill increasing demands.

Most sand and gravel aggregate was deposited as stream-laden (fluvial) sediments along the course of rivers and streams. These deposits can be found in and near active river channels and within the floodplains of river valleys formed by the erosion, migration and flooding of rivers over thousands of years. In some cases, these sand and gravel deposits are several hundreds of feet thick and cover many acres.

Floodplain mining for aggregate often occurs in areas with shallow water tables. Mining can and does take place within the saturated sediments of unconfined sand and gravel aquifers. Mining within an aquifer can be a source of concern to neighbors and regulatory agencies because its potential to alter the natural groundwater flow system and/or introduce contamination.
Several researchers have examined the flow conditions around lakes, ponds and gravel pits. Many of these studies are associated with contaminants or the potential contamination of public water supplies. However, at least two efforts (Durbec, et al., 1987, and Shope, 1990) include an investigation of the interaction between gravel pits, aquifers and nearby surface waters. These studies examine the characteristics of existing groundwater systems in which mining has occurred and the potential impacts of mining below the water table.

Significant research has been conducted to examine the behavior of lakes and ponds relative to hydraulically connected groundwater flow systems, including techniques of numerical simulation. Cheng and Anderson (1993, 1994) developed a Lake package for MODFLOW, which allows simulation of lakes with variable recharge and boundary conditions within a groundwater flow system. This package has subsequently been modified to include additional boundary conditions (Council, 1998). Baker, et al. (1998) developed a MODFLOW module, PITLAKE, to simulate dewatering and rewatering of mine pits.

Comparison of techniques used to simulate flow-through lakes is reported by several workers. Chung and Anderson (1998) and Nair and Wilsnack (1998) examined the results of using high-hydraulic conductivity (K) zones in MODFLOW compared to the use of the Lake package for various scenarios.

Several researches have examined the techniques used to quantify the parameters and controls that influence lake/groundwater interactions and the uncertainty that may be associated with these parameters (Winter, 1981) (Lee, 1996) (Lee and Swancar, 1996).
Goals and Objectives

The primary goal of this project was to determine what effect the proposed mine expansion would have on the local groundwater flow system. In order to accomplish this, specific objectives were established. They included:

1) Compiling and reviewing previous work on the hydrogeology of the project area. Tasks included analysis of water well reports filed with Oregon Water Resources Department (WRD).

2) Interviewing individuals familiar with local hydrogeology, mining activities and the SDIC operations. Tasks included reviewing historic mining in the area and detailing past and current SDIC operations.

3) Analyzing the location of project area monitoring wells, piezometers and surface-water gages. Tasks included confirming elevations for measuring points and relating them to a common datum.

4) Estimating the hydraulic characteristics of project-area sediments. Tasks included analyzing previous research and evaluating information on the geologic history of the area.

5) Measuring, documenting and analyzing water-level data collected from piezometers, monitoring wells and surface-water gages to provide basis for a conceptual model. A database of water-level elevations was generated to support this objective.

6) Developing a conceptual model of the local groundwater flow system and surface-water groundwater interaction based on the information gained from Objectives 1 through 5 above.
7) Creating a groundwater flow model that tests and evaluates the conceptual groundwater flow system. Tasks included calibrating the model to match measured water levels.

8) Creating a groundwater flow model to simulate the potential effects of the proposed mine expansion on the local groundwater flow system. Several methodologies were explored.

9) Analyzing flow model results and determination/quantification of actual mining effects.

Report Organization
The text of this report provides a discussion of the results and conclusions from the background research, field investigations and groundwater modeling. Chapter 2 provides Background information, Chapter 3 describes the Research Methods, and Chapter 4 details the Results of the study. Chapter 5 contains a discussion of Uncertainty and Limitations and Chapter 6 includes Selected References. Figures are included after the text and Appendices A, B C and D contain supporting data.

CHAPTER 2: BACKGROUND

As shown on Figure 1, the project area is about 2 miles northeast of the town of Scappoose in Columbia County, Oregon. The site is on the western side of the Columbia River valley. Elevations in the valley bottom generally range from about 100 feet Mean Sea Level (MSL) to near sea level. The west side of the river valley is bounded by the Tualatin Hills, which locally extend to more than 1,000 feet MSL in elevation.
The project area includes numerous creeks, sloughs, lakes and wetlands as shown on Plate 1, Project Area Map. Major water bodies in the area include Jackson and Scappoose Creeks, Santosh and Evans Sloughs, Scappoose Bay and the Multnomah Channel, which connects the Willamette and Columbia Rivers. Dense vegetation exists along Jackson Creek, Evans and Santosh Sloughs and scattered small stands of deciduous trees are also present. Most of the area is used for agriculture, including irrigated crops and pasture for cattle.

Sand and gravel mining has been conducted in the Scappoose area for decades. Several active mining operations are located directly north of the expansion area and also to the west. These operations currently mine sand and gravel below the water table, creating open-water lakes and ponds.

The expansion property (referred to as Pit E, see Plate 1) is a 423-acre parcel of relatively flat crop and pastureland that slopes downward gradually from northwest to southeast. The Scappoose Industrial Airpark and rural residential properties border it on the west, Jackson Creek on the east. Residential properties and farmlands exist north and south of the site, respectively. Site elevations range from approximately 50 feet MSL at the western edge near the Scappoose Industrial Airpark to less than 10 feet MSL at the eastern border near Jackson Creek/Santosh Slough. No surface water features are present within the site boundaries.

Native vegetation is largely absent from the site, existing only as individual trees and isolated strips along fences. Elsewhere, pasture and crops cover the site.
The mining is planned to occur in excavated cells. Ponds will naturally form as the excavations extend to about 100 feet below the water table. No offsite surface-water runoff will be allowed to enter future ponds, and water levels within each mining cell will correspond with groundwater elevations in the surrounding area.

Area Geology

The project area is within the historic floodplain of the Columbia River. Ancient flows of the river deposited gravels, cobbles and boulders on top of basalt bedrock, which is present at depth. Subsequent channel meandering and intermittent flooding over millions of years covered these ancient deposits with layers of coarse-grained materials interspersed with lenses of fine-grained overbank deposits. An overlying soil, consisting of sand, silt, clay and gravel, is from 1- to 20-feet thick in much of the floodplain.

Walker and MacLeod (1991) mapped the finer-grained sediment as Holocene age (about 11,000 years ago and younger) alluvial sediment. The underlying coarse-grained material is interpreted as a combination of Late Pleistocene age (about 1.8 million years ago) catastrophic flood gravels overlying older Miocene-Pliocene age (7 to 26 million years ago) river gravels of the Troutdale Formation (Bet and Rosner, 1993). Rock-type distinctions occur between the unconsolidated gravel and the Troutdale formation, but these are not likely to be noted on drillers' logs (the primary source of geologic information). Figure 3 shows the simplified stratigraphy underlying the project area. Figures 4 and 5 show geologic cross-sections through the project area.

The following paragraphs describe the geologic units in the project area in order of increasing age:
Fine-Grained Quaternary Flood Deposits

Fluvial sediments occur to depths of 1 to 20 feet below the ground surface. These geologically recent, fine-grained overbank or flood deposits consist primarily of brown cobbly silts with some bouldery cobbly silts with silty sands and cobbly silty sands. The thickness of this unit apparently increases toward the eastern side of the project area. The permeability of this finer-grained material is less than in the underlying sediments.

Coarse-Grained Quaternary-Tertiary Flood Deposits

Below the fine-grained flood deposits, older, coarse-grained glacio-fluvial flood deposits underlie the area. These sediments, which are Quaternary to Tertiary in age, extend to depths of more than 200 feet below ground surface. The unit consists of poorly graded, rounded gravels and cobbles in a sand matrix. These deposits are the materials that are locally mined for sand and gravel.

The deposits contain scattered boulders larger than 12 inches in diameter. The deposits are locally cemented and can perch groundwater, based on observations of dewatered gravel pits southwest of the site. Groundwater can be locally confined beneath these low-permeability cemented zones. A review of water-well reports for several wells in the project area suggests that these cemented zones are discontinuous and cannot be confirmed over large distances. Hartford and McFarland (1989) report that cementation occurs in both the Quaternary gravels and the deeper Troutdale formation, thereby preventing these criteria from being used as
a distinguishing characteristic. A greenish, cemented gravel is present between depths of about 65 to 108 feet below ground surface (bgs), based on site coring data.

Site Geology

The geology beneath the expansion site is consistent with the units described above, based on the conditions encountered near and below the adjacent GNW Pits A and B (Figure 2). Boring logs for 94B1, 94M1, 94M2, 94M3 and 94M4 (see Appendix C) and Figures 3 and 4 provide details on the subsurface geology.

A discontinuous silt unit was encountered in the upper unconsolidated sand and gravel zones in borings 94M2 and 94M4. The silt unit, where present, appears to be 10- to 15-feet-thick.

Cemented and unconsolidated sand and gravel was encountered in borings 94M1, 94M2 and 94M3. The cemented zone appears to be discontinuous beneath the site, based on the information from these borings. In boring 94M1 (the only boring that extensively explored the vertical thickness of this layer), the cemented zone extended to -200 feet MSL and was more than 90-feet thick. The full thickness of the cemented zone in boring 94M1 is unknown since this boring did not completely penetrate the cemented material. Based on reports by others, it is inferred that unconsolidated silts, sands and gravels are present below the cemented zones.

Soils

Maps compiled by the U.S.D.A. Soil Conservation Service (SCS) show two soil series exist at the site (SCS, 1986). These series are the Sauvie silty clay loam and the Sifton loam. The Sauvie silty clay loam occurs in the southeastern portion of the property.
along Jackson Creek and the Sifton loam covers the remainder of the site. Both soils are described as deep to very deep (extending deeper than 60 inches below ground surface). The Sauvie series is described as poorly drained soil formed on recent silty alluvium. The Sifton series are classified as somewhat excessively well-drained soils formed in gravely alluvium mixed with volcanic ash.

Surface Water

As previously discussed, the project area is within the historic floodplain of the Columbia River (see Plate 1). In addition to the Columbia River, principal drainages in the area include:

- Multnomah Channel east of the site, which discharges to the Columbia River at Scappoose Bay (south of St. Helens, Oregon);
- Jackson Creek and Santosh Slough immediately east of the site, which discharge either to Evans Slough or to the SDIC tide gate at the north end of Santosh Slough, depending on season; and
- Scappoose Creek west and northwest of the site, which drains to lowlands northwest of the site and eventually Scappoose Bay.

Some of the above features are natural, although the U.S. Army Corps of Engineers (COE) and the SDIC have substantially modified local drainages. The Jackson Creek/Santosh Slough system functions as a drain to collect water from other smaller drainage ditches in the district. This water is directed either to Evans Slough when the Columbia River is high or to the tide gate when the Columbia River is low.
The COE modifications to surface water features are primarily related to flood control and to allow shipping in the Columbia River and related major waterways. The SDIC's improvements control water levels in private farmland within the historic floodplain. The COE assists the SDIC with dewatering system improvements since the COE provides additional flood control structures, such as the dike along the Multnomah Channel.

Other surface-water features within the project area include the numerous channels and ditches within the SDIC, and ponds created by gravel mining operations. These ponds are at Santosh Pits A and B (north of the expansion area), and at the Scappoose Sand and Gravel operation, about ½ mile west of the expansion area. In addition, the area includes a barge canal north of Pit A, and several small seasonal ponds within the SDIC.

Levels and stages of surface-water features in the project area are influenced by regional as well as local conditions. A major regional influence on surface-water elevations is the Columbia River stage, which, in turn, is influenced by conditions such as tidal effects, seasonal precipitation and snowmelt, and the regulation of upstream dams.

Tidal influences, which alter the river stage as much as several feet along this reach of the Columbia River are pronounced during low water periods, but are less significant during high river stages (Helper, 1991). The mean monthly river stage ranges from about 15 feet MSL in January to about 5 feet MSL in September (Helper, 1991). The Barge Canal, north of the site, allows barges to move from the Santosh loading area to the Multnomah Channel. The water level of the Barge Canal is considered to be roughly equal to the Columbia River stage because of its direct connection to the river.
Local controls on surface-water elevations include runoff from precipitation, recharge from groundwater and the pumping schedules of the SDIC.

No natural surface water features or drainages exist on the proposed expansion site, based on aerial photos and site observations. However, farm roads and some irrigation and drainage ditches provide conduits for surface runoff. This runoff collects in low-lying areas and forms intermittent, temporary puddles. Precipitation for this area is estimated to be approximately 40 inches/year, based on data from the collecting station at St. Helens, Oregon.

Scappoose Drainage Improvement Company Operations

The SDIC (formerly known as the Scappoose Drainage District or SDD) was formed as a drainage district in 1922 to manage water levels in the agricultural lands along the floodplain. Numerous drainage canals, levees, tide gates and pump stations were subsequently constructed between 1926 and 1928. In 1939 and 1940, the COE reinforced the SDIC's levees and upgraded the pumping capacity of the system. Additional improvements were added through the years.

The COE studied other SDIC improvements (described in a June 1971 COE Design Memorandum) and subsequently completed further work. This work included removing and replacing major pumping stations and tide gates, upgrading the levee and constructing a sublevee southeast of the barge canal (Ogden Beeman & Associates, 1979). The SDIC tries to maintain water levels within the Jackson Creek and Santosh Slough system at approximately elevation 4 to 4.75 feet MSL during winter and elevation 3 to 3.75 feet MSL.
during the summer (personal communication, SDIC). The calculated recurrence frequency of the Standard Project Flood is about 1,000 years (COE, 1971).

Dewatering inside the SDIC boundaries is conducted by pumping surface water from drainage canals, which in turn, are connected to numerous ditches. Five pump stations currently exist near the site. Each station is related to a sub-basin within the district. Four of the stations (referred to as the Johnson, Honeyman, Hoven and Smith pump stations) are in the interior of the SDIC and discharge water to Jackson Creek, Santosh Slough or Evans Slough inside the SDIC boundaries. The fifth station, known as the Evans pump station, extracts water from the east end of Evans Slough and discharges it into Multnomah Channel, which is outside the SDIC boundaries. Plate 1 shows the locations of these pumps and features.

The majority of SDIC pumping occurs in the winter when precipitation rates and water levels reach their seasonal highs, although the SDIC also controls creek and slough levels in the summer to maintain water for irrigation. Pumps at each station automatically start when float switches exceed pre-set elevations. The Johnson, Honeyman and Hoven pump stations, which pump in the interior of the SDIC, each have capacities of 3,000 gallons per minute (gpm) and discharge into Jackson Creek/Santosh Slough. The Evans pumping station at the eastern edge of the SDIC has four pumps, each reportedly capable of discharging a maximum of 32,600 gpm at 27 feet of head.

The Smith pump station is nearest the site. This station is also within the lowest elevation and largest subbasin of the SDIC. The Smith station has two pumps with capacities of 3,000 gpm and 6,000 gpm. These pumps extract water from a network of
ditches and discharge it to a ditch connected to Jackson Creek/Santosh Slough. From Jackson Creek, the water flows northward into Santosh Slough or enters Evans Slough and is pumped into Multnomah Channel. During low stages on the Columbia River, tide gates at the north end of Santosh Slough allow water to gravity flow out of the SDIC. During high river stages, water flows south from Santosh Slough and north from Jackson Creek into Evans Slough and is eventually pumped into the Multnomah Channel.

Groundwater

Regional groundwater flow is inferred to be from the highlands west of the project area toward the Multnomah Channel east of the proposed expansion site. The aquifer system in the project area is interpreted to be unconfined, although locally confined conditions appear to exist. The Quaternary-Tertiary fluvial deposits in the area are the principal, uppermost regional water-bearing unit. These deposits are referred to by Swanson, et al. (1993) as the Upper Sedimentary Subsystem of the Portland Basin. This subsystem is described as being composed of two hydrogeologic units, the Unconsolidated Sedimentary Aquifer and the underlying Troutdale (or Consolidated) Gravel Aquifer. This interpretation is consistent with Hartford and McFarland’s (1989) Unconsolidated Gravel/Troutdale Gravel Aquifer. Within this subsystem, the two units are not separated by geologic structures or a major change in sediment types, but are commonly distinguished by a change in the amount of cementation.

The referenced authors describe the Unconsolidated Sedimentary Aquifer as being composed of catastrophic flood deposits, and consisting of bouldery gravels to silt. Drillers’ logs indicate cemented or clayey gravels mark the transition from the unconsolidated
gravels to consolidated gravels. Swanson et al. (1993) shows the Unconsolidated Sedimentary Aquifer to generally be less than 200 feet in thickness. It likely increases up to 400-feet thick along the axis of the Columbia River channel, based on data from wells drilled on Sauvie Island to the south of the project area.

The Troutdale Gravel Aquifer is present in most parts of the Portland Basin. This aquifer occurs within consolidated formations of poorly to moderately cemented conglomerates (consisting of sands, gravels and cobbles), and sandy conglomerates and gravels. The conglomerates are derived from ancestral Columbia River-borne sediments. Gravels in the unit are derived primarily from basalt flows of the Columbia River Basalt Group, although the full range of rock types found in the Columbia River drainage are represented. Lenses of sand, silt and clay are also common in the Troutdale Gravel Aquifer. The aquifer commonly ranges from about 100- to 400-feet thick.

The hydrostratigraphic units underlying the Upper Sedimentary Subsystem of the Portland Basin are described by Swanson et al. (1993) as the Undifferentiated Fine-Grained Sediments and Older Rocks. Neither of these units appears to be penetrated by any wells in the project area and both consist of relatively low permeability formations. These units probably represent the lower boundary of the Portland Basin groundwater system. It is estimated from Swanson et al. (1993) that the top of these units occur at a depth of at least 300 feet below ground surface in the project area.
Project Area Conditions

Drillers' logs for water wells in the project area were compiled and reviewed. Wells that could be located from the reported information and field observations are shown on Plate 1 and listed in Table 1.

The project area drillers' logs describe cemented zones and layers of fine-grained sediments, with up to 80 feet of confining head in the water-bearing zones. Variations in the reported amount of confining head between wells that are in relatively close proximity provide strong evidence that the cemented zones and fine-grained sediments comprise a system of discontinuous lenses. These lenses tend to locally confine groundwater, but still allow hydraulic communication to occur between different areas of the aquifer. For example, wells 4/1-31dd1 and 4/1-31dd2 have a difference in confining head of 24 feet even though these wells are less than 500 feet apart and are completed at depths of 53 and 60 feet respectively. These conditions are not uncommon in fluvial environments.

Keener (1983) estimated hydraulic parameters in the area using specific capacity test data reported on 39 drillers' logs. Keener reports "the predominant computed permeability coefficient lies between 70 and 580 ft/day. However, there are sufficient wells with computed values ranging up to 1,220 ft/day to force the average computed value to 400 ft/day (with the extremes excluded)." He also reports the results of tests conducted by others. One such test provided a permeability estimate of up to 8,640 ft/day in a large-
Table 1. Project Area Water-Well Data Summary

<table>
<thead>
<tr>
<th>Well Number</th>
<th>Total Depth of Well (ft.)</th>
<th>Screened Interval (ft.)</th>
<th>Depth to First Water (ft.)</th>
<th>Static Depth to Water (ft.)</th>
<th>Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/1-6ab1</td>
<td>79.5</td>
<td>open casing</td>
<td></td>
<td></td>
<td>Mar-61</td>
</tr>
<tr>
<td>3/1-6ab2</td>
<td>50</td>
<td>"</td>
<td>38</td>
<td>Aug-66</td>
<td></td>
</tr>
<tr>
<td>3/1-6ab3</td>
<td>70</td>
<td>"</td>
<td>39</td>
<td>Aug-68</td>
<td></td>
</tr>
<tr>
<td>3/1-6bb1</td>
<td>80</td>
<td>"</td>
<td>50</td>
<td>Aug-58</td>
<td></td>
</tr>
<tr>
<td>3/1-6bb2</td>
<td>80</td>
<td>"</td>
<td>60</td>
<td>Jun-68</td>
<td></td>
</tr>
<tr>
<td>3/1-6bb3</td>
<td>63</td>
<td>open casing</td>
<td>18</td>
<td>Apr-94</td>
<td></td>
</tr>
<tr>
<td>3/1-6ca</td>
<td>81</td>
<td>"</td>
<td>38</td>
<td>Apr-67</td>
<td></td>
</tr>
<tr>
<td>3/1-7cd</td>
<td>80</td>
<td>open casing</td>
<td>3</td>
<td>Dec-94</td>
<td></td>
</tr>
<tr>
<td>3/1-8da</td>
<td>35</td>
<td>open casing</td>
<td>30</td>
<td>Sep-92</td>
<td></td>
</tr>
<tr>
<td>3/2-12ad</td>
<td>138</td>
<td>"</td>
<td>124</td>
<td>42</td>
<td>Jul-74</td>
</tr>
<tr>
<td>3/2-12bb</td>
<td>94</td>
<td>"</td>
<td>89</td>
<td>52</td>
<td>Jul-74</td>
</tr>
<tr>
<td>3/2-12dc1</td>
<td>177</td>
<td>"</td>
<td>85</td>
<td>25</td>
<td>Sep-73</td>
</tr>
<tr>
<td>3/2-12dc2</td>
<td>164</td>
<td>113-155</td>
<td>45</td>
<td>39</td>
<td>Jul-58</td>
</tr>
<tr>
<td>3/2-1aa</td>
<td>149</td>
<td>open casing</td>
<td>70</td>
<td>45</td>
<td>Dec-79</td>
</tr>
<tr>
<td>3/2-1ba</td>
<td>90</td>
<td>"</td>
<td>55</td>
<td>Aug-57</td>
<td></td>
</tr>
<tr>
<td>3/2-1cc</td>
<td>210</td>
<td>"</td>
<td>56</td>
<td>34</td>
<td>Jul-60</td>
</tr>
<tr>
<td>3/2-1cd</td>
<td>120</td>
<td>"</td>
<td>97</td>
<td>45</td>
<td>Aug-91</td>
</tr>
<tr>
<td>3/2-1db</td>
<td>120</td>
<td>open casing</td>
<td>10</td>
<td>10</td>
<td>Feb-93</td>
</tr>
<tr>
<td>3/2-2ca</td>
<td>280</td>
<td>260-280</td>
<td>265</td>
<td>245</td>
<td>May-89</td>
</tr>
<tr>
<td>3/2-2dd1</td>
<td>260</td>
<td>165-260</td>
<td>246</td>
<td>124</td>
<td>Aug-88</td>
</tr>
<tr>
<td>3/2-2dd2</td>
<td>250</td>
<td>open casing</td>
<td>65</td>
<td>58</td>
<td>May-92</td>
</tr>
<tr>
<td>4/1-31ad1</td>
<td>70</td>
<td>open casing</td>
<td>21</td>
<td>42</td>
<td>Jul-69</td>
</tr>
<tr>
<td>4/1-31ad2</td>
<td>33</td>
<td>"</td>
<td>17</td>
<td>17</td>
<td>Dec-80</td>
</tr>
<tr>
<td>4/1-31bd</td>
<td>118</td>
<td>"</td>
<td>25</td>
<td>3</td>
<td>Jun-80</td>
</tr>
<tr>
<td>4/1-31cb</td>
<td>127</td>
<td>"</td>
<td>40</td>
<td>40</td>
<td>Aug-51</td>
</tr>
<tr>
<td>4/1-31cd</td>
<td>85</td>
<td>open casing</td>
<td>48</td>
<td>48</td>
<td>Feb-67</td>
</tr>
<tr>
<td>4/1-31da1</td>
<td>60</td>
<td>"</td>
<td>45</td>
<td>45</td>
<td>May-85</td>
</tr>
<tr>
<td>4/1-31dd1</td>
<td>53</td>
<td>open casing</td>
<td>35</td>
<td>35</td>
<td>Oct-82</td>
</tr>
<tr>
<td>4/1-31dd2</td>
<td>60</td>
<td>"</td>
<td>60</td>
<td>35</td>
<td>Oct-79</td>
</tr>
<tr>
<td>4/1-32bb</td>
<td>85</td>
<td>"</td>
<td>20</td>
<td>5</td>
<td>Nov-73</td>
</tr>
<tr>
<td>4/1-32cb</td>
<td>85</td>
<td>"</td>
<td>32</td>
<td>32</td>
<td>Apr-82</td>
</tr>
<tr>
<td>4/1-33cd</td>
<td>106</td>
<td>"</td>
<td>80</td>
<td>80</td>
<td>Sep-79</td>
</tr>
<tr>
<td>4/2-36bb</td>
<td>148</td>
<td>"</td>
<td>110</td>
<td>97</td>
<td>Sep-91</td>
</tr>
<tr>
<td>4/2-36bc</td>
<td>150</td>
<td>"</td>
<td>120</td>
<td>70</td>
<td>Aug-77</td>
</tr>
<tr>
<td>4/2-36cc</td>
<td>135</td>
<td>"</td>
<td>120</td>
<td>70</td>
<td>Jul-77</td>
</tr>
</tbody>
</table>

Notes:
1) Approximate locations of the above wells to the nearest quarter-quarter section are shown on Plate 1.
2) More wells in project area than shown.
3) Data based on drillers' logs (see Appendix B).
4) Depth to first water not always reported by driller.
5) Well numbers assigned according to the following format:
 3 - Township number (north, Willamette Baseline)
 1 - Range number (west, Willamette Baseline)
 6 - Section number
 a - quarter section
 b - quarter quarter section
 1 - indicates the number of the well within the quarter-quarter section (if more than 1)
diameter shallow pit in the bottom of Santosh Pit A, but this type of test is considered less
reliable than well data.

To summarize, the groundwater system beneath the project area is a single,
unconfined aquifer composed of heterogeneous, but predominately coarse-grained fluvial
sediments. Lenses of silt locally occur and areas of significant thicknesses of cemented
sediments are common, apparently resulting in localized confinement of groundwater.

Previous Investigations
Work for this project was initiated in 1993 by David J. Newton Associates, Inc.
(DNA) at the request of the property owner, Lone Star Northwest (now known as Glacier
Northwest (GNW)). GNW operates sand and gravel mining and processing operations near
Scappoose, Oregon and desired to expand mining to adjacent farm property to the south.

A number of technical studies relating to aggregate mining have been conducted
in the area. These studies have addressed issues regarding the quantity and quality of
aggregate in the area; the presence, quality and use of surface water and groundwater; and
environmental concerns (see Appendix A).

Monitoring of groundwater and surface water conditions in the project area began in
April 1993. The purpose of the monitoring was to collect water-level data to help
characterize existing conditions at the site. Initial groundwater modeling was conducted by
others in 1993 (DNA, 1994a) using data available at that time. This initial model simulated
a shallower excavation and was designed to estimate only the amount of additional
groundwater flow that would result from that excavation. This was done by directing all
groundwater discharge in the model to a single point, rather than through a cross section of the aquifer.

Subsequent to the initial modeling effort, significant additional geologic and hydrogeologic data were collected from new borings and water-level measurements. These data provided details into such things as the nature of the aquifer material and seasonal fluctuations in water-table position. It was determined that modeling efforts could be improved to produce a more realistic simulation of the project-area conditions. This new model uses some of the same data as the previous effort but differs in almost all model design aspects. The modeling effort for this study began in September 1995 and therefore uses data collected up to that time. This report details the results of that work and evaluates the predicted impacts to the floodplain groundwater system. These results are based on:

- Subsurface explorations and field-testing conducted by others prior to this project.
- Subsurface explorations completed in support of the mine expansion project.
- Water-level data and field observations compiled from April 1993 to September 1995.
- Numerical modeling of the groundwater flow conditions that will likely result if the mine is expanded to include a 460-acre excavation.
CHAPTER 3: RESEARCH METHODS

As discussed earlier in this report, a previous investigation (DNA, 1994a) attempted to model the effects of mining Pit E. This effort relied on less than one year of water-level measurements collected on and around the site and a limited number of shallow borings to characterize the geologic and hydrogeologic conditions beneath the site. In order to account for seasonal fluctuations in groundwater conditions and to more accurately simulate a revised mining plan, an additional data collection effort was deemed necessary.

Subsurface Investigation

To investigate site conditions, 10 wells on and adjacent to the proposed expansion property were installed (Plate 1, Table 2). Water levels in these and several previously existing wells on and near the site were regularly measured beginning in April 1993. Table 2 lists information on the wells monitored for this investigation. Four surface-water gages placed in Jackson Creek were also used to monitor changes in surface water elevations. The purpose of measuring these water levels was to:

- Document any seasonal changes in groundwater elevations beneath the site.
- Obtain data on groundwater flow directions and gradients, and seasonal fluctuations that may occur.
- Collect data to help define surface water/groundwater relationships.

With the above information, it was possible to compare the model-predicted water levels with those observed.
Table 2. Well Completion Details

<table>
<thead>
<tr>
<th>Well Number</th>
<th>Total Depth (feet bg)</th>
<th>Screened Interval Depth (feet bg)</th>
<th>Casing Diameter (inches)</th>
<th>Date Installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-1</td>
<td>9</td>
<td>7-9</td>
<td>1</td>
<td>3/93</td>
</tr>
<tr>
<td>P-2</td>
<td>10</td>
<td>8-10</td>
<td>1</td>
<td>3/93</td>
</tr>
<tr>
<td>P-3</td>
<td>11</td>
<td>9-11</td>
<td>1</td>
<td>3/93</td>
</tr>
<tr>
<td>P-4</td>
<td>34</td>
<td>unknown</td>
<td>2</td>
<td>unknown</td>
</tr>
<tr>
<td>P-5</td>
<td>9</td>
<td>7-9</td>
<td>1</td>
<td>3/93</td>
</tr>
<tr>
<td>P-6</td>
<td>20</td>
<td>18.5-20</td>
<td>2</td>
<td>4/93</td>
</tr>
<tr>
<td>P-7</td>
<td>20</td>
<td>18.5-20</td>
<td>2</td>
<td>4/93</td>
</tr>
<tr>
<td>P-8</td>
<td>46</td>
<td>unknown</td>
<td>2</td>
<td>unknown</td>
</tr>
<tr>
<td>MW-1</td>
<td>42</td>
<td>32-42</td>
<td>2</td>
<td>4/93</td>
</tr>
<tr>
<td>MW-2</td>
<td>50</td>
<td>35-50</td>
<td>4</td>
<td>3/94</td>
</tr>
<tr>
<td>MW-3</td>
<td>55</td>
<td>40-55</td>
<td>4</td>
<td>2/94</td>
</tr>
<tr>
<td>MW-4</td>
<td>40</td>
<td>25-40</td>
<td>4</td>
<td>2/94</td>
</tr>
<tr>
<td>4/1-31cd (Havlic)</td>
<td>85</td>
<td>open casing</td>
<td>8</td>
<td>2/67</td>
</tr>
</tbody>
</table>

Numerical Modeling

To understand how the mine expansion might influence area groundwater levels and flow, a numerical model, of the site and surrounding area was constructed using MODFLOW (McDonald and Harbaugh, 1988). MODFLOW, a three-dimensional, finite-difference groundwater flow model developed by the USGS, was chosen because of its flexibility of application and its widespread use and acceptance among groundwater professionals (Anderson and Woessner, 1992). The modeling was designed to simulate existing surface water and groundwater conditions, and provided predictions of groundwater conditions that may result from the proposed mining. These results were used to estimate changes in groundwater flow directions, gradients and the volume of groundwater that would annually move through a given area, and to and from the SDIC boundaries.
The new model uses some of the same data as a previous effort (DNA, 1994a) but differs in almost all model design aspects.

Modeling Process

The modeling process began by developing a conceptual visualization (model) of the hydrogeologic system, followed by constructing a corresponding numerical model that incorporates field data (such as water-level measurements), simplified assumptions about the aquifer system and professional judgments of the system's hydraulic parameters. The results obtained from the numerical model are subsequently compared to the conceptual model and field data. This comparison can indicate whether the underlying assumptions and generalized estimates of hydraulic parameters are: 1) reasonable; or 2) should be revised and the numerical model adjusted and reanalyzed. An iterative process of comparing and modifying the conceptual and numerical models typically continues until both models are in general agreement and the water-level conditions produced by the numerical model are reasonably similar to those observed in the field.

This process can also be effective in identifying the need for additional data or directed research. These new requirements are evaluated and, if necessary, completed and incorporated into the model. At this stage, the model is ready for use as a predictive tool to examine how changes in the existing hydrogeologic system will likely influence groundwater elevations and flow.

In fluvial environments, subsurface materials are generally heterogeneous and anisotropic, and hydraulic parameters can be highly variable over short distances. As a result, numerical models in these types of systems are based on best estimates of hydraulic
parameters (such as hydraulic conductivity), and a number of model simulations are generally carried out, with a specific set of hydraulic parameters used in each simulation. The parameters can be adjusted until the model results match field-measured conditions according to established criteria. This is the process of model calibration.

Sensitivity analyses were conducted for this study to evaluate how the parameter uncertainties influence the model results (Anderson and Woessner, 1992).

The model parameters used and assumptions made in this project are intended to be as simple as possible. It is important to remember that this model is a design and evaluation tool that is based on these simplifying conditions. As such, the model does not provide a unique solution since other model designs that are consistent with the observed data could be developed. However, the model developed for this project is appropriate for understanding the affect of the mine expansion on the groundwater flow system in the project area. Where assumptions are made, it is with the objective of producing the maximum change to the flow system, and thus provide conservative results.

CHAPTER 4: RESULTS

Site Conditions

Tables B1 and B2 in Appendix B summarize water-level data collected during this investigation. Figure 6 is a hydrograph of the same data. One piezometer, P-3, was monitored, but later abandoned due to casing damage. Measurements in well 4/1-31cd were interrupted in August 1994 due to modification to the wellhead, which made access difficult.
As part of this work, surface-water levels were monitored at stream gages on Jackson Creek/Santosh Slough. These gages are designated WL-1, WL-5, SG-1 and SG-2. Plate 1 shows the locations of these stream gages and Figure 6 presents hydrographs of the measurements collected between April 1993 and September 1995. Table B2 summarizes the surface-water data collected for this investigation.

Groundwater

The average groundwater elevation in the monitored wells ranged from 3.9 feet MSL at P-8 to 4.9 feet MSL at MW-1. Water levels are generally lowest along the eastern margins of the site. Water-level fluctuations in each well averaged approximately 2 feet annually, although P-6 changed by almost 2.7 feet in 1993 (see Table B1). Based on the collected data, the direction of groundwater flow beneath the majority of the site is generally from the northwest to the southeast.

Figures 7 and 8 are water-level maps based on May 15 and September 22, 1995 measurements. These dates were selected as being representative of typical high-water and low-water conditions. As shown in Figure 7, water levels on May 15, 1995 ranged from approximately 5.5 feet MSL on the west side of the site to approximately 5.2 to 5.4 feet MSL along the eastern boundary. For comparison, water levels during the low-water conditions on September 22, 1995 (Figure 8) show water levels ranged from approximately 3.8 feet MSL on the west side of the site to approximately 3.1 to 3.6 feet MSL along the eastern boundary.

As shown on Figures 7 and 8, the inferred direction of groundwater flow beneath the site remains essentially unchanged between the May 15 and September 22 high- and low-
water conditions. Although the flow direction is not uniform, (probably due to local variations in sediment composition) the predominant flow direction beneath the majority of the site is inferred to be to the southeast. Furthermore, although the average water-level difference is approximately 2.2 feet for these dates, the inferred groundwater gradients are approximately consistent at 0.0002 to 0.0004 through the majority of the site.

Groundwater mounding is apparent around P-7 during periods of low water conditions, based on water-level measurements. This mound influences the nearby gradients and directions of groundwater movement. For example, groundwater appears to move outward from well P-7 with an apparent maximum gradient of up to 0.0002 based on September 1995 data. It’s possible that an upward vertical flow gradient caused by variations in the hydraulic conductivity of the sediments could be a cause of the groundwater mounding, which apparently occurs only during the dry summer months.

Surface Water
Water levels in Jackson Creek/Santosh Slough remain relatively stable due to continuous recharge to the creek from the Smith pump and other interior SDIC pumping plants (Plate 1).

Measurements collected between May 24, 1993 and September 22, 1995 showed the average annual fluctuation at the stream gages was approximately 1.9 feet, although SG-2 fluctuated almost 3 feet in 1994 (see Table B2). Similarly, the average elevation of Jackson Creek was 3.9 feet MSL. The maximum observed water level on Jackson Creek was 5.8 feet MSL at SG-2 on April 11, 1994 and the minimum observed water level was 2.4 feet
MSL at WL-5 on August 4, 1994. Gage WL-1 was destroyed in September 1993; therefore subsequent measurements are not available for this location.

The relative positions of the water levels at the four Jackson Creek/Santosh Slough gages (SG-1, SG-2, WL-1 and WL-5) indicate a changing direction of flow in these streams, and at times, stagnant conditions. Pumping to the south of SG-1 in the SDIC apparently causes Jackson Creek to sometimes flow to the south. At other times, it flows north to either the Evans pump station (via Evans Slough) or to Santosh Slough and the tide gate.

Stream-stage data are not available for Scappoose Creek. According to the USGS St. Helens, Oregon and Washington quadrangle map, Scappoose Creek flows north between elevations of 0 and 30 feet MSL along its course, which is approximately 2,500 to 4,500 feet west of the proposed expansion.

Surface Water/Groundwater Relationships

Drillers’ logs for water-wells adjacent to Scappoose Creek give an indication of the relationship between the creek and groundwater. Many of these wells (including wells 3/2-1aa, 3/2-1cd, 4/1-31ad1, 4/1-31bd and 4/1-31cb) indicate significantly different static water levels than the apparent elevation of the nearby creek. This difference is attributed to the hydraulic separation of the creek from groundwater. This separation is likely due to deposition of fine-grained sediments along the banks and bed of the creek, and/or cementation of subsurface sediments in the area. Several wells, 3/2-1db and 3/1-6bb3, are reported to have a static water levels apparently consistent with the elevation of the creek at their locations (see Table 1 and Plate 1). However, it is concluded from the majority of the data that Scappoose Creek has limited hydraulic connection with the groundwater in the
area west of the project site. This conclusion is supported by the fact that lower Scappoose Creek maintains low-gradient flow in the floodplain throughout the summer, indicating it is not losing significant flow to groundwater.

Stream gages WL-1 and WL-5 on Jackson Creek are sited near wells P-1 and P-5 on the west bank of the Creek (see Plate 1). These monitoring pairs (P-1/WL-1 and P-5/WL-5) provide data on the water-level relationship between surface water and groundwater. The data for both monitoring pairs show similar trends, and in many cases, the measurements differ by only tenths of a foot (see Figure 6 and Tables B1 and B2). These data indicate that Jackson Creek is well connected to the groundwater system, and that groundwater flow is toward the creek in this area. The creek is maintained by the SDIC to receive flow from the subsurface and SDIC pumps, and carry the water to Evans or Santosh Sloughs. Observations indicate this system is operating as intended.

A Corps of Engineers report (COE, 1971) indicates that seepage into the SDIC from Multnomah Channel increases when the Columbia River stage rises. This is logical considering the significant volume of coarse sediments in the area. The SDIC maintains water levels within the district that are substantially less than the river stage during much of the year. This condition likely induces surface water to recharge the groundwater system within the SDIC. It is also likely that the influence of the river stage on surface and groundwater levels decreases with distance from the Multnomah Channel, and that at some point within the SDIC, this influence is offset by the recharge of surface water from the west.
Overview of Conceptual Model

The conceptual model of the area groundwater flow system is based on the hydrogeology of this part of the Portland Basin as described in Chapter 2 and interpretation of data collected between 1993 and 1995 (see Figure 9).

The uppermost aquifer system underlying the project area is interpreted to be 200 to 400-feet thick, with the thickness increasing toward the Columbia River to the east, and decreasing and eventually terminating against the Tualatin Mountains to the west. The aquifer is underlain by low permeability siltstones, mudstones and claystones as described by Swanson et al. (1993). The aquifer system appears to be laterally extensive along the north-south axis, which is parallel to this reach of the Columbia River.

Recharge to the aquifer underlying the project area occurs from the Columbia River to the north, northwest (via Scappoose Bay wetlands) and east; highlands to the west; and infiltration from precipitation, dry wells, and septic systems both within and upgradient (west) of the project area. Discharge from the aquifer is inferred to occur from the SDIC dewatering system and flow to the Columbia River (via Multnomah Channel) during low river stages.

The predominant directions of groundwater flow appear to be toward the SDIC basin from the Multnomah Channel in the east, north and northwest, and the higher elevations to the west. Groundwater appears to move from northwest to southeast beneath the proposed expansion site. During high-water conditions, shallow groundwater recharges open ditches and is removed to the Multnomah Channel via the network of pumps and canals. During low-water conditions, the direction of groundwater movement and gradient
remain unchanged, but water is removed from the SDIC basin via the tide gate at the north end of Santosh Slough and by pumping from the Evans pumps. Flow gradients through the majority of the project area are inferred to be approximately 0.0002 to 0.0004, based on measured water levels on and near the site. Water-level data also show a groundwater mound in the northeast corner of the site as discussed elsewhere in this report, but this is inferred to be localized, based on well measurements and does not appear to have a significant effect on the larger-scale groundwater flow system.

Flow rates and leakage rates of the Multnomah Channel, Scappoose Creek, Barge Canal or Jackson Creek/Santosh Slough, and the volume of water removed from the aquifer by SDIC pumping are unknown. However, as discussed in Chapter 4, there are indications that leakage to or from Scappoose Creek is relatively limited and that Jackson Creek/Santosh Slough is relatively well connected to the aquifer. The Barge Canal is presumed to be an extension of the Multnomah Channel and is likely hydraulically connected with the aquifer, based on the coarse nature of the underlying sediments and the fact that the canal is dredged to maintain its depth.

Conceptual Model Water Balance
In general, a simple water balance (or hydrologic budget) for a given area of aquifer can be described by the following equation:

\[\text{Flow in} = \text{Flow out} +/-(\text{change in aquifer storage}) \]

In the steady-state condition as considered here there is no change in storage, therefore flow in must equal flow out. The components of inflow are recharge from precipitation and recharge from upgradient groundwater flow. Outflow components consist of groundwater
discharge and discharge from pumping wells (if any). It is presumed there is no surface water recharge (except leakage from the Barge Canal) or discharge from pumping wells in the conceptual model.

Groundwater inflow can be calculated using Darcy’s Law:

\[
Q = K_i A
\]

Where:

- \(Q \) = groundwater flow rate
- \(K \) = hydraulic conductivity of the aquifer material
- \(i \) = groundwater flow gradient
- \(A \) = cross-sectional area through which groundwater is flowing

The length of the cross-sectional flow area (or discharge boundary) is defined by a line drawn to generally connect the SDIC pumps east of the expansion site from about SG-1 on the south to the Barge Canal on the north (see Figure 10). The thickness of the aquifer is about 300 feet (slightly thicker during high-water conditions) and groundwater is flowing generally west to east.

Groundwater flow gradients range from 0.0002 (during low-water conditions) to 0.0004 (during high-water conditions) over the expansion site as discussed previously. Higher gradients likely exist in the northern part of the study area between the Barge Canal on the northwest and the SDIC pumps on southwest due to the Barge Canal level being at a somewhat higher elevation than groundwater. Although no groundwater data exists for this area, the level of the Barge Canal and pumping level in the SDIC are known. These data indicate groundwater flow gradients ranging 0.0003 to 0.001 for high and low water conditions respectively.
The value of hydraulic conductivity used is 1,225 ft/day. The selection of this value is discussed in detail later in this Chapter.

A recharge factor (17 inches/year) is calculated for a surface area that extends from the discharge boundary described above (on the east) westward to approximately Highway 30 and to the Barge Canal in the northwest. The source of this value is described in detail later in this Chapter.

Uncertainty results from errors that can be present in the values of parameters that are measured or calculated. Winter (1981) estimates that errors in annual rainfall estimates and evaporation rates (used in this model as part of estimated recharge) can be as high as 10 to 15%. Calculation of hydraulic gradients and the position and nature of hydrogeologic boundaries may contain errors due to interpretation of drilling and measurement data and placement of piezometers and surface-water gages. In addition, Winter (1981) concludes that it is probably not possible to estimate hydraulic conductivity any closer than 50% and in many cases it may be closer to 100%. Based on these error estimates, and using the method of Lee and Swancar (1996), a maximum probable error for the hydrologic budget is calculated to be ± 52%. Table 3 below contains the results of the calculations and error analysis described above.
Table 3. Conceptual Water Balance Results.

<table>
<thead>
<tr>
<th></th>
<th>Calculated Groundwater Flow (ft^3/day)</th>
<th>Range Including Error (± 52%) (ft^3/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Water Conditions</td>
<td>5,280,000</td>
<td>2,534,000 to 8,026,000</td>
</tr>
<tr>
<td>Low Water Conditions</td>
<td>2,380,000</td>
<td>1,142,000 to 3,618,000</td>
</tr>
</tbody>
</table>

Model Design

MODFLOW (McDonald and Harbaugh, 1988), a three-dimensional, finite-difference groundwater flow model developed by the USGS, was used to model the project area. MODFLOW was chosen because of its flexibility of application and its wide acceptance among groundwater professionals. The governing equations, solved by finite difference methods, upon which the MODFLOW program is based, and the computer code itself, have been independently verified by other researchers using analytical solutions. The following sections describe the model design elements used for this project and justification for each condition or assumption.

The general approach of the modeling was to develop a model that predicts the maximum water level and flow volume change to the SDIC that may occur in the SDIC during and after mining. Where parameters were estimated or simplifications were made in the model based on a likely range of values, the value was selected to cause the largest increase in the water level or flow volume to the SDIC area. This was done to prevent underestimating the effects of mining, providing a conservative result.
The modeling involved the simulation of: 1) existing hydrogeological conditions (current-conditions model); and 2) hydrogeological conditions resulting from the proposed mining (future-conditions model). The difference between the current-conditions model and the future-conditions model is the insertion of a high conductivity zone that was used to simulate the presence of the completed mine at Pit E that will extend below the water table (see Figures 9 and 10 for details of the model designs). In order to examine the range of potential influences on the groundwater system, two sets of boundary conditions were used for each of the modeled systems: 1) low-water or dry season conditions; and 2) high-water or wet season conditions. The September 22 and May 15, 1995 water-level data were selected to represent the low and high water conditions, respectively, based on analysis of the collected data.

A steady-state model was used due to the limited information on the aquifer storage properties within the project area, and the inherently higher data demands of a transient simulation. A three-dimensional model was selected since this allows for simulating different hydrogeologic units within a thicker aquifer system. The model design presumes that the existing and proposed excavations penetrate only part of the total aquifer thickness.

Model Grid
A regularly spaced, 250-foot-square grid was horizontally imposed over the project area (see Figures 10 and 11). The two-layer model contained 5,204 active cells. This level of discretization was selected to balance the level of detail needed with the desire to maintain a model of manageable size. Finer and variable nodal spacing was judged unnecessary because of the relatively low and consistent groundwater gradients in the project area.
In the model, the aquifer system is divided into two layers. The position of the boundary between the two layers is intended to approximate the projected maximum excavation depth at the proposed expansion site (see Figure 9). The model allows water to flow freely between the two layers since this boundary does not reflect changes in geology, but is only intended as a means of projecting the proposed excavation. The layer boundary is located at an elevation of -100 feet MSL in the model. Since the water table at the site is typically at an elevation of 5 to 8 feet MSL, the model slightly overestimates the depth of the pit. This overestimation is a conservative simplification since a larger excavation would produce a greater influence to the groundwater flow system.

Boundary Conditions

Two types of boundaries were used: no-flow and specified-head. The locations of each type of boundary are shown in Figures 10 and 11.

No-Flow Boundaries

No-flow boundaries are used to constrain the northeast to southwest groundwater flow. The northern and southern no-flow boundaries are placed roughly parallel to the inferred direction of groundwater flow and, therefore, should not alter the direction of flow. A no-flow boundary is also present between the Barge Canal and the western specified-head boundary, separating the model from the wetlands to the north (which are assumed not to contribute groundwater to the area being modeled). The bottom no-flow boundary simulates the low-permeability, fine-grained sediments that are inferred to exist at an elevation of approximately -300 feet MSL.
Specified-Head Boundaries

The east and west margins of the model are composed of specified-head boundaries. The western specified-head boundary is composed of two reaches. The northwest reach coincides with the Barge Canal, although limited field data are available to define historic water levels in the Barge Canal. As a result of this limitation, the Columbia River stage recorded at the Vancouver, Washington gage was used. This gage is approximately 15 river miles upstream from the project area and, therefore, should always be somewhat higher than the stage of the river at the Barge Canal. This results in a water level estimate that is slightly high at this boundary (probably $\frac{1}{2}$-foot or less), a conservative assumption because a higher water level results in a greater volume of water entering the model. On May 15, 1995, the average gage reading was 10.2 feet MSL and the average September 22, 1995 gage reading, 4.4 feet MSL.

The west reach of the western specified-head boundary follows a general southwest to northeast line located west of Scappoose Creek. As discussed elsewhere in Chapter 4, Scappoose Creek is considered to have limited connection with groundwater in this area. This boundary, therefore, represents an average groundwater elevation along the line that is not influenced by surface water conditions. High-water conditions are simulated by using a specified-head value of 8.0 feet MSL, which corresponds to May 15, 1995 measurements. Low-water conditions are simulated by using a specified-head value of 6.0 feet MSL, which corresponds to September 15, 1995 measurements. These values were selected to maintain and extend the groundwater gradient that exists beneath the expansion site, and to provide a reasonable match between field measurements and model calculations. The specified-head
boundary was placed far enough away from the proposed mining site (over 4,000 feet) to minimize the potential for this boundary to interfere with groundwater conditions beneath the site.

The location of the eastern specified-head boundary in the model follows a line that approximately connects four interior SDIC pumping stations (Johnson, Honeyman, Smith and Hoven, see Figures 10 and 11). This was done to simulate the hydrologic divide likely created by SDIC pumping. Although no field data are available for this part of the project area, information supplied by the SDIC indicates that they attempt to maintain water levels in this area at 3.0 to 4.75 feet MSL. To simulate the high-water conditions occurring on May 15, 1995, this boundary was set at 4.75 feet MSL. To simulate low-water conditions occurring on September 22, 1995, this boundary was set at 3.0 feet MSL. It is inferred that the area east of these four pumping stations is in such close proximity to the Multnomah Channel that the influence of this large, continuous supply of water would tend to dominate any changes in the groundwater system west of the SDIC pumping stations.

Hydraulic Conductivity
Drilling data reviewed for this project show there is significant variation in the grain size and amount of cementation within the geologic materials underlying the project area. In order to simplify what is a complex system and at the same time maintain conservative overestimation in the model, the largest consistently reported field-measured values of hydraulic conductivity in Keener (1983) were used, except where large-scale excavations are currently located or proposed. This value was 1,225 ft/day. Use of the highest
consistently reported value rather than an average is a conservative approach since the higher hydraulic conductivity should result in more water flowing to the district.

Ponds resulting from mining act essentially as flow-through lakes (they neither remove nor add water relative to the groundwater system) since they do not have inlet or outlet streams. Therefore, it was concluded that an accurate way to model these surface-water features was to insert a volume with extremely high values of hydraulic conductivity to simulate open-water conditions.

The existing and proposed excavations (ponds and lakes) were simulated by using a hydraulic conductivity value of 1,000,000 feet/day. This value was selected by creating a generic model of similar size and properties to the project area. A rectangular volume of higher hydraulic conductivity was inserted into the generic model to simulate a quarry excavation. A series of simulations were subsequently conducted in which the hydraulic conductivity of the excavated zone was increased from 1,000 ft/day to 1,000,000 ft/day in order-of-magnitude increments. The resulting flow volume from each simulation was compared to the previous increment and the percentage increase in flow was calculated for each step. The change in flow became smaller with each successive increment, until at 1,000,000 ft/day, the increased flow from the previous increment was less than 0.25%. It was concluded that further increases in the hydraulic conductivity value of the excavated volume would have negligible effect and that 1,000,000 ft/day would be a reasonable value to use in simulating a flow-through lake. This result, using a contrasting hydraulic conductivity value that is three orders of magnitude larger for the lake nodes than the surrounding aquifer, is consistent with work done by Chung (1998). In addition, Chung and
Anderson (1998), and Nair and Wilsnack concluded that representing a flow through lake with a zone of high hydraulic conductivity yields results similar to using the MODFLOW Lake Package (Cheng and Anderson, 1993 and 1994).

Recharge

According to Snyder et al. (1994), recharge rates in the project area range from 6 to 19 inches/year although precipitation for the area is estimated to be approximately 40 inches/year based on data collected at the St. Helens, Oregon Rural Fire District Station. Based on the recharge estimates, 17 inches/year was selected as the overall estimate for the entire modeled area. The selected recharge rate was applied uniformly at the top of the uppermost layer of the model. The value selected is conservative because using a high volume for recharge should again cause overestimation of the effects that could be caused by mining.

Model Calibration

Calibrating the model involves comparing model-generated water levels and water balance calculations with actual field-measured data. Adjustments are made to the model design parameters (such as boundary conditions or aquifer characteristics) to bring the model-generated and the field-measured values into closer agreement (for head and for flow). For this modeling effort, emphasis was placed on designing a conservative model that tends to overestimate the results of changes to the groundwater flow system. This strategy should result in a higher overall hydraulic conductivity of certain areas of the model (such as near MW-2), thereby producing a larger volume of water flowing to the SDIC.
Calibration statistics for each model are listed in Table D1 (Appendix D) and summarized in Table 6. The Absolute Residual Mean for the high- and low-water conditions models was 0.55 feet and 0.46 feet respectively. Generally, both the high- and low-water conditions models achieved closer calibration at wells located in the southern and eastern portions of the site, downgradient of the proposed excavation. The largest residual errors occurred at MW-2, in the northeast portion of the site at the apparent location of a groundwater mound. The residual error at MW-2 is a maximum of 2.8 feet.

As shown in Table 4 below, the groundwater output flows generated by both current conditions models are within the error range calculated for the water balance. This indicates reasonably good agreement between the conceptual water balance and the model-generated results.

Model Results

To quantify the amount of water-level change and groundwater flow change volume that could result from mining Pit E, the results of the current-conditions models (Figures 12a and 13a) were compared to the results of the future-conditions models for each of the two water-level conditions (May 15, 1995 and September 22, 1995, Figures 12b and 13b). Two MODFLOW-generated criteria were used for comparison: 1) the output flow rate; and 2) the change in head (water-level elevation).

MODFLOW produces a volumetric water budget for each simulation (see Appendix D). This budget includes the output flow rates, which is the rate of groundwater flow that exits the model under steady-state conditions via specified-head boundaries. All of the groundwater in these models discharges to the eastern specified-head boundary. For
comparison, the output flow rate produced by the current-conditions model for each date is compared to the output flow rate produced by the corresponding future-conditions model. These comparisons are shown in Table 4 below.

Table 4. MODFLOW Model Groundwater Flow Output Comparisons.

<table>
<thead>
<tr>
<th>Simulation Date</th>
<th>Output Flow Current Conditions (ft³/day)</th>
<th>Error Range (± 52%)</th>
<th>Output Flow Future Conditions (ft³/day)</th>
<th>Flow Increase (ft³/day)</th>
<th>Percentage Flow Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 15, 1995</td>
<td>6,048,000</td>
<td>2,534,000 to 8,026,000</td>
<td>6,674,000</td>
<td>625,000</td>
<td>10%</td>
</tr>
<tr>
<td>September 22, 1995</td>
<td>2,925,000</td>
<td>1,142,000 to 3,618,000</td>
<td>3,428,000</td>
<td>503,000</td>
<td>17%</td>
</tr>
</tbody>
</table>

The Table 4 model results indicate that the change in groundwater flow to the downgradient boundary (the eastern model boundary) following the completed excavation of Pit E will be an increase of approximately 10% during high-water conditions and an increase of approximately 17% during low-water conditions. This increase in flow occurs throughout the total thickness of the aquifer beneath the project area (estimated to be 300 feet) due to the increased gradient east of the excavation (see Figures 12b and 13b).

Evaluation of Model Results

The downgradient pumps in the SDIC are designed to lower the water table below natural levels by pumping from the surface. It follows that changes to the flow system that cause the water table to rise will result in increased pumping to maintain the desired
elevation for SDIC operations. It also follows that the volume of increased pumping is related to the amount of water table rise that occurs within the drained area. Therefore it is relevant to evaluate the actual volume of water that will need to be pumped as a consequence of the increased flow. This volume should be significantly less than shown in Table 4 since only the uppermost few feet of aquifer are affected by drainage pumping.

MODFLOW computed water-level changes (drawdown), which corresponds to a change in the position of the water table. The values can be positive (water-level rise) or negative (water-level decline). As shown in Figures 12c and 13c, the model predicts a maximum 0.8 feet water-level rise on the downgradient side (east side) of Pit E and a maximum water-level decline of 0.8 feet on the upgradient side (west side) of Pit E. Both of these maximum changes occur within the boundary of Pit E and attenuate rapidly with distance from the site. For example, in the area immediately downgradient (east) of Pit E, an increase of 0.2 feet is predicted at a distance of approximately 1,500 feet east of the site. Correspondingly, a decrease of 0.2 feet is predicted to occur approximately 3,000 feet northeast of the site in the upgradient area.

The maximum predicted change in water level that occurs outside the Pit E boundary is 0.6 feet. This change is predicted as a water-table rise up to 400 feet east of the site boundary, and as a water-table decline occurring up to 300 feet west of the site boundary. The insertion of the excavated area into the model has the effect of flattening the water table across the excavation (which is open water) and increasing the flow gradients both upstream and downstream of the new pit (see Figure 14a).
Only the additional flow volume caused by a water-table rise and saturation of previously dry soil will need to be pumped to maintain the lowered water-table elevation desired by the SDIC. This flow can be estimated by determining the downgradient cross-sectional area that became saturated as the result of mining, and calculating, using Darcy’s Law, the groundwater flow rate through this area.

Using the water-table change contours and gradients on Figures 12c and 13c, and the cross-section lines indicated on each Figure, and using and hydraulic conductivity values confirmed by field measurements and numerical modeling, the additional pumpage requirements are calculated and listed in Table 5 below (see also Figure 14b).

With regard to the potential for the mine expansion to cause increased flooding, the limited amount of additional saturation in the downgradient areas is unlikely to increase flooding potential. This conclusion is based on the small increase in pumpage requirements by the SDIC and the small surface area affected by the downgradient water-table rise.

Table 5. Additional Groundwater Pumpage Requirements

<table>
<thead>
<tr>
<th>Simulation Date</th>
<th>Estimated Cross-Sectional Area (ft^2)</th>
<th>Pumpage Rate Increase (gpm)</th>
<th>Error Range (\pm 52%) (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 15, 1995</td>
<td>3,030</td>
<td>12</td>
<td>6 to 18</td>
</tr>
<tr>
<td>September 22, 1995</td>
<td>2,550</td>
<td>10</td>
<td>5 to 15</td>
</tr>
</tbody>
</table>
Discussion of Model Results

The results of the work described in this report indicate that the effect of introducing a large-scale mining excavation in the Columbia River floodplain on the local groundwater flow system is limited. The additional pumping required to remove the additional flow created by Pit E is roughly equivalent to the average domestic well (5 to 18 gpm). For the Scappoose Drainage Improvement Company, which operates a system designed to lower the water table beneath agricultural land downgradient from Pit E and maintains a total pumping capacity of over 130,000 gpm, this amount of increased flow is not significant.

Conclusions

Groundwater occurs in a sand and gravel aquifer that extends to a depth of approximately 300 feet beneath the site. A review of field observations and drillers' logs for area wells indicates the aquifer contains numerous lenses and layers of coarse sand and gravel, and discontinuous cemented zones. Although the cemented zones can perch and locally confine groundwater, the aquifer is considered a single regional groundwater system.

The hydraulic conductivity of the sediments that make up the aquifer varies due to silt and clay content and variable cementation. According to investigations by others, the estimated hydraulic conductivity of the most coarse-grained portions of the aquifer may be as high as 6 ft/minute and the hydraulic conductivity of the fine-grained or cemented material may be as low as 0.05 ft/minute (Keener, 1983).

Groundwater occurrence and movement in the area is primarily influenced by:

- Precipitation in the highlands to the west of the project area and in the project area itself.
• Dewatering pumping in agricultural lands east of the project area.
• Proximity of the extensive groundwater reservoir of the Columbia River system.

It is concluded from data compiled for this project that recharge to the aquifer beneath the site originates primarily in highlands to the west of the site but also occurs from surface infiltration. It is concluded from site data that SDIC pumping operations interfere with the influence of the Columbia River system on groundwater occurrence and movement within the project area. To a large extent, groundwater movement in the project area is influenced by dewatering conducted to allow agriculture in the floodplain. The SDIC pumps water from drainage canals east of Jackson Creek, thereby effectively lowering groundwater elevations on the east side of the creek and creating a relatively constant-head boundary condition at the eastern side of the site. The predominant direction of groundwater movement beneath the site is inferred to be to the southeast toward the SDIC at a gradient of approximately 0.0002 to 0.0004. This gradient remains relatively constant throughout the year, although water levels in site wells fluctuate as much as 2 feet annually. As long as the SDIC continues to dewater farmland east of Jackson Creek, groundwater will likely continue to move towards this area of extraction.

Average groundwater elevations at 11 monitoring points established on and around the Pit E site range from 3.9 to 4.9 feet MSL, based on measurements obtained between April 1993 and September 1995. The average surface water elevation for four stream gages installed in Jackson Creek (south and east of the site) range from 3.7 to 4.0 feet MSL, based on measurements during the same time period.

The mine expansion is expected to create an approximately 100-feet deep, 360-acre pond. A MODFLOW model indicates that groundwater flow within the aquifer...
beneath the site and the SDIC may be increased by 10 to 17%, based on “before and after” model simulations performed for both high and low water conditions. This increased flow would be distributed throughout the full thickness of the aquifer (estimated to be approximately 300 feet) and would occur gradually over the planned 20-year operational life of the mine. The increased pumping that may be required within the SDIC boundaries as the result of this increased groundwater flow is estimated to be approximately 5 to 18 gallons/minute). Model results predict that the maximum change in water levels resulting from the increase in flow that could occur in the SDIC would be:

1) an increase of approximately 0.8 feet for a limited area on the downgradient (east) side of Pit E; and, 2) a decrease of approximately 0.8 feet for a limited area on the upgradient (west) side of Pit E. The maximum changes in water levels predicted to occur outside the Pit E boundary are predicted by the model to be approximately 0.6 feet. This change, which attenuates with distance from the site boundary, is predicted to occur as a water-table rise up to 400 feet east of the eastern site boundary and as a water-table decline up to 300 feet west of the western site boundary.

CHAPTER 5: DISCUSSION OF UNCERTAINTY/MODEL LIMITATIONS

Since assumptions are used in estimating the characteristics of aquifer materials, and in simplifying conditions for the model’s governing equations, a discussion of uncertainty relative to these assumptions is warranted.

As stated previously, numerical models provide non-unique solutions to groundwater problems. A different set of conditions could be created that would duplicate the results found in this study. Therefore, a sensitivity analysis was conducted
on selected hydraulic parameters used in the model. The results of this analysis are summarized in Table 6 and detailed in Appendix D.

Table 6. Sensitivity Analysis and Calibration Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter Changed</th>
<th>Flow Increase (%)</th>
<th>Water-Level Change (feet)</th>
<th>ARN (feet)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-May</td>
<td>Final Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Current Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-Sep</td>
<td>Current Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-Sep</td>
<td>Future Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Model K Increased 1000%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Current Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Future Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-Sep</td>
<td>Current Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-Sep</td>
<td>Future Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Model K Decreased 1000%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Current Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Future Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-Sep</td>
<td>Current Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-Sep</td>
<td>Future Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Gradient Increased by 33%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Current Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Future Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-Sep</td>
<td>Current Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-Sep</td>
<td>Future Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Recharge increased by 100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Current Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Future Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-Sep</td>
<td>Current Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-Sep</td>
<td>Future Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Aquifer Thickness 100 feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Current Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-May</td>
<td>Future Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-Sep</td>
<td>Current Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22-Sep</td>
<td>Future Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1) Residual Mean based on a comparison of field measured water levels for 5/15/95 and 9/22/95 with MOCFLOW generated water-levels from the current-conditions models.
2) Water-level change based on MOCFLOW generated drawdown data from future-conditions models.
The sensitivity analysis shows the model to be most sensitive to changes in hydraulic conductivity. The value of hydraulic conductivity selected that resulted in the best fit between model-generated heads and field measurements was 1,225 ft/day. This value was used for subsequent groundwater flow modeling. Morgan and McFarland (1996) estimate the median hydraulic conductivity value (based on an analysis of data from 90 drillers' logs) for the Unconsolidated Sediments aquifer to be 250 ft/day, significantly less than the value used for this study. However, 1,225 ft/day used for this study is within the range examined by the USGS and close to the 75th percentile of all the values. Therefore, the value used for this study is justified, particularly since it is based on actual field data.

The degree of calibration of the current-conditions models to site conditions can be examined in Table 5 Absolute Residual Mean (ARM) and a comparison of the conceptual model water balance with model generated groundwater flows in Table 5. The highest ARM for the final models is 0.55 feet. This is within 10% of the average field-measured water level.

In Chapter 4 a range of error of ± 52% was determined based on the potential error that exists for each measured parameter (Winter, 1981). This is the range of uncertainty associated with the model results and the estimated effect of the mine expansion. The calculated conceptual groundwater flow rate, including this error range, encompasses the flow rates produced by the current conditions models (see Table 4). This indicates reasonably good agreement between the conceptual water balance and the
model-generated results, within the range of uncertainty. Even when this rather large range of uncertainty, the resulting range of impacts is not significant.

CHAPTER 6: REFERENCES

Cascade Aggregate, 1986. *Drilling Program at Cascade's Santosh Pit*.

Project Location and Vicinity Map

Aggregate Mine Site

Woodland

St. Helens

Columbia County

Washington County

Scappoose

Columbia

River

Vancouver

Portland

Figure 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Portland Basin Stratigraphy

<table>
<thead>
<tr>
<th>SYSTEM</th>
<th>SERIES</th>
<th>GEOLOGIC UNIT</th>
<th>HYDROGEOLOGIC UNIT</th>
<th>LITHOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERTIARY</td>
<td>?</td>
<td>?</td>
<td>Confining unit 1</td>
<td>Bedded micaceous arkosic siltstone and sandstone with some thin lenses of lithic and vitric sandy tuffaceous silt and sandstone, and clay.</td>
</tr>
<tr>
<td></td>
<td>?</td>
<td>?</td>
<td>Confining unit 2</td>
<td>Bedded micaceous siltstone and sandstone with some thin lenses of lithic and vitric sand, tuffaceous silt, sandstone, and clay.</td>
</tr>
<tr>
<td>QUATERNARY</td>
<td>Holocene</td>
<td>Quaternary alluvium</td>
<td>Unconsolidated sediments over aquifer</td>
<td>Silt, sand, and clay comprise flood plain deposits of the Columbia and Willamette Rivers. Alluvium along major tributaries is sandy gravel. Late Pleistocene catastrophic floods of the Columbia River deposits on the basin floor are boulder gravel, sandy gravel, and sand with sandy silt extending to 400-foot altitude. Late Pleistocene terrace deposits are weakly consolidated thin sand and gravel beds.</td>
</tr>
<tr>
<td></td>
<td>Pleistocene</td>
<td></td>
<td>Trousdale gravel aquifer</td>
<td>Pleistocene volcanioclastic conglomerates derived from the Cascade Range are weakly to well consolidated sandy gravel with lithic sandstone lenses and beds. Trousdale Formation is cemented basaltic gravel with quartzite pebbles and micaceous sand matrix and lenses, as well as minor lithic-vitrific sand beds. Boring lava that erupted from vents in the Portland area is fine to medium olivine basalt and basaltic andesite lava flows with less abundant pyroclastics. High Cascade Range volcanics are olivine basaltic and andesite flows that erupted, and for the most part deposited east of the Sandy River. The upper 10 to 100 feet of the aquifer is weathered loess and residual soil.</td>
</tr>
<tr>
<td></td>
<td>?</td>
<td>?</td>
<td>Sand and gravel aquifer</td>
<td>Rhododendron Formation consists of lava flows and dense volcanic breccia. Columbia River Basalt Group is a series of basalt flows, some have fractured scoriaceous tops and bases. Marine sedimentary rocks are predominantly dense siltstones and sandstones. Skamania volcanics are dense flow rock, breccia and volcanioclastic sediment. Older basalts are sequences of flows with some breccia and sediment.</td>
</tr>
</tbody>
</table>

Notes:
- Geologic Cross-Section B-B' (South-North)
- Plan View of Cross-Section
- Elevation (feet Mean Sea Level)
- Notes: Geologic Cross-Section data shown as plan view. See Plate 2 for well and boring location. See also Table 1.
Notes: 1) P3 data not used for analysis.
2) More data than shown on graph. All data listed in Table A1.

Hydrographs

Figure 6
Conceptual Model Block Diagram

Figure 9

- **WEST**
- **EAST**

Ground Surface Before Mining

Flow from uphill

Water Table

Flow toward drainage district

Depth (feet):

- 0
- 100
- 200
- 300
- 400

Model Layer Boundary:

- **Unconsolidated Sedimentary Unit**
- **Troutdale Gravel Unit**

K = 1,225 ft/day

Groundwater Flow Direction

Explanation:
- Sand and Gravel with Interbeds and Lenses of silt and sand
EXPLANATION
- ACTIVE MODEL CELLS ASSIGNED HYDRAULIC
 CONDUCTIVITY OF 1225 FT/DAY
- ACTIVE MODEL CELLS ASSIGNED HYDRAULIC
 CONDUCTIVITY OF 1 X 10^-6 FT/DAY
- NO-FLOW (INACTIVE) CELLS
- SPECIFIED-HEAD CELLS ASSIGNED HYDRAULIC
 CONDUCTIVITY OF 1225 FT/DAY
- NO-FLOW BOUNDARY
- MONITORING WELL OR PIEZOMETER
- STREAM GAGE
- SCAPPOOSE DRAINAGE DISTRICT (SDD)
 PUMP STATION

NOTES:
1) Model details are provided in Appendix E.
2) Cell dimensions are 250' by 250'.
3) Model dimensions are 71 rows by 73 columns by 2 layers.
4) Model cells assigned hydraulic conductivity of 1225 ft/day in
 simulated unmined areas. Cells assigned hydraulic
 conductivity of 1 x 10^-6 ft/day in simulated mined areas.

MODFLOW Design for
Current-Conditions Models

59
EXPLANATION

- WATER-LEVEL ELEVATION CONTOUR FROM MODFLOW RESULTS (0.5-FOOT CONTOUR INTERVAL)
- SPECIFIED-HEAD CELLS
- NO-FLOW BOUNDARY
- INFERRED DIRECTION OF GROUNDWATER MOVEMENT
- MONITORING WELL OR PIEZOMETER AND WATER-LEVEL ELEVATION FROM MODFLOW
- STREAM GAGE AND WATER-LEVEL ELEVATION FROM MODFLOW
- SCAPPOOSE DRAINAGE DISTRICT (SDD) PUMP STATION

NOTES:

1) Water-level data generated by MODFLOW
2) Specified-head boundary values are based on May 15, 1995 Water-Level conditions.
3) Elevations are in feet Mean Sea Level (MSL)
EXPLANATION
- WATER-LEVEL ELEVATION CONTOUR FROM MODFLOW RESULTS (0.5-FOOT CONTOUR INTERVAL)
- SPECIFIED-HEAD CELLS
- NO-FLOW BOUNDARY
- INFERRED DIRECTION OF GROUNDWATER MOVEMENT
- MONITORING WELL OR PIEZOMETER AND WATER-LEVEL ELEVATION FROM MODFLOW
- STREAM GAGE AND WATER-LEVEL ELEVATION FROM MODFLOW
- SCAPPOOSE DRAINAGE DISTRICT (SDD) PUMP STATION

NOTES:
1) Water-level data generated by MODFLOW
2) Specified-head boundary values are based on May 15, 1995 Water-Level conditions.
3) Elevations are in feet Mean Sea Level (MSL)
EXPLANATION

- WATER-LEVEL ELEVATION CONTOUR FROM MODFLOW RESULTS (0.5-FOOT CONTOUR INTERVAL)
- SPECIFIED-HEAD CELLS
- NO-FLOW BOUNDARY
- INFERRRED DIRECTION OF GROUNDWATER MOVEMENT
- MONITORING WELL OR PIEZOMETER AND WATER-LEVEL ELEVATION FROM MODFLOW
- STREAM GAGE AND WATER-LEVEL ELEVATION FROM MODFLOW
- SCAPPOOSE DRAINAGE DISTRICT (SDD) PUMP STATION

NOTES:
1) Water-level data generated by MODFLOW
2) Specified-head boundary values are based on September 22, 1995 Water-Level conditions.
3) Elevations are in feet Mean Sea Level (MSL)
EXPLANATION

- WATER-LEVEL ELEVATION CONTOUR
 FROM MODFLOW RESULTS
 (0.5-FOOT CONTOUR INTERVAL)

- SPECIFIED-HEAD CELLS

- NO-FLOW BOUNDARY

- INFERRED DIRECTION OF
 GROUNDWATER MOVEMENT

- MONITORING WELL OR PIEZOMETER
 AND WATER-LEVEL ELEVATION
 FROM MODFLOW

- STREAM GAGE AND WATER-LEVEL
 ELEVATION FROM MODFLOW

- SCAPPOOSE DRAINAGE DISTRICT (SDD)
 PUMP STATION

NOTES:

1) Water-level data generated by MODFLOW
2) Specified-head boundary values are based on
 September 22, 1995 Water-Level conditions.
3) Elevations are in feet Mean Sea Level (MSL)
EXPLANATION
- WATER-LEVEL CHANGE CONTOUR FROM MODFLOW RESULTS (0.2-FOOT CONTOUR INTERVAL)
- SPECIFIED-HEAD CELLS
- NO-FLOW BOUNDARY
- MONITORING WELL OR PIEZOMETER AND WATER-LEVEL CHANGE (feet) FROM MODFLOW
- STREAM GAGE AND WATER-LEVEL CHANGE (feet) FROM MODFLOW
- SCAPPOOSE DRAINAGE DISTRICT (SDD) PUMP STATION

NOTES:
1) Water-level change data generated by MODFLOW
2) Specified-head boundary values are based on September 22, 1995 Water-Level conditions.
3) Elevations are in feet Mean Sea Level (MSL)
APPENDIX A

ANNOTATED BIBLIOGRAPHY
A number of technical studies relating to aggregate mining have been conducted in the study area. These studies have addressed issues regarding the quantity and quality of aggregate in the area; the presence, quality and use of surface water and groundwater; and environmental concerns. Since 1992, DNA produced several reports (published and unpublished) for GNW’s existing and planned mining sites in the project area. The following investigations are related to project-area geology and hydrogeology. These references were relied on for this investigation and are listed in the Bibliography section of this report.

In 1980, Northwest Testing Laboratories conducted an aggregate resource evaluation of the Santosh Pits, which were owned at that time by Cascade Aggregate, Inc. The purpose of the study was to investigate the extent of the sand and gravel deposits, and to establish quantitative and qualitative values for the deposits. Borings completed at the site were used to define geologic units beneath the site and quantify the particle-size distribution of the deposits (Northwest Testing Laboratories, 1980).

Geo Recon International completed a geophysical exploration of the proposed expansion property in 1980. They took vertical electrical soundings and placed borings across the site to define the subsurface geologic features (Geo Recon International, 1980).

Quentin R. Keener, a consultant, conducted several analyses of sediment samples in the area of Santosh Pits A and B as part of a preliminary 1983 feasibility study of dewatering Pit B (Keener, 1983).

In 1986, Cascade Aggregate drilled borings on the Pit E property and conducted grain size analyses of selected samples from these borings (Cascade Aggregate, 1986).

Ogden Beeman & Associates conducted a groundwater study prior to excavating Santosh Pit A below the water table (Ogden Beeman & Associates, 1989).

Geotechnical Resources, Incorporated conducted preliminary seepage and water quality studies in 1992. This investigation looked at potential changes to the flow of Jackson Creek as well as impacts to upgradient domestic wells that could result from the excavation of the proposed expansion area (Geotechnical Resources, Inc., 1992).

DNA issued a hydrogeologic report in 1994. This report included evaluations of potential groundwater impacts to the area resulting from the excavation of the proposed expansion area, based on numerical modeling (DNA, 1994a).

In 1994, DNA conducted an aggregate resource investigation in the area of LSNW’s existing Pits A through D and the proposed expansion area. This investigation characterized the geology and aggregate reserves encountered, and evaluated the geographic and stratigraphic conditions of cemented gravel encountered at depth in the existing mining pits. A total of 17 Becker Hammer borings were drilled, including four borings within the proposed expansion area (94M1, 94M2, 94M3, 94M4; see Plate 1 and Appendix B).
Laboratory analyses to characterize physical properties were performed on representative formation samples (DNA, 1994b).

In 1995, DNA completed a mineral and aggregate evaluation for the proposed expansion area. This report summarized the results of a geologic investigation and material testing of representative samples from the site. This work by Columbia County regulations in order to have the site listed in the significant resource inventory (DNA, 1995).

In 1996, DNA completed a preliminary geotechnical investigation report for the planned Pit E extension. This report characterized geographic, geologic and hydrologic conditions, evaluated the quantity of mineral resource, and analyzed slope stability (DNA, 1996).
APPENDIX B

WATER-LEVEL DATA
Table B1

Project Area
Groundwater Elevation Data

<table>
<thead>
<tr>
<th>Date</th>
<th>P-1</th>
<th>P-2</th>
<th>P-3</th>
<th>P-4</th>
<th>P-5</th>
<th>P-6</th>
<th>MW-1</th>
<th>MW-2</th>
<th>MW-3</th>
<th>MW-4</th>
<th>4/1-31cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/7/93</td>
<td>4.84</td>
<td>4.87</td>
<td>5.70</td>
<td>5.22</td>
<td>5.08</td>
<td>5.27</td>
<td>4.59</td>
<td>5.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/15/93</td>
<td>5.14</td>
<td>4.87</td>
<td>5.10</td>
<td>5.72</td>
<td>5.08</td>
<td>5.87</td>
<td>4.99</td>
<td>6.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/26/93</td>
<td>5.04</td>
<td>4.87</td>
<td>5.00</td>
<td>5.62</td>
<td>5.08</td>
<td>5.57</td>
<td>4.99</td>
<td>5.33</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/9/93</td>
<td>5.04</td>
<td>4.77</td>
<td>5.00</td>
<td>5.22</td>
<td>4.98</td>
<td>5.47</td>
<td>4.89</td>
<td>5.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/10/93</td>
<td>5.04</td>
<td>5.12</td>
<td>5.00</td>
<td>5.42</td>
<td>5.03</td>
<td>5.37</td>
<td>4.99</td>
<td>5.34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/17/93</td>
<td>4.84</td>
<td>4.77</td>
<td>4.70</td>
<td>5.12</td>
<td>4.88</td>
<td>5.07</td>
<td>4.84</td>
<td>5.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/24/93</td>
<td>4.90</td>
<td>4.85</td>
<td>4.91</td>
<td>5.23</td>
<td>4.94</td>
<td>5.18</td>
<td>4.95</td>
<td>5.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/1/93</td>
<td>5.00</td>
<td>4.96</td>
<td>5.18</td>
<td>5.28</td>
<td>5.04</td>
<td>5.23</td>
<td>4.95</td>
<td>5.05</td>
<td>5.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/8/93</td>
<td>4.78</td>
<td>4.54</td>
<td>4.86</td>
<td>5.18</td>
<td>4.82</td>
<td>5.13</td>
<td>4.84</td>
<td>5.00</td>
<td>5.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/15/93</td>
<td>4.66</td>
<td>4.63</td>
<td>5.49</td>
<td>5.02</td>
<td>4.74</td>
<td>4.93</td>
<td>4.89</td>
<td>4.59</td>
<td>5.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/22/93</td>
<td>4.34</td>
<td>4.15</td>
<td>5.42</td>
<td>4.58</td>
<td>4.39</td>
<td>4.45</td>
<td>4.55</td>
<td>0.45</td>
<td>4.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/1/93</td>
<td>3.86</td>
<td>3.93</td>
<td>5.04</td>
<td>4.09</td>
<td>3.99</td>
<td>3.63</td>
<td>4.26</td>
<td>4.05</td>
<td>4.32</td>
<td>4.63</td>
<td></td>
</tr>
<tr>
<td>9/14/93</td>
<td>3.32</td>
<td>3.26</td>
<td>5.19</td>
<td>3.23</td>
<td>3.44</td>
<td>3.37</td>
<td>3.74</td>
<td>3.41</td>
<td>3.70</td>
<td>3.98</td>
<td></td>
</tr>
<tr>
<td>9/22/93</td>
<td>3.52</td>
<td>3.43</td>
<td>4.70</td>
<td>3.70</td>
<td>3.54</td>
<td>3.22</td>
<td>3.29</td>
<td>3.52</td>
<td>3.77</td>
<td>4.11</td>
<td></td>
</tr>
<tr>
<td>11/18/93</td>
<td>3.46</td>
<td>3.43</td>
<td>4.63</td>
<td>3.58</td>
<td>3.50</td>
<td>3.49</td>
<td>3.40</td>
<td>3.92</td>
<td>3.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/20/93</td>
<td>4.44</td>
<td>4.51</td>
<td>5.62</td>
<td>4.78</td>
<td>4.67</td>
<td>4.70</td>
<td>4.22</td>
<td>4.93</td>
<td>4.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/16/94</td>
<td>4.72</td>
<td>4.66</td>
<td>5.97</td>
<td>5.09</td>
<td>4.74</td>
<td>3.68</td>
<td>4.65</td>
<td>5.17</td>
<td>5.02</td>
<td>5.82</td>
<td></td>
</tr>
<tr>
<td>3/10/94</td>
<td>4.96</td>
<td>4.79</td>
<td>6.10</td>
<td>5.40</td>
<td>4.92</td>
<td>5.28</td>
<td>5.05</td>
<td>5.38</td>
<td>4.97</td>
<td>4.88</td>
<td>5.02</td>
</tr>
<tr>
<td>4/1/94</td>
<td>4.67</td>
<td>4.58</td>
<td>6.00</td>
<td>4.92</td>
<td>4.74</td>
<td>4.87</td>
<td>4.69</td>
<td>5.08</td>
<td>4.65</td>
<td>4.00</td>
<td>4.68</td>
</tr>
<tr>
<td>3/22/95</td>
<td>5.00</td>
<td>4.88</td>
<td>6.12</td>
<td>5.02</td>
<td>4.87</td>
<td>5.44</td>
<td>5.15</td>
<td>5.26</td>
<td>5.15</td>
<td>5.16</td>
<td>4.97</td>
</tr>
<tr>
<td>5/15/95</td>
<td>5.42</td>
<td>5.40</td>
<td>6.59</td>
<td>5.44</td>
<td>5.46</td>
<td>5.50</td>
<td>5.37</td>
<td>5.73</td>
<td>5.42</td>
<td>5.59</td>
<td>5.47</td>
</tr>
<tr>
<td>8/15/95</td>
<td>4.90</td>
<td>4.90</td>
<td>4.92</td>
<td>4.86</td>
<td>4.76</td>
<td>5.23</td>
<td>5.06</td>
<td>4.85</td>
<td>4.84</td>
<td>4.90</td>
<td></td>
</tr>
<tr>
<td>9/22/95</td>
<td>3.64</td>
<td>3.56</td>
<td>4.72</td>
<td>3.68</td>
<td>3.72</td>
<td>3.50</td>
<td>4.17</td>
<td>3.81</td>
<td>3.95</td>
<td>3.62</td>
<td>3.56</td>
</tr>
</tbody>
</table>

Notes:
1) WI.-1 (Jackson Creek stream gage) destroyed 9/93

Table B2

Project Area
Surface-Water Elevation Data

<table>
<thead>
<tr>
<th>Date</th>
<th>WL-1</th>
<th>WL-5</th>
<th>SG-1</th>
<th>SG-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/2/93</td>
<td>3.85</td>
<td>4.02</td>
<td>3.19</td>
<td>3.19</td>
</tr>
<tr>
<td>6/1/93</td>
<td>4.35</td>
<td>4.48</td>
<td>3.91</td>
<td>3.91</td>
</tr>
<tr>
<td>6/9/93</td>
<td>2.97</td>
<td>3.14</td>
<td>3.85</td>
<td>3.85</td>
</tr>
<tr>
<td>6/15/93</td>
<td>3.65</td>
<td>4.15</td>
<td>4.65</td>
<td>4.27</td>
</tr>
<tr>
<td>7/7/93</td>
<td>3.93</td>
<td>4.35</td>
<td>4.35</td>
<td>4.40</td>
</tr>
<tr>
<td>8/16/93</td>
<td>2.94</td>
<td>3.73</td>
<td>3.90</td>
<td>3.60</td>
</tr>
<tr>
<td>9/14/93</td>
<td>3.04</td>
<td>3.15</td>
<td>3.09</td>
<td>3.09</td>
</tr>
<tr>
<td>10/22/93</td>
<td>3.40</td>
<td>3.45</td>
<td>3.47</td>
<td>3.47</td>
</tr>
<tr>
<td>11/18/93</td>
<td>3.32</td>
<td>3.45</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>12/20/93</td>
<td>4.15</td>
<td>4.44</td>
<td>4.39</td>
<td>4.39</td>
</tr>
<tr>
<td>1/18/94</td>
<td>3.65</td>
<td>3.90</td>
<td>3.65</td>
<td>3.65</td>
</tr>
<tr>
<td>3/10/94</td>
<td>3.56</td>
<td>3.90</td>
<td>3.35</td>
<td>3.35</td>
</tr>
<tr>
<td>4/11/94</td>
<td>4.45</td>
<td>4.80</td>
<td>5.84</td>
<td>5.84</td>
</tr>
<tr>
<td>5/2/94</td>
<td>4.23</td>
<td>4.26</td>
<td>4.50</td>
<td>4.50</td>
</tr>
<tr>
<td>8/4/94</td>
<td>2.41</td>
<td>2.81</td>
<td>2.85</td>
<td>2.85</td>
</tr>
<tr>
<td>11/1/94</td>
<td>4.73</td>
<td>4.76</td>
<td>4.80</td>
<td>4.80</td>
</tr>
<tr>
<td>3/22/95</td>
<td>4.14</td>
<td>3.87</td>
<td>3.37</td>
<td>3.37</td>
</tr>
<tr>
<td>5/15/95</td>
<td>5.22</td>
<td>5.10</td>
<td>5.22</td>
<td>5.22</td>
</tr>
<tr>
<td>8/15/95</td>
<td>4.71</td>
<td>4.45</td>
<td>4.73</td>
<td>4.73</td>
</tr>
<tr>
<td>9/22/95</td>
<td>3.14</td>
<td>3.45</td>
<td>3.28</td>
<td>3.28</td>
</tr>
</tbody>
</table>

Notes:
1) WL-1 (Jackson Creek stream gage) destroyed 9/93
WATER WELL REPORT

STATE OF OREGON

1. OWNER:
- **Name:** Gerald Kidmayer
- **Address:** Box 621, Dispossession Ave

2. LOCATION OF WELL:
- **County:** Clackamas
- **Township:** T 3 N
- **Range:** R 4 W
- **Section:** 4
- **Township & Range:** T 3 N R 4 W
- **Distance from section corner:** 75 ft
- **Distance from East Boundary of Columbia County Airport:**

3. TYPE OF WORK (check):
- New Well

4. PROPOSED USE (check):
- Domestic

5. TYPE OF WELL:
- Rotary

6. CASING INSTALLED:
- Threaded

7. PERFORATIONS:
- Perforated

8. SCREENS:
- Manufacturer's Name: ...
- Slot size:...
- Set from...

9. CONSTRUCTION:
- Was well gravel packed? Yes
- Size of gravel:
- Gravel placed from...
- To what depth? 20 ft

10. WATER LEVELS:
- **Depth:** 10 ft

11. WELL LOG:
- **Diameter of well:** 6 in
- **Depth drilled:** 80 ft
- **Depth of completed well:** 30 ft

12. PUMP:
- **Manufacturer's Name:** ...
- **Type:** ...

13. WELL DRILLER’S STATEMENT:
- This well was drilled under my jurisdiction and this report true to the best of my knowledge and belief.
- **NAME:** Svend A. Jeldhall
- **Address:** Box 1267, St. A., St. Helens, O.

Log Accepted by:
- **[Signature]:** ...

License No.: 261
- **Date:** 3/6/61

Drawdown is amount water level 0.5 ft. lower than static level.

Driller's well number: ...
- **Date:** 1/20/61
- **Completed:** 3/5/61

State Engineer: ...
- **State Permit No.:** ...

State Flume No.: 3016
- **Date:** 9/4/61

Driller's number: ...
- **Date:** 3/11/61

Log Accepted by: ...
- **Date:** 3/11/61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT

STATE OF OREGON

NOTICE TO WATER WELL CONTRACTOR

![Image of a notice to water well contractor]

Owner:

Address:

Owner's Name:

Property Owner's Name:

Address:

Location of Well:

Type of Work:

Proposed Use:

Casing Installed:

Perforations:

Screens:

Construction:

Water Levels:

WELL TESTS:

WELL LOG:

PUMP:

Water Well Contractor's Certification:

This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

Name:

Address:

Drilling Machine Operator's License No.:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
NOTICE TO WATER WELL CONTRACTOR
The original and first copy of this report are to be filed with the
STATE ENGINEER, SALEM, OREGON, and a typewritten or printed
exact type or print within 30 days from the date of well completion.

RECEIVED

WATER WELL REPORT
STATE OF OREGON

State Well No. 31/12-6

State Permit No.

(1) OWNER:
Name: Clarence B. Alsleben
Address: Box G, Scappoose, OR

(2) TYPE OF WORK (check):
New Well Deepening □ Reconditioning □ Abandon □
(If abandonment, describe material and procedure in Item 12)

(3) TYPE OF WELL:
Rotary □ Driven □ Dug □ Bored □

(4) PROPOSED USE (check):
Domestic □ Industrial □ Municipal □ Other □

(5) Casing Installed:
□ Threaded □ Welded □

(6) PERFORATIONS:
Type of perforations used
Size of perforations in. by in.
perforations from ft. to ft.

(7) SCREENS:
□ Well screen installed □ Yes □ No
Manufacturer's Name
Type __________ Model No. __________
Diam. _______ ft. Slot size _______ ft. Set from _______ ft. to _______ ft.
Diam. _______ ft. Slot size _______ ft. Set from _______ ft. to _______ ft.

(8) WATER LEVEL:
Completed well.
5' level _______ ft. below land surface Date: 2-20-68
A. static pressure lbs. per square inch Date: _______

(9) WELL TESTS:
Drawdown is amount water level is lowered below static level
Was a pump test made? □ Yes □ No If yes, by whom?

gal./min. with ft. drawdown after hrs.

gal./min. with ft. drawdown after hrs.

Artesian flow g.p.m. Date: _______
Temperature of water Was a chemical analysis made? □ Yes □ No

(10) CONSTRUCTION:
Well seal □ Material used
Depth of seal _______ ft.
Diameter of well bore to bottom of seal _______ in.
Were any loose strata cemented off? □ Yes □ No Depth of strata used _______ in.
Was a drive shoe used? □ Yes □ No
Did any strata contain unusable water? □ Yes □ No
Type of water? □ Depth of strata
Method of sealing strata off
Was well gravel packed? □ Yes □ No Size of gravel _______ in.

(11) LOCATION OF WELL:
County __________ Driller's well number _______
Township § Section __________ S W 1/4

Bearing and distance from section or subdivision corner

(12) WELL LOG:
Diameter of well below casing _______ ft. Depth of completed well _______ ft.
Formation: Describe color, texture, grain size and structure of materials and show thickness and nature of each stratum and aquifer penetrated with at least one entry for each change of formation. Report each change in position of static water level as drilling proceeds. Note drilling records

MATERIAL
From _______ To _______ SW

[Black Clay] _______ ft. _______ ft.
[Red Clay] _______ ft. _______ ft.
[Silts] _______ ft. _______ ft.
[Occonlum] _______ ft. _______ ft.

Depth of completed well _______ ft. Date: _______

Drilling Machine Operator's Certification:
This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

[Signed] _______ Date: _______
(Drilling Machine Operator)

Drilling Machine Operator's License No. _______

Address: Box 1247, Netuk, OR

[Received] _______ Date: _______
(Water Well Contractor)

[Received] _______ Date: _______
(Water Well Contractor)

Provide water well permit No. _______

[Received] _______ Date: _______
(Water Well Contractor)

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT
STATE OF OREGON

(1) OWNER:
Name: COLUMBIA CO. OR.
Address:

(2) LOCATION OF WELL:
County: Cl
Owner's number, if any:
N.W. - N.E., Section 7, T. 3 N., R. 11 W., M.
WELL IS LOCATED 2.5 FT N. 1/2 W. OF:
S.W. Corner of John McPherson D.,
1/4 Section & T. 3 N. R. 11 W. Ramp.

(3) TYPE OF WORK (check):
□ New Well □ Drilling □ Reconditioning □ Abandon □
If abandonment, describe material and procedure in Item 11.

(4) PROPOSED USE (check):
□ Domestic □ Industrial □ Municipal □ Irrigation □ Town Well □ Other
□ Dug □ Bored □ Jetted □ Rotary □ Cabled

(5) PROPOSED USE (check):
□ Domestic □ Industrial □ Municipal □ Irrigation □ Town Well □ Other
□ Dug □ Bored □ Jetted □ Rotary □ Cabled

(6) CASING INSTALLED:
Threaded □ Welded □
□ Diam. from ft. to ft. Gage ft.
□ Diam. from ft. to ft. Gage ft.
□ Diam. from ft. to ft. Gage ft.

(7) PERFORATIONS:
□ Perforated □ Yes □ No
Type of perforator used:
□ Perforations from ft. to ft.

(8) SCREENS:
□ Well screen installed □ Yes □ No
Manufacturer's Name:
Type:
Model No.
□ N. m. Slot size ft. to ft.
□ N. m. Slot size ft. to ft.

(9) CONSTRUCTION:
Was well gravel packed? □ Yes □ No Size of gravel:
Gravel placed from ft. to ft.
Was a surface seal provided? □ Yes □ No To what depth? ft.
Material used in seal:
□ Dug □ Bored □ Jetted □ Rotary □ Cabled
Did any strata remain unsaturated? □ Yes □ No
Type of water:
□ Depth of strata:
Method of sealing strata off:

(10) WATER LEVELS:
State level: ft. below land surface Date: 9 Aug 58
Artesian pressure: lbs. per square inch Date:

(11) WELL TESTS:
□ Drawdown is amount water level is lowered below static level
□ Was a pump test made? □ Yes □ No If yes, by whom:
Yield: gal/min, with ft. drawdown after:
Bailer test: gal/min, with ft. drawdown after:
Artesian flow: gpm, Date:
Temperature of water: Was a chemical analysis made? □ Yes □ No

(12) WELL LOG:
□ Diameter of well:
Depth drilled: ft. Depth of completed well:
Formation: Describe by color, character, name of material and structure. Show thickness of aquifers and type of material penetrated, with at least one entry for each change of formation:
□ Material:
□ Screen:
□ Casing:
□ Driller’s well number:
Driller’s well number:

(13) PUMP:
□ Manufacturer’s Name:
□ Type:
□ H.P.:
□ Well Driller’s Statement:
This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
NAME: GUY A. LUKEELL
Address: 121 BOX 340 ST. HELENS,
Driller’s well number:
□ License No.:
Date:

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
RECEIVED WATER WELL REPORT

STATE OF OREGON

STATE ENGINEER, SALEM, OREGON

WATER WELL REPORT

County Col Driller's well number 89

| Section 6 | T 3N | R 1W |

WELL LOCATION:*

County Col

| State Permit No |

| State Well No |

TYPE OF WORK (check):

- New Well
- Deepening
- Reconditioning
- Abandon

LOCATION OF WELL:

- County Col
- Section 6
- T 3N
- R 1W

Casing Installed:

<table>
<thead>
<tr>
<th>Diameter from</th>
<th>0 ft to 10 ft. Gage</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 in.</td>
<td></td>
</tr>
</tbody>
</table>

Perforations:

- Perforated? Yes No
- Diameter from 0 ft to 10 ft. Gage

Screens:

- Well screen installed? Yes No
- Manufacturer's Name
- Type
- Diam. in.
- Slot size
- Set from 0 ft to 10 ft. Gage

Water Level:

- Completed well
- Depth drilled 80 ft. Depth of completed well 80 ft

Well Log:

- Diameter of well below casing
- Depth drilled 80 ft. Depth of completed well 80 ft

Formation:

- Describe color, texture, grain size and structure of material, and show thickness and nature of each stratum and aquifer penetrated at least one entry for each change of formation. Report each change of Static Water Level as drilling proceeds. Report drilling is.

MATERIAL:

- Material
- Formulation
- Description

Water Level:

- Completed well
- Water level
- Depth of strata

Well Tests:

- Drawdown test made? Yes No
- Artesian pressure
- Water test made? Yes No
- Temperature of water

Construction:

- Well seal
- Materials used
- Depth of seal
- Diameter of well bore to bottom of seal
- Depth
- Any loose strata cemented off? Yes No
- Depth
- Any loose strata used? Yes No
- Depth
- Did any strata contain unusable water? Yes No
- Depth
- Type of water
- Depth of strata

Screening:

- Screen Installed? Yes No
- Slot size
- Artisan flow

Well Tests:

- Drawdown after 1 hour
- Artisan flow
- Temperature of water

Construction:

- Well seal
- Material used
- Depth of seal
- Diameter of well bore to bottom of seal
- Any loose strata cemented off? Yes No
- Depth
- Any loose strata used? Yes No
- Depth
- Did any strata contain unusable water? Yes No
- Depth
- Type of water
- Depth of strata

Screening:

- Screen Installed? Yes No
- Slot size
- Artisan flow
- Temperature of water

Well Tests:

- Drawdown after 1 hour
- Artisan flow
- Temperature of water

Completion:

- Work started 6-13-67 Completed 6-22-67
- Date well drilling machine moved off of well 6-24-67

Drilling Machine Operator's Certification:

- This well was constructed under my direct supervision. Materials used and information reported above are true to my knowledge and belief.

Address:

- Box 1267, St Helens, Oreg.

Well Completion:

- Name
- Address
- Water Well Contractor's License No.

Notice to Water Well Contractor:

- The original and one copy of this report must be filed with the State Engineer, Salem, Oregon, within 30 days from the date of completion of this well. Please sign and date this report and return it to the State Engineer.

Signed:

- Drilling Machine Operator's License No.

Note:

- Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
STATE OF OREGON

WATER WELL REPORT

Instructions for completing this report are on the last page of this form.

1. **OWNER:**
 - **Name:**
 - **Street:**
 - **City:**
 - **State:**
 - **Zip:**

2. **TYPE OF WORK**
 - **Drilling:**
 - **Rotary Air**
 - **Cable tool**
 - **Auger**

3. **PROPOSED USE**
 - **Domestic**
 - **Industrial**
 - **Irrigation**

4. **BORE HOLE CONSTRUCTION**
 - **Special Construction approval:**
 - **Depth of Completed Well:** 63 ft.
 - **Explosives used:**

5. **HOLES SEAL**
 - **Diameter:**
 - **From:**
 - **To:**
 - **Material:**
 - **From:**
 - **To:**
 - **Sands or gravel:**

6. **CASING/LINER:**
 - **Casing:**
 - **Diameter:**
 - **From:**
 - **To:**
 - **Liner:**
 - **Material:**
 - **From:**
 - **To:**
 - **Final location of shoe(s):**

7. **PERFORATIONS/SCREENS:**
 - **Perforations Method:**
 - **Screens Type Material:**
 - **From:**
 - **To:**
 - **Screen Number Diameter:**
 - **From:**
 - **To:**

8. **WELL TESTS:** Minimum testing time is 1 hour
 - **Pump:**
 - **Boiler:**
 - **Flowing Ammon:**
 - **Dwells:**
 - **On:**
 - **Off:**
 - **Drill stem at:**
 - **Time:**

9. **LOCATION OF WELL**
 - **County:**
 - **TOWNSHIP:**
 - **Range:**
 - **Sec.:**
 - **Lot:**
 - **Lot:**
 - **Subdivision:**
 - **Street Address of Well (or nearest address):**

10. **STATIC WATER LEVEL:**
 - **Depth at which water was first found:**
 - **Estimated Flow Rate:**

11. **WATER BEARING ZONES:**
 - **Depth:**
 - **From:**
 - **To:**
 - **Est. Flow Rate:**

12. **WELL LOG:**
 - **Material:**
 - **From:**
 - **To:**

13. **WATER WELL REPORT**

Signed: __________________________
Date: __________________________

(bonded) Water Well Constructor Certification:
I certify that the work I performed on the construction, alteration, or abandonment of this well is in compliance with Oregon water supply well construction standards. Materials used and information reported above are true to the best of my knowledge and belief.

WWC Number: ______________________
Date: __________________________

(bonded) Water Well Constructor Certification:
I accept responsibility for the construction, alteration, or abandonment work performed on this well during the construction dates reported above. All work performed during this time is in compliance with Oregon water supply well construction standards. This report is true to the best of my knowledge and belief.

WWC Number: ______________________
Date: __________________________
WATER WELL REPORT

STATE OF OREGON

[Form fields filled in with handwritten text]

1) OWNER:
Name: Ernest Bailey
Address: 9450 West Lillian St.

2) LOCATION OF WELL:
County: Columbia
Driller's well number: #1124

3) TYPE OF WORK (check):
- Well □ Deepening □ Abandon □ Reconditioning □

4) PROPOSED USE (check):
- Domestic □ Industrial □ Municipal □ Commercial □ Cable □ Driven □ Test Well □ Other □

5) TYPE OF WELL:
- Rotary □ Driven □

6) CASING INSTALLED:
- Threaded □ Welded □

7) PERFORATIONS:
- Perforated? Yes □ No □

8) SCREENS:
- Well screen installed? Yes □ No □

9) CONSTRUCTION:
- Well seal—Material used in seal: Betonite, Pudding Clay
- Depth of seal: 26 ft.
- Was a packer used? No □ Yes □
- Diameter of well bore to bottom of seal: 12 in.
- Were any loose strata cemented off? Yes □ No □
- Was a drive shoe used? Yes □ No □
- Was well gravel packed? Yes □ No □
- Size of gravel:
- Gravel placed from: ft. to ft.
- Did any strata contain unusable water? Yes □ No □
- Type of water:
- Method of sealing strata off:

10) WATER LEVELS:
- Static level: 26 ft.
- Date below land surface: 2/1/60

11) WELL TESTS:
- Drawdown a constant water level is lowered below static level:
- Was a pump test made? Yes □ No □
- If yes, by whom:
- Yield:
- gal./min. with ft. drawdown after:

12) WELL LOG:
- Diameter of well below casing:
- Depth drilled:
- Depth of completed well:

13) PUMP:
- Work turned:
- Date well drilled:
- Manufacturer's Name:
- Type:
- Water Well Contractor's Certification:

[Signature]

[Drilling Machine Operator's License No. 323]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Material</th>
<th>Screen Type</th>
<th>Screen Size</th>
<th>Slot Tele/pipe Size</th>
<th>Material From To</th>
<th>Screen From To</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Material: Clean Clay, Clean Sand, Clean Clean, Clean Clean
- Date started: 12/14/84
- Completion: 12/23/84
- Well Location: [Hole] [Hole]
- Construction Method: [Method]
- Construction Standards: [Standards]
STATE OF OREGON
WATER WELL REPORT

1. OWNER:
 Name:
 Address:
 City:
 State:
 Zip:

2. TYPE OF WORK:
 [] New Well [] Deepen [] Recondition [] Abandon

3. DRILL METHOD:
 [] Rotary Air [] Rotary Mud [] Cable [] Other

4. PROPOSED USE:
 [] Domestic [] Commercial [] Industrial [] Irrigation
 [] Thermal [] Injection [] Other

5. BORE HOLE CONSTRUCTION:
 Special Construction approval: [] Yes [] No
 Depth of Completed Well: __ ft.
 Explosives used: [] Yes [] No
 Type:
 Amount:
 Diameter:
 Material:
 Seal:
 From:
 To:
 Amount:

6. CASING/LINER:
 [] Casing [] Liner
 Diameter:
 From:
 To:
 Material:
 Type:
 From:
 To:
 Size of gravel:

7. PERFORATIONS/SCREENS:
 Perforations:
 Screen:
 From:
 To:
 Slot:
 Material:
 Diameter:
 Tripping:
 Casing:
 Liner:

8. WELL TESTS: Minimum testing time is 1 hour
 [] Pump [] Bailer [] Air
 Flowing
 Artesian
 Yield gpm:
 Drawdown:
 Drill stem at Time:
 Temperature of Water:
 Depth Artesian Flow Found:

9. LOCATION OF WELL by legal description:
 Township: __ Section: __ Quarter: __
 Tax Lot: __ Block: __ Subdivision: __
 Street address of well or nearest property:

10. STATIC WATER LEVEL:
 Depth at which water was first found: __ ft.
 Date: __

11. WATER BEARING ZONES:
 From:
 To:
 Estimated Flow Rate:
 __ GPM

12. WELL LOG:
 Ground condition:
 Material:
 From:
 To:
 __ ft.

13. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

14. WATER FLOW ZONES:
 From:
 To:
 Date:

15. WELL LOG:
 Date:
 __ ft.

16. LOCATION OF WELL:
 __ ft. above ground

17. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

18. WATER FLOW ZONES:
 From:
 To:
 Date:

19. WELL LOG:
 Date:
 __ ft.

20. LOCATION OF WELL:
 __ ft. above ground

21. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

22. WATER FLOW ZONES:
 From:
 To:
 Date:

23. WELL LOG:
 Date:
 __ ft.

24. LOCATION OF WELL:
 __ ft. above ground

25. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

26. WATER FLOW ZONES:
 From:
 To:
 Date:

27. WELL LOG:
 Date:
 __ ft.

28. LOCATION OF WELL:
 __ ft. above ground

29. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

30. WATER FLOW ZONES:
 From:
 To:
 Date:

31. WELL LOG:
 Date:
 __ ft.

32. LOCATION OF WELL:
 __ ft. above ground

33. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

34. WATER FLOW ZONES:
 From:
 To:
 Date:

35. WELL LOG:
 Date:
 __ ft.

36. LOCATION OF WELL:
 __ ft. above ground

37. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

38. WATER FLOW ZONES:
 From:
 To:
 Date:

39. WELL LOG:
 Date:
 __ ft.

40. LOCATION OF WELL:
 __ ft. above ground

41. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

42. WATER FLOW ZONES:
 From:
 To:
 Date:

43. WELL LOG:
 Date:
 __ ft.

44. LOCATION OF WELL:
 __ ft. above ground

45. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

46. WATER FLOW ZONES:
 From:
 To:
 Date:

47. WELL LOG:
 Date:
 __ ft.

48. LOCATION OF WELL:
 __ ft. above ground

49. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

50. WATER FLOW ZONES:
 From:
 To:
 Date:

51. WELL LOG:
 Date:
 __ ft.

52. LOCATION OF WELL:
 __ ft. above ground

53. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

54. WATER FLOW ZONES:
 From:
 To:
 Date:

55. WELL LOG:
 Date:
 __ ft.

56. LOCATION OF WELL:
 __ ft. above ground

57. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

58. WATER FLOW ZONES:
 From:
 To:
 Date:

59. WELL LOG:
 Date:
 __ ft.

60. LOCATION OF WELL:
 __ ft. above ground

61. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

62. WATER FLOW ZONES:
 From:
 To:
 Date:

63. WELL LOG:
 Date:
 __ ft.

64. LOCATION OF WELL:
 __ ft. above ground

65. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

66. WATER FLOW ZONES:
 From:
 To:
 Date:

67. WELL LOG:
 Date:
 __ ft.

68. LOCATION OF WELL:
 __ ft. above ground

69. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

70. WATER FLOW ZONES:
 From:
 To:
 Date:

71. WELL LOG:
 Date:
 __ ft.

72. LOCATION OF WELL:
 __ ft. above ground

73. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

74. WATER FLOW ZONES:
 From:
 To:
 Date:

75. WELL LOG:
 Date:
 __ ft.

76. LOCATION OF WELL:
 __ ft. above ground

77. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

78. WATER FLOW ZONES:
 From:
 To:
 Date:

79. WELL LOG:
 Date:
 __ ft.

80. LOCATION OF WELL:
 __ ft. above ground

81. STATIC WATER LEVEL:
 Date:
 __ ft. below surface

82. WATER FLOW ZONES:
 From:
 To:
 Date:
WATER WELL REPORT
STATE OF OREGON

OWNER: Elmer Green
Address: 185 S. 4th Street
St. Helens, Oregon 97051

1) TYPE OF WORK (check):
- Well □ Deepening □ Reconditioning □ Abandon □

2) TYPE OF WELL: (4) PROPOSED USE (check):
- Domestic □ Industrial □ Municipal □
- Irrigation □ Test Well □ Other □

3) CASING INSTALLED:
- Threaded □ Welded □
- Diam. from 7 in. to 10 ft. 149 ft. Gage □ 250...
- Diam. from 7 in. to 10 ft. 149 ft. Gage □ 250...

4) PERFORATIONS:
- Perforated □ Yes □ No
- Use of perforations □ in. by □ in.
- perforations from □ to □ ft.
- perforations from □ to □ ft.
- perforations from □ to □ ft.

5) SCREENS:
- Well screen installed □ Yes □ No
- Manufacturer's Name □
- Model No. □
- Slot size □ Set from □ to □ ft.
- Diam. □ Slot size □ Set from □ to □ ft.

6) WELL TESTS:
- Drawdown is amount water level is lowered below static level
- a pump test made? □ Yes □ No
- If yes, by whom?
- Yield: 223 gal./min. with 60 ft. drawdown after 2 hrs.
- 55 - 40 - 20 -
- Water test: gal./min. with 60 ft. drawdown after hrs.
- gpm.
- Temperature of water 50°F with artesian flow encountered

7) CONSTRUCTION:
- Well seal: Material used □ Cement grout & gel □
- Well sealed from land surface to □ 148 ft.
- Diameter of well bore to bottom of seal □ 10 in.
- Diameter of well bore below seal □ 6 in.
- Number of sacks of cement used in well seal □ 25 sacks
- Gravel placed in bottom seal □ 148' placed
- Grout placed in bottom seal □ 5 sacks, Top seal □ 40' tramined
- Placed in land surface □ 20 sacks
- Was a drive shoe used? □ Yes □ No
- Plug No. □
- Any strata contain unusable water? □ Yes □ No
- Use of water, death of strata
- Method of sealing strata off
- Was well gravel packed? □ Yes □ No
- Gravel placed from □ ft. to □ ft.

8) LOCATION OF WELL:
- County □ Columbia
- City □ Salem
- Driller's Permit No. □
- State □ Oregon
- Section □
- 3 T 4
- Field No. □
- 2 W 4
- Bearing and distance from section or subdivision corner

9) WATER LEVEL:
- Completed well
- Depth at which water was first found □
- Static level 45 ft. to land surface
- Date □
- Artesian pressure □ per square inch

10) MATERIAL:
- Brown clay & gravel □
- Brown cemented gravel □
- Gray cemented gravel—occ. loose □
- Gray sand & gravel □
- Gray cemented sand & gravel □
- Gray gravel—waterbearing □

11) LOCATION OF STRATA:
- Depth Drilled: 150 ft. Depth of completed well □ 149 ft.
- Description: Describe color, texture, grain size and structure of materials
- Show thickness and nature of each stratum and aquifer penetrated
- With at least one entry for each change of formation. Report each change of position of Static Water Level and indicate principal water-bearing strata.

12) WELL LOG:
- Formation: Describe color, texture, grain size and structure of materials
- Show thickness and nature of each stratum and aquifer penetrated
- With at least one entry for each change of formation. Report each change of position of Static Water Level and indicate principal water-bearing strata.

Drilling Machine Operator's Certification:
This well was constructed under my direct supervision. Materials used and information reported above are true to the best of my knowledge and belief.

Contractor's License No. □

Drilling Machine Operator's License No. □

Drilling Date □

Water Well Contractor's Certification:
This well was drilled under my jurisdiction and the report true to the best of my knowledge and belief.

Name □

Address □

Contractor's License No. □

Date □

Date □

Date □

Date □

Date □

83
WATER WELL REPORT
STATE OF OREGON

1) OWNER:
- Charles Mitchellknaus
- Route 1, Box 212
- Scappoose, Oregon

2) LOCATION OF WELL:
- Columbia, Owner's number, if any-
- Section 1, T. 3 N., R. 2 W., W.M.
- Owner's number and distance from section or subdivision corner

TYPE OF WORK (check):
- New Well
- Deepening
- Reconditioning
- Abandon

3) PROPOSED USE (check):
- Domestic
- Industrial
- Municipal
- Test Well
- Other

4) CASING INSTALLED:
- Threaded
- Welded
- Diameter
- Length
- Depth drilled

5) TYPE OF WELL:
- Rotary
- Driven
- Cased
- Jetted
- Dug
- Bored

6) SCREENS:
- Manufacturer's Name
- Model No.
- Diameter
- Length
- Slot size
- Flow rate

7) PERFORATIONS:
- Number of perforations
- Depth of perforations
- Diameter of perforations

8) CONSTRUCTION:
- Well gravel packed
- Size of gravel
- Well screen installed
- Depth of strata
- Method of sealing strata off

9) WATER LEVELS:
- Static level
- Date
- Accepted by:
- Date

10) WELL TESTS:
- Water level
- Date
- Accepted by:
- Date

11) WELL LOG:
- Depth of strata
- Type of material

12) PUMP:
- Manufacturer's Name
- Model
- Type
- H.P.

13) WATER QUALITY:
- Chemical analysis
- pH
- Temperature

Driller's Statement:
This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

NAME: Steinbeck Bros. (Person, firm, or corporation)
Address: 1512 S.E. McLaughlin Blvd., Milwaukie, Or
Driller's name: John Steinbeck
Driller's license number: 31-57
Well Driller's number: 31-57
Date: September 3, 1967

USE ADDITIONAL SHEETS IF NECESSARY

3/2-1ba
WATER WELL REPORT
STATE OF OREGON

1) OWNER:

Dorothy Buff
21130 Vernonia, Oregon

2) LOCATION OF WELL:

County: Columbia
Owner's number: 123

3) TYPE OF WORK (check):

New Well □ Drilling □ Reconducing □ Abandon □

PROPOSED USE (check): (5) TYPE OF WELL:

Domestic □ Industrial □ Municipal □ Rotary □ Driven □ Cable Driven □ Jetted □ Dug □ Bored □

4) CASING INSTALLED: Threaded □ Welded □

Diam. from 6 in. to 15 ft. Gage 120 V
5 in. Diam. from 153 in. to 210 ft. Gage 120

5) PERFORATIONS:

Type of perforator used: Torched □ Yes □ No

Size of perforations: 1/8 in. by 1/2 in.

Per foot: perforations from 150 to 210 ft.

6) SCREENS:

Well screen installed: Yes □ No

Manufacturer's Name
Type
Diam.
Slot size
Set from
Set to

7) CONSTRUCTION:

Was well gravel packed? □ Yes □ No

Type of gravel: Loose gravel (not water bearing) □ 68 in. to 6 ft.

Material placed from ft. to ft.

Was a surface seal provided? □ Yes □ No

To what depth? ft. Material used in seal:

Did any strata contain unusable water? □ Yes □ No

Type of water: Depth of strata

Method of sealing strata

8) WATER LEVELS:

Well level: 3 ft. Above land surface Date 7-25-60

Log Accepted by:

9) WELL TESTS:

Drawdown is amount water level is lowered below static level:

Was a pump test made? □ Yes □ No If yes, by whom?

Yield per min. with ft. drawdown after

10) PUMP:

Manufacturer's Name: Pacific Pumping Company
Type: Jet H.P. 2

Well Driller's Statement:

This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

NAME: M. Janssen, Partner
Address: 2410 S. W. Tualatin Highway - Aloha, Or

Driller's well number:

Signed: Edward M. Janssen, Partner
License No. 79 Date 7-25-60 19
STATE OF OREGON
WATER WELL REPORT
(as required by OAR 337-77B)

(1) OWNER:
Name: Robert G. & Gloria A. Wenborn
Address: 5007 S W Old Portland Rd, Scappoose, OR 97051

(2) TYPE OF WORK:
Excessive Flow, Recondition, Abandon

(3) DRILL METHOD
Rotary Air, Rotary Mud

(4) PROPOSED USE:
Domestic, Community, Industrial, Irrigation

(5) BORE HOLE CONSTRUCTION:
Special Construction approval No
Depth of Completed Well 295 ft

(6) CASING/LINER:

<table>
<thead>
<tr>
<th>Diameter</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material: 30 Gage Steel Plastic Welded Threaded

(7) PERFORATIONS/SCREENS:

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>280</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slot</th>
<th>Number</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>5/P</td>
<td></td>
</tr>
</tbody>
</table>

(8) WELL TESTS: Minimum testing time is 1 hour
Pump, Air

<table>
<thead>
<tr>
<th>Yield gpm</th>
<th>Drawdown</th>
<th>Drill stem at Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2.5</td>
<td>1 hr</td>
</tr>
</tbody>
</table>

(10) STATIC WATER LEVEL:
245 ft below ground surface

(11) WATER BEARING ZONES:
Depth at which water was first found 265

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>265</td>
<td>290</td>
</tr>
</tbody>
</table>

(12) WELL LOG:

<table>
<thead>
<tr>
<th>Material</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Red Clay</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Gray Sandstone</td>
<td>32</td>
<td>60</td>
</tr>
</tbody>
</table>

(c) Bonded Water Well Constructor Certification:
I certify that the work performed on this well during the construction phase reported above is in compliance with Oregon construction standards. This report is true to the best of my knowledge and belief.

Signature

(C) Unbonded Water Well Constructor Certification:
I certify that the work I performed during the construction, alteration, or abandonment of this well is in compliance with Oregon well construction standards. Materials used and information reported above are true to my knowledge and belief.

Signature

Data started: 3/15/86
Completed: 5/9/86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(1) OWNER: Cypress Land & Water
(2) TYPE OF WORK: New Well
(3) DRILL METHOD: Rotary Air
(4) PROPOSED USE: Industrial
(5) BORE HOLE CONSTRUCTION:

<table>
<thead>
<tr>
<th>HOLE</th>
<th>Diameter From To</th>
<th>Depth of Completed Well</th>
</tr>
</thead>
<tbody>
<tr>
<td>6"</td>
<td>19"</td>
<td>120"</td>
</tr>
</tbody>
</table>

(6) CASING/LINER:

- Material: gravel
- Diameter: 6"

(7) PERFORATIONS/SCREENS:

- Method: Home well placed Method
- Number: 10
- Diameter: 6"

(8) WELL TESTS:

- Minimum testing time is 1 hour
- Yield gallons: 60
- Drawdown: 100" 1 hr
- Temperature of water: 52°F

(9) LOCATION OF WELL by legal description:

- Description:

(10) STATIC WATER LEVEL:

- Date: 2-27-91
- Depth: 120" 1 hr

(11) WATER BEARING ZONES:

- Date: 2-27-91
- Estimated Flow Rate: 45 gph

(12) WELL LOG:

- Material: gravel
- Diameter: 6"

(bonded) Water Well Constructor Certification:

- Signed: Dec 8-20-91

(bonded) Water Well Constructor Certification:

- Signed: Dec 8-20-91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT

Owner Information
- **Name:** A. Greenhorn
- **Well Number:** SALE1

Type of Work
- **New Well:** Yes
- **Recondition:** No
- **Abandon:** No

Drill Method
- **Rotary Air:** Yes
- **Rotary Mud:** No
- **Cable:** No
- **Other:** No

Proposed Use
- **Domestic:** Yes
- **Community:** No
- **Industrial:** No
- **Irrigation:** Yes
- **Thermal:** No
- **Injection:** No
- **Other:** No

Bore Hole Construction
- **Special Construction approval:** Yes
- **Depth of Completions Well:** 120 ft.
- **Explosives used:** Yes
- **Type:** Other
- **Amount:** Other

Hole Diameter
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.00</td>
<td>120</td>
<td>CEMENT</td>
</tr>
<tr>
<td>10.00</td>
<td>20</td>
<td>Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clay</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gravel</td>
</tr>
</tbody>
</table>

Seal Diameter
- **From:** 10
- **To:** 20
- **Material:** CEMENT
- **Seal:** Other
- **Amount:** 10 SACKS

How seal placed
- **Method:** Other
- **Other:** Backfill placed from ft. to ft. Material: Gravel placed from ft. to ft. Size of gravel: Other

Casing/Liner
- **Size:** 10
- **Material:** Other
- **From:** 0
- **To:** 120
- **Estimated Flow Rate:** 80 GPM
- **SWL:** 10

Perforations/Screen
- **Perforations:** Missing
- **Screen Type:** NA
- **Material:** Other

From | To | Diameter | Material
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Well Tests
- **Minimum testing time:** 1 hour
- **Pump:** Yes
- **Bailer:** No
- **Air:** Yes
- **Flowing Artesian:** Yes

Yield (gpm)
- **Drawdown:** 110
- **Drill time:** 1 hr.

Temperature of Water
- **52°**

Depth Artesian Flow Found
- **Yes**

Was a water analysis done?
- **Yes**

Did any source contain water not suitable for intended use?
- **Yes**

Salty
- **Yes**
- **Muddy
- **Oily**
- **Odor**
- **Other:**

Depth of area
- **10 ft.**

Observation of Well
- **Location:** Scappoose, OR 97056
- **Street Address:** 55585 Columbia River Hwy
- **Coordinates:** 41° 40' 56" N 122° 11' 02" W

Static Water Level
- **10 ft. below land surface**
- **Date:** 2/10/93

Water Bearing Zones
- **Depth:** 10 ft.

Well Log

<table>
<thead>
<tr>
<th>Material</th>
<th>From</th>
<th>To</th>
<th>SWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay Gravel</td>
<td>0</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Gravel-Silt Sand</td>
<td>13</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Gravel, Sand</td>
<td>30</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

Well Log Details
- **Ground elevation:** Other
- **Material:** Other
- **From:** 0
- **To:** 120

Well Log Date
- **Start Date:** Feb 9, 1993
- **Completed Date:** Feb 10, 1993

Well Log Certification
- **Unbonded Water Well Contractor Certification:**
- **Bonded Water Well Contractor Certification:**
- **Signed:**
- **Date:** 2/10/93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
STATE OF OREGON
WATER WELL REPORT
(as required by ORS 537.768)

(1) OWNER:
Name: CHARLES E. STULLNES
Address: P.O. BOX 318
SCAPOOSE, OR 97056

(2) TYPE OF WORK:
New Well □ Deepen □ Recession □ Abandon □ Other

(3) DRILL METHOD
Rotary Air □ Rotary Mud □ Cable □ Other

(4) PROPOSED USE:
Public □ Domestic □ Industrial □ Irrigation □ Other

(5) BORE HOLE CONSTRUCTION:
Special Construction approval □ No
Depth of Compl. Well 263 ft.

HOLE Diameter From To Material
10 14 16 18 20 22 24

SEAL Diameter From To Material
10 14 16 18 20 22 24

Amount of backfills

How was seal placed: Method □ A □ B □ C □ D □ E
Backfill placed from 10 ft to 14 ft.
Gravel placed from 14 ft to 24 ft.

(6) CASING/LINER:
Diameter From To Material
10 14 16 18 20 22 24

SEAL Diameter From To Material
10 14 16 18 20 22 24

Final location of short(s) 124

(7) PERFORATIONS/SCREENS:
Perforations □ Method Drill □ Screens □ Type
Material

From To Slot size Number Diameter Telepipe size Casing Liner

(8) WELL TESTS: Minimum testing time is 1 hour
Pump □ Bailer □ Air □ Artesian
Yield gal/min Drawdown Drill stem at Time

Ambient water 68°F Depth Artesian Flow Found

Was a water analysis done? □ Yes □ By whom
DANIELLE

DID any source contain water not suitable for intended use? □ Too little
□ Salty □ Muddy □ Odor □ Colored □ Other

(9) LOCATION OF WELL by legal description:

(10) STATIC WATER LEVEL:

(11) WATER BEARING ZONES:

(12) WELL LOG:

(13) WELLOG:

(underground) Water Well Constructor Certification:
I certify that the work I performed on the construction, alteration,
and abandonment of this well is in compliance with Oregon well construction
standards. Materials used and information reported above are true to the best
of my knowledge and belief.

Signed □ Date

(bonded) Water Well Constructor Certification:
I accept responsibility for the construction, alteration, and abandonment
of this well during this time is in compliance with Oregon well construction
standards. This report is true to the best of my knowledge and belief.

Signed □ Date

WHITE COPPER WATER RESOURCES DEPARTMENT
YELLOW COPY STAMPED: "OFFICIAL COPY - 1 OF 4"
<table>
<thead>
<tr>
<th>Type of Work:</th>
<th>Work to Be Performed:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposed Use:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bore Hole Construction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth of Completions: 140 ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Well Log:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Elevation:</td>
</tr>
<tr>
<td>Material:</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Bentonite</td>
</tr>
<tr>
<td>Steel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Casing/Liner:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter: From</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Material:</td>
</tr>
<tr>
<td>Steel Plastic Welded Threaded</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perforations/Screen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen:</td>
</tr>
<tr>
<td>Material:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Well Tests: Minimum testing time is 1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump:</td>
</tr>
<tr>
<td>Setting:</td>
</tr>
<tr>
<td>Flowing Artesian:</td>
</tr>
<tr>
<td>Yield:</td>
</tr>
<tr>
<td>Drawdown:</td>
</tr>
<tr>
<td>Time: 1 hr</td>
</tr>
<tr>
<td>Temperature of Water: 51°F</td>
</tr>
<tr>
<td>Water Analysis:</td>
</tr>
<tr>
<td>Water Hardness:</td>
</tr>
<tr>
<td>Ammonia:</td>
</tr>
<tr>
<td>Nitrite:</td>
</tr>
<tr>
<td>Nitrate:</td>
</tr>
<tr>
<td>Sulfate:</td>
</tr>
<tr>
<td>Chloride:</td>
</tr>
<tr>
<td>Sodium:</td>
</tr>
<tr>
<td>Calcium:</td>
</tr>
<tr>
<td>Magnesium:</td>
</tr>
<tr>
<td>Water Source:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Static Water Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth at which water was first sensed:</td>
</tr>
<tr>
<td>Material:</td>
</tr>
<tr>
<td>From:</td>
</tr>
<tr>
<td>To:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Bearing Zones:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth at which water was first sensed:</td>
</tr>
<tr>
<td>Material:</td>
</tr>
<tr>
<td>From:</td>
</tr>
<tr>
<td>To:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Well Log:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Elevation:</td>
</tr>
<tr>
<td>Material:</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Bentonite</td>
</tr>
<tr>
<td>Steel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Casing/Liner:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter: From</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>Material:</td>
</tr>
<tr>
<td>Steel Plastic Welded Threaded</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perforations/Screen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen:</td>
</tr>
<tr>
<td>Material:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Well Tests: Minimum testing time is 1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump:</td>
</tr>
<tr>
<td>Setting:</td>
</tr>
<tr>
<td>Flowing Artesian:</td>
</tr>
<tr>
<td>Yield:</td>
</tr>
<tr>
<td>Drawdown:</td>
</tr>
<tr>
<td>Time: 1 hr</td>
</tr>
<tr>
<td>Temperature of Water: 51°F</td>
</tr>
<tr>
<td>Water Analysis:</td>
</tr>
<tr>
<td>Water Hardness:</td>
</tr>
<tr>
<td>Ammonia:</td>
</tr>
<tr>
<td>Nitrite:</td>
</tr>
<tr>
<td>Nitrate:</td>
</tr>
<tr>
<td>Sulfate:</td>
</tr>
<tr>
<td>Chloride:</td>
</tr>
<tr>
<td>Sodium:</td>
</tr>
<tr>
<td>Calcium:</td>
</tr>
<tr>
<td>Magnesium:</td>
</tr>
<tr>
<td>Water Source:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Static Water Level:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth at which water was first sensed:</td>
</tr>
<tr>
<td>Material:</td>
</tr>
<tr>
<td>From:</td>
</tr>
<tr>
<td>To:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water Bearing Zones:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth at which water was first sensed:</td>
</tr>
<tr>
<td>Material:</td>
</tr>
<tr>
<td>From:</td>
</tr>
<tr>
<td>To:</td>
</tr>
</tbody>
</table>
(10) LOCATION OF WELL:

| County | Columbia | Driller's well number | 82-NO.3 Section 12 | 3N | 2 W | WM |

Beating and distance from section or subdivision corner.

(11) WATER LEVEL: Completed well.

Depth at which water was first found	124 ft.		
Status level	62 ft. below land surface	Date	5/2/74
Artesian pressure	lbs. per square inch	Date	

(13) WELL LOG: Diameter of well below casing | 8 in. |

| Depth drilled | 138 ft. | Depth of completed well | 138 ft. |
| Formation: Describe color, texture, grain size and structure of materials, and show thickness and nature of each stratum and aquifer penetrated, with at least one entry for each change in position of Static Water Level and indicate principal water-bearing strata. |

Depth below	Art. level	Topsoil mixed w/ coarse gravel 0 1
Muddy coarse gravel w/some fines	1 13	
Muddy brown sand & medium coarse gravel	13 28	
Fine gravel	28 30	
Muddy med coarse gravel	30 31	
Medium fine to fine gravel	34 52	
Fine to coarse brown sand	52 57	
Medium fine to med coarse gravel	57 73	
Muddy gravel	73 79	
Coarse sand & fine gravel	79 81	
Muddy gravel	81 88	
Coarse gravel	83 86	
Muddy coarse gravel	86 89	
Medium fine to coarse gravel	89 103	
Muddy coarse gravel	101 111	
Muddy sand & gravel mix	111 115	
Fine to med coarse gravel	115 117	
Cemented gravel	117 119	

Work started | 5/4/74 | Completed | 5/2/74 |
| Date well drilling machine moved off of well | 5/4/74 | |

Drilling Machine Operator's Certification:

This well was constructed under my direct supervision. Materials used and information reported above are true to my best knowledge and belief.

[Signature] Date: 5/6/71

Drilling Machine Operator's License No: 751

Water Well Contractor's Certification:

This well was drilled under my jurisdiction and this report true to the best of my knowledge and belief.

Name: Gus H. Wagner

Address: 840 N E. Sacramento, Portland, Ore.

[Signature] Date: 5/6/74

Contractor's License No: 79 | Date: 5/6/74 | 19 |

(USE ADDITIONAL SHEETS IF NECESSARY) 3/2-12ad
OWNER:
Jean Hebesen
1208 Spenoaker St.
Scappoose, Ore. 97056

1) TYPE OF WORK (check):
- New Well
- Deepening
- Reconditioning
- Abandonment

2) TYPE OF WELL (check):
- Rotary
- Driven
- Jetted
- Irrigation
- Test Well
- Other

Casing Installed:
- Threaded
- Welded

3) TYPE OF WELL:
- Perforated
- Yes
- No

3a) Diameter of well below seal

4) PROPOSED USE (check):
- Artesian
- Pressure
- Dated
- July
- 3
- 1974

- Domestic
- Industrial
- Municipal

5) SCREENS:
- Well screen installed
- Yes
- No

6) PERFORATIONS:
- Size of perforation
- Diameter
- In.

7) SCREENS:
- Diam.
- Slot size
- Set from

8) WELL TESTS:
- Water level
- Drawdown
- Amount
- Well
- Depth

9) CONSTRUCTION:
- Well seal
- Material used
- Bentonite

10) LOCATION OF WELL:
- County
- Columbia

11) WATER LEVEL:
- Completed well

12) WELL LOG:
- Diameter of well below casing
- Depth drilled
- 94 ft.
- Depth of completed well
- 94 ft.

- Topsoil
- Clay, red
- Clay, silty
- Clay, blue
- Gravel, cemented
- Gravel, candy

- 0
- 2
- 23
- 25
- 40
- 60
- 90
- 94

- Work started
- 7-2-74
- Completed
- 7-3-74
- Date well drilling machine moved off of well
- 7-3-74

- Water Well Contractor's Certification:
- This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.
- Name
- Farrell McGhee
- Address
- 120 Industrial Way
- Longview, Wash.
- License No.

- Drilling Machine Operator's Certification:
- This well was constructed under my direct supervision.
- Materials used and information reported above are true to the best of my knowledge and belief.
- Name
- Sigfrid Jenson
- Address
- 120 Industrial Way
- Longview, Wash.
- License No.

- Water Well Contractor's License No.
- 438
- Date
- 7-3-74

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT

STATE OF OREGON STATE ENGINEER

(Do not write above this line)

OWNER:

Scappoose High School
Scappoose, Oregon

2) TYPE OF WORK (check):

New Well
Deepening
Reconditioning
Abandon

3) TYPE OF WELL:

(3) TYPE OF WELL:

Rotary
Jetted
Bored

(4) PROPOSED USE (check):

Domestic
Industrial
Municipal
Other

(5) CASING INSTALLED:

Threaded
Welded

Diam. from ft. to ft. Gage

(6) PERFORATIONS:

Type of perforator used
Perforated? Yes No

Size of perforations in by

(7) SCREENS:

Well screen installed? Yes No

Manufacturer's Name

Model No.

Diam. Slot size Set from ft. to ft.

(8) WELL TESTS:

Drawdown is amount water level is lowered below static level

Was a pump test made? Yes No If yes by whom?

yi/gal./min. with ft. drawdown after hrs.

Bailer test gal./min. with ft. drawdown after hrs.

Artesian flow g.p.m.

(9) CONSTRUCTION:

Well seal—Material used
Cement Grout

Well sealed from land surface to ft.

Diameter of well bored to bottom of seal ft.

Diameter of well bored below seal ft.

Number of sacks of cement used in well seal

Number of sacks of bentonite used in well seal

Number of pounds of bentonite per 100 gallons of water

Type of water

Method of sealing strata off

Was well gravel packed? Yes No

Size of gravel

Gravel placed from ft. to ft.

(10) LOCATION OF WELL:

County: Columbia
Drilling well, Gr. 5/54
S.W. SE. Section 12 T. 31 N. 2 W.

(11) WATER LEVEL:

State water 25 ft. below land surface Date 1/17

Artesian pressure lbs per square inch Other

(12) WELL LOG:

Diameter of well below casing

Depth drilled 177 ft. Depth of completed well 177 ft.

Formation: Describe color, texture, grain size and structure of materials and show thickness and nature of each stratum and aquifer penetrated with at least one entry for each change of formation. Report each change in position of static water level and indicate principal water-bearing strata

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>From</th>
<th>To</th>
<th>SWL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Soil</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravel and Boulder</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemented Gravel</td>
<td>14</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Brown Clay and Gravel</td>
<td>27</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Brown Sand</td>
<td>40</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Blue Gravel Sand</td>
<td>45</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>Blue Clay and Gravel</td>
<td>92</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>Brown and Gravel</td>
<td>125</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>Tight Sand and Gravel</td>
<td>193</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>Stiff Blue Clay</td>
<td>207</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Work started AUG 9 1973 Completed SEPT 12 1973

Date well drilling machine moved off of well SEPT 13 1973

Drilling Machine Operator's Certification:

This well was constructed under my direct supervision. Materials used and information reported above are true to my best knowledge and belief.

(Signed)

Drilling Machine Operator's License No. 175

Water Well Contractor's Certification:

This well was drilled under my Jurisdiction and this report is true to the best of my knowledge and belief.

(Signed)

Address: 835 Sunset Lane Hinton, O

Contractor's License No. 10 Date: SEPT 20 1973

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL INSPECTORS REPORT

STATE OF OREGON

1) OWNER:
- **Steinfeld Pickle Co.**
- P.O. Box 2389 Portland, OR

2) LOCATION OF WELL:
- **Columbia**
 - Owner's number, if any:
 - P.O. Box 2389, Portland, OR
- **Well on the south City limits of Scappoose, Oregon**

3) TYPE OF WORK (check):
- **Abandon**

4) PROPOSED USE (check):
- **Municipal**
- **Test Well**
- **Drinking Water**

5) EQUIPMENT:
- **Rotary**
- **Cable**
- **Dug Well**

6) CASING INSTALLED:
- **Threaded**
- **Welded**

7) PERFORATIONS:
- **Hole Knife**
- **Type of perforations**
- **1 in. length by 1 in.**

8) SCREENS:
- **Give Manufacturer's Name, Model No. and Size**

9) CONSTRUCTION:
- **None**

10) WELL TESTS:
- **Pacific Pumping Co.'s Pump**
 - Yield: 300 gpm with 54 ft. static drawdown

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 in.</td>
<td>435 gpm</td>
</tr>
</tbody>
</table>

11) WELL LOG:
- **Diameter of well**
- **8 inches**
- **Total depth**
- **154 ft.**
- **Depth of completed well**
- **164 ft.**

<table>
<thead>
<tr>
<th>Depth</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 5</td>
<td>Gravel fill material</td>
</tr>
<tr>
<td>5 - 11</td>
<td>Large gravel & boulders</td>
</tr>
<tr>
<td>11 - 16</td>
<td>Cement gravel</td>
</tr>
<tr>
<td>16 - 29</td>
<td>Loose gravel</td>
</tr>
<tr>
<td>29 - 35</td>
<td>Cement gravel</td>
</tr>
<tr>
<td>35 - 40</td>
<td>Loose gray gravel</td>
</tr>
<tr>
<td>40 - 45</td>
<td>Loose sand & gravel, brown</td>
</tr>
<tr>
<td>45 - 57</td>
<td>Brown cemented gravel</td>
</tr>
<tr>
<td>57 - 59</td>
<td>Cemented gravel</td>
</tr>
<tr>
<td>59 - 70</td>
<td>Fine brown sand & gravel</td>
</tr>
<tr>
<td>70 - 80</td>
<td>Cemented gravel</td>
</tr>
<tr>
<td>80 - 85</td>
<td>Loose gravel, 25 G.P.M.</td>
</tr>
<tr>
<td>85 - 91</td>
<td>Green sand, silt & gravel</td>
</tr>
<tr>
<td>91 - 98</td>
<td>3" cemented with sand</td>
</tr>
<tr>
<td>98 - 101</td>
<td>Loose gravel & sand</td>
</tr>
<tr>
<td>101 - 132</td>
<td>Cemented gravel, 50 G.P.M.</td>
</tr>
<tr>
<td>132 - 155</td>
<td>Loose gravel</td>
</tr>
<tr>
<td>155 - 188</td>
<td>Cemented gravel, 3" minus</td>
</tr>
<tr>
<td>188 - 198</td>
<td>Loose gravel</td>
</tr>
<tr>
<td>198 - 200</td>
<td>Cemented gravel</td>
</tr>
<tr>
<td>200 - 205</td>
<td>Sand & gravel, 50 G.P.M.</td>
</tr>
</tbody>
</table>

12) WATER LEVELS:
- **Static 39 ft.**
- **Acceptable by: Owner**

<table>
<thead>
<tr>
<th>Depth</th>
<th>Water Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 10</td>
<td>Static 39 ft.</td>
</tr>
<tr>
<td>10 - 20</td>
<td>Static 39 ft.</td>
</tr>
<tr>
<td>20 - 30</td>
<td>39 ft.</td>
</tr>
</tbody>
</table>

13) METHOD OF SEALING:
- **filled around pipe**

14) SIGNATURE:
- **Steinmann Bros.**
- **Driller's well number:** 1556
- **License No.** 0001
- **Address:** 8331, S.W. 15th Ave., Portland, OR
- **Dated:** Sept. 12, 1956

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
NOTICE TO WATER WELL CONTRACTOR

(1) OWNER:
Name: Cascade Materials Construction Co.
Address: P. O. Box 583, Scappoose, Oregon

(2) TYPE OF WORK (check):
New Well ☐ Deepening ☐ Reconditioning ☐ Abandon ☐
If abandonment, describe material and procedure in item 13

(3) TYPE OF WELL: (4) PROPOSED USE (check):
Rotary ☐ Driven ☐ Jetted ☐ Bored ☐ Domestic ☐ Industrial ☐ Municipal ☐
Perforated ☐ Yes ☐ No ☐

(5) Casing Installed:
Threads ☐ Welded ☐
Diam. from —ft. to —ft. Gage —%

(6) PERFORATIONS:
Perforated? Yes ☐ No ☐
Type of perforations used
Size of perforations

(7) SCREENS:
Well screen installed? Yes ☐ No ☐
Manufacturer's Name
Type
Diam. Slot size Set from —ft. to —ft.
Diam. Slot size Set from —ft. to —ft.

(8) WATER LEVEL: Completed well.
Pressure level — ft. below land surface Date 7/8/69
Gage pressure lbs. per square inch Date

(9) WELL TESTS:
Drawdown is amount water level is lowered below static level
Was a pump test made? Yes ☐ No ☐ If Yes, by whom?

"gals/min. with ft. drawdown after hrs.
Artesian Flow g.p.m. Date
Temperature of water Was a chemical analysis made? Yes ☐ No ☐

(10) CONSTRUCTION:
Well seal -Material used Bentonite
Depth of seal — ft.
Diameter of well bore to bottom of seal — in.
Was any loose strata encountered off? Yes ☐ No Depth
Was a drive shoe used? Yes ☐ No
Did any strata contain unusable water? Yes ☐ No
Type of water: depth of strata
Method of sealing strata off
Was well gravel ponded? Yes ☐ No Size of gravel:
Gravel placed from — ft. to — ft.

(11) LOCATION OF WELL:
County Columbia Driller's well number
Driller's name & address

(12) WELL LOG:
Diameter of well below casing — ft.
Depth drilled — ft. Depth of completed well — ft.
Formation: Describe color, texture, grain size and structure of material and show thickness and nature of each stratum and aquifer penetrated with at least one entry for each change of formation. Report each stratum in position of Static Water Level as drilling proceeds. None drilled.

MATERIAL

<table>
<thead>
<tr>
<th>Name of Material</th>
<th>From</th>
<th>To</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large gravel</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Clean gravel</td>
<td>9</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Loose gravel with blue clay</td>
<td>25</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Blue clay</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Gravel</td>
<td>15</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Sandstone</td>
<td>10</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Hard-packed gravel</td>
<td>50</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Sand and gravel</td>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>Sand & gravel (red, brown)</td>
<td>60</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Drilling Machine Operator's Certification:
This well was drilled under my direct supervision. The trials used and information reported above are true to my knowledge and belief.

(Signed) Drilling Machine Operator's License No. 523

Drilling Machine Operator's License No. 523

Water Well Contractor's Certification:
This well was drilled under my direct supervision. The trials used and information reported above are true to my knowledge and belief.

NAME: A. L. Jansen Drilling Co.
Address: 2025 S. Tualatin Valley Highway, Aloha

(Signed) [Signature] Contractor's License No. 79 Date 7/11/69

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(location of well)

County: Columbia

Tax Lot: 31

Lot: 4

Blk: N

Subdivision: 1 W

Water level: Complete well

Depth at which water was first found: 21 ft

Average pressure: The per square inch Date 12/12

Well log:

Diameter of well below casing: 0 ft

Depth drilled: 35 ft

Depth of completed well: 33 ft

Formation: Describe rock, strata, ground water and structure of materials, and thickness and nature of each stratum and aquifer penetrated, with at least one report for each change of formation. Report each change in position of State Water Line and indicate principal water-bearing strata.

Material:

<table>
<thead>
<tr>
<th>Material</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium gravel and fine sand</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Medium gravel and fine gray sand</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Medium gravel and large boulders</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>Medium gravel and brown clay</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>Coarse gravel and fine gray sand</td>
<td>31</td>
<td>35</td>
</tr>
</tbody>
</table>

Date Well Drilling Machine moved off of well: 12/24/80

Drilling Machine Operator’s Certification:

This well was constructed under my direct supervision. Materials and information reported above are true to my best knowledge and belief.

Signature: [Signed]

Date 12/22/80

Drilling Machine Operator’s License No.: 1471

Contractor's License No.: 79

Date: 12/29/80

Water Well Contractor’s Certification:

This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

Name: A.J. Jansen, Well Drilling Co., Inc.

Address: 21075 SW Salem Valley Hwy., Aloha, Or

Signature: [Signed]

Date 12/23/80

WATER RESOURCES DEPARTMENT
SALEM, OREGON 97301

WATER WELL REPORT
STATE OF OREGON

Owner:

Name: cascade aggregates, Inc.

Address: 1225 E. U. Box 2425

City: Scappoose, Oregon 97056

2) TYPE OF WORK (check):

- [] Deepening
- [] Reconditioning
- [] Abandon

[] Abandon, describe material and procedure in item 12

3) TYPE OF WELL:

- [] Artesian
- [] Draw
- [] Domestic
- [] Industrial
- [] Municipal
- [] Sprinkler
- [] Thermal
- [] Windmill
- [] Recreational
- [] Others

(4) PROPOSED USE (check):

- [] Domestic
- [] Industrial
- [] Commercial
- [] Municipal
- [] Agricultural
- [] Sprinkler
- [] Recreational
- [] Others

5) CASING INSTALLED:

- [] Steel
- [] Plastic
- [] Threaded
- [] Welded

- [] Casing
 - [] Depth from ft. to ft. Gauge
 - [] Diameter

6) SCREENS:

- [] Well screen installed
- [] No

Manufacturer: Name

Type: Screen Model No.

7) SCREENS:

- [] Well screen installed
- [] No

Type: Screen Model No.

8) WELL TESTS:

- [] Well test performed
- [] No

Type of test performed

Depth drilled: 20 ft.

Depth of completed well: 30 ft.

Wells: 1

Drill rig: 24 gpm

(9) CONTRACT:

- [] Special standards
- [] No

Cement

Well seal Material used

Well sealed from land surface

Diameter of well bore to bottom of seal: 10 ft.

Diameter of well bore below seal: 8 ft.

Number of sets of cement used to support

Number of sets of cement used to support

Concrete: N/A gpm

Frac. cement used to support

(10) LOCATION OF WELL:

County: Columbia

Tax Lot: 31

Lot: 4

Blk: N

Subdivision: 1 W

Drilled with a number of wells

Drilled on a number of wells

11) WATER LEVEL: Completed well

Depth at which water was first found: 21 ft

Average pressure: Date 12/12

Well log:

Diameter of well below casing: 0 ft

Depth drilled: 35 ft

Depth of completed well: 33 ft

Formation: Describe rock, strata, ground water and structure of materials, and thickness and nature of each stratum and aquifer penetrated, with at least one report for each change of formation. Report each change in position of State Water Line and indicate principal water-bearing strata.

Material:

<table>
<thead>
<tr>
<th>Material</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium gravel and fine sand</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Medium gravel and fine gray sand</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Medium gravel and large boulders</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>Medium gravel and brown clay</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>Coarse gravel and fine gray sand</td>
<td>31</td>
<td>35</td>
</tr>
</tbody>
</table>

Date Well Drilling Machine moved off of well: 12/24/80

Drilling Machine Operator’s Certification:

This well was constructed under my direct supervision. Materials and information reported above are true to my best knowledge and belief.

Signature: [Signed]

Date 12/22/80

Drilling Machine Operator’s License No.: 1471

Contractor’s License No.: 79

Date: 12/29/80

Water Well Contractor’s Certification:

This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

Name: A.J. Jansen, Well Drilling Co., Inc.

Address: 21075 SW Salem Valley Hwy., Aloha, Or

Signature: [Signed]

Date 12/23/80

WATER RESOURCES DEPARTMENT
SALEM, OREGON 97301

NOTICE TO WATER WELL CONTRACTOR

The original and form copy of this report are to be filed with the
WATER WELL REPORT

STATE OF OREGON

(Please type or print)

(Do set write above this line)

1) OWNER:
Name: Tony Irving
Address: Route 3, Box 258 A B
Seaside, Ore. 97385

(2) TYPE OF WORK (check):
New Well Ø Deepening Ø Reconditioning Ø Abandon Ø

(3) TYPE OF WELL: (4) PROPOSED USE (check):
Rotary Ø Driven Ø Domestic Ø Industrial Ø Municipal Ø
Jetted Ø Bored Ø Irrigation Ø Test Well Ø Other Ø

(5) CASING INSTALLED:
Threaded Ø Welded Ø
3" Diam. from Plus L ft. to 11/2 ft. Gage 250
6" Diam. from ft. to ft. Gage

(6) PERFORATIONS:
Perforated? Ø Yes Ø No
Type of perforator used
Site of perforations in. by in.

(7) SCREENS:
Well screen installed? Ø Yes Ø No
Manufacturer's Name
Type
Diam. Slot size Set from ft. to ft.

(8) WELL TESTS:
Drawdown to amount water level is lowered below static level
1-1/4 g.p.m. yield test Yes Ø No If yes, by whom?
Yield 100 gal./min. with 97 ft. drawdown after 1 hr.
- 50 - 48-
- -
Test at a flow of ft. drawdown after hrs.
Artesian flow g.p.m.
Temperature of water Depth artesian flow encountered ft.

(9) CONSTRUCTION:
Well seal - Material used
Cement grout & 5% gel
Well sealed from land surface to 20" ft.
Diameter of well bore to bottom of seal 10 in.
Diameter of well bore below seal 6 in.
Number of sets of cement used in well seal 6 Sets
How was cement grout placed? Trenched into dry annular bore - 20' to land surface

If a drive crew used? Ø Yes Ø No Flaps
Size location of ft.
If dry area contains unsuitable water? Ø Yes Ø No
Type of water
Method of assuring grout off
Was well gravel packed? Ø Yes Ø No
Site of gravel:
Gravel source from ft. in. ft.

(10) LOCATION OF WELL:
County Columbia
Driller's well number

(11) WATER LEVEL:
Completed well.
Depth at which water was first found 25" ft.
Static level 3 ft. below land surface Date 6/4/65
Artesian pressure

(12) WELL LOG:
Diameter of well below casing 6"
Depth drilled 120 ft. Depth of completed well 118 ft.
Formation. Describe color, texture, grain size and structure of materials and show strata and nature of each stratum and aquifer. See at least one entry for each change of formation. Report each change in position of Static Water Level and indicate principal water-bearing strata.

MATERIAL

Brown silty clay w/sand layers 0 15
Cgrt. silty sandy clay 25 22
Coarse gravel w/cemented layers 25 29 W.
Brown sand w/clover w/gravel layers 29 53
Coarse gravel w/brown sand and cemented layers 53 86 W.
Brown sand w/coarse gravel layers 86 97 W.

Coarse gravel w/muddy gravel layers 97 112 W.

Brown gravel w/little sand (brown) 112 120 w.

SALEM, OREGON

Drilling Machine Operator's Certification:
This well was constructed under my direct supervision. Material used and information reported above are true as to best knowledge and belief.
(Signed) (Drilling Machine Operator) Date 6/9/80

Drilling Machine Operator's License No. 523

Water Well Contractor's Certification:
This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

(Signed) (Water Well Contractor) Date 4/31/80

Contractor's license No. 79 Date 6/9/80

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>WATER WELL REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE OF OREGON</td>
</tr>
<tr>
<td>WATER RESOURCES DEPARTMENT</td>
</tr>
<tr>
<td>SALEM, OREGON 97310</td>
</tr>
<tr>
<td>(Please type or print)</td>
</tr>
<tr>
<td>(Do not write above)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. OWNER:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: Tony Irving</td>
</tr>
<tr>
<td>Address: Route 3, Box 258 B</td>
</tr>
<tr>
<td>Seaville, Oregon 97055</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. TYPE OF WORK:</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Well □ □</td>
</tr>
<tr>
<td>If abandonment, describe material and procedure in Item 12.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. TYPE OF WELL:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4) PROPOSED USE:</td>
</tr>
<tr>
<td>□ □ Driven □ □</td>
</tr>
<tr>
<td>Irrigation □</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. CASING INSTALLED:</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ □ Type of perforator used</td>
</tr>
<tr>
<td>□ □ Perforated? □ Yes □ No</td>
</tr>
<tr>
<td>□ □ Size of perforations X in. by in.</td>
</tr>
<tr>
<td>□ □ Perforations from X to X ft.</td>
</tr>
<tr>
<td>□ □ Perforations from X to X ft.</td>
</tr>
<tr>
<td>□ □ Perforations from X to X ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. PERFORATIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ □ Diameter from X to X ft.</td>
</tr>
<tr>
<td>□ □ Depth of completed well X ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. SCREENS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well screen used?</td>
</tr>
<tr>
<td>□ □ Manufacturer's Name</td>
</tr>
<tr>
<td>□ □ Type</td>
</tr>
<tr>
<td>□ □ Dia. ft.</td>
</tr>
<tr>
<td>□ □ Slot size</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. WELL TESTS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test:</td>
</tr>
<tr>
<td>□ □ Yield gpm with ft. drawn down after hrs.</td>
</tr>
<tr>
<td>□ □ Air test gpm with ft. drawn down after hrs.</td>
</tr>
<tr>
<td>□ □ Temperature of water</td>
</tr>
<tr>
<td>□ □ Depth of artesian flow encountered ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. CONSTRUCTION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date well drilling machine moved off of well:</td>
</tr>
<tr>
<td>□ □ Materials used in making report are true to the best of my knowledge and belief.</td>
</tr>
<tr>
<td>□ □ Signed:</td>
</tr>
<tr>
<td>□ □ Drilling Machine Operator's License No.</td>
</tr>
<tr>
<td>□ □ Water Well Contractor's License No.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. LOCATION OF WELL:</th>
</tr>
</thead>
<tbody>
<tr>
<td>County: Columbia</td>
</tr>
<tr>
<td>Driller's well number:</td>
</tr>
<tr>
<td>Section: 31 T 3 N X 1 W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. WATER LEVEL:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth at which water was first found:</td>
</tr>
<tr>
<td>□ □ Static level ft. below land surface</td>
</tr>
<tr>
<td>□ □ Artesian pressure lbs. per square inch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. WATER LOG:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of well below casing:</td>
</tr>
<tr>
<td>□ □ Depth drilled X ft.</td>
</tr>
<tr>
<td>□ □ Completion date</td>
</tr>
<tr>
<td>□ □ Description of formation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. SCREENS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well screen used?</td>
</tr>
<tr>
<td>□ □ Manufacturer's Name</td>
</tr>
<tr>
<td>□ □ Type</td>
</tr>
<tr>
<td>□ □ Dia. ft.</td>
</tr>
<tr>
<td>□ □ Slot size</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. PERFORATIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ □ Diameter from X to X ft.</td>
</tr>
<tr>
<td>□ □ Depth of completed well X ft.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. SCREENS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well screen used?</td>
</tr>
<tr>
<td>□ □ Manufacturer's Name</td>
</tr>
<tr>
<td>□ □ Type</td>
</tr>
<tr>
<td>□ □ Dia. ft.</td>
</tr>
<tr>
<td>□ □ Slot size</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. WELL TESTS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test:</td>
</tr>
<tr>
<td>□ □ Yield gpm with ft. drawn down after hrs.</td>
</tr>
<tr>
<td>□ □ Air test gpm with ft. drawn down after hrs.</td>
</tr>
<tr>
<td>□ □ Temperature of water</td>
</tr>
<tr>
<td>□ □ Depth of artesian flow encountered ft.</td>
</tr>
</tbody>
</table>

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Well Record

STATE ENGINEER
Salem, Oregon

OWNER: Walter & Marjorie Erickson
MAILING ADDRESS: 4/31 cb

LOCATION OF WELL: Owner's No. 1
CITY AND LOCATION OF WELL: Owner's No. 2

Bearin and distance from section or subdivision

corner Tax lot 25

Altitude at well

TYPE OF WELL: Drilled
DATE CONSTRUCTED: 8/10/51

Depth drilled 127 ft.

Casing Record: 10 inch

FINISH:

AQUIFERS:

WATER LEVEL: 40 ft.

PUMPING EQUIPMENT: Type Pacific

Capacity 48 G.P.M.

WELL TESTS:

Drawdown 20 ft. afte hours 50

Drawdown 60 ft. after hours

USE OF WATER: Irrigation - 8 ac.

Temp. °F. 19

SOURCE OF INFORMATION: GR-511

ADDITIONAL DATA:

Log Water Level Measurements Chemical Analysis Aquifer Test

REMARKS:

4/1-31 cb
Observation Well

Notice to Water Well Contractor

The original and first copy of this report are to be filed with the 'State Engineer, Salem, Oregon 97310' within 50 days from the date of well completion.

Water Well Report

State of Oregon

Suit Well No.

Suit Permit No.

1. Owner:

- **Name:** John Hauli
- **Address:** Sonoora Ore.

2. Location of Well:

- **County:** Columbia
- **Driller's well number:** J 474
- **Section:** 7 NW 1/4 Section 11 NW 1/4
- **Range:** R. 4N
- **W.M. Bearing and distance from section or subdivision corner:** Sec. 31

3. Type of Work (check):

- New Well
- Deepening
- Recompletion
- Abandon
- Amendment, describe material and procedure in Item 12.

4. Proposed Use (check):

- Domestic
- Industrial
- Municipal
- Rotary
- Driven
- Irrigation
- Test Well
- Other

5. Type of Well:

- Reused
- Drilled
- Cable
- Jettied
- Dug
- Bored

6. Casing Installed:

- Threaded
- Welded

<table>
<thead>
<tr>
<th>Diameter</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1/2 in.</td>
<td>0 ft.</td>
<td>65 ft.</td>
</tr>
</tbody>
</table>

7. Perforations:

- Perforated? **Yes**
- Perforation type used:
 - Type of perforator used
 - Size of perforations
 - In. by in.
 - perforations from fl. to fl.

8. Screens:

- Well screen installed? **Yes**
- Manufacturer's Name
- Manufacturer's Model No.
- Slot size
- Slot size
- Diam.
- Diam.

<table>
<thead>
<tr>
<th>Diameter</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 1/2 in.</td>
<td>0 ft.</td>
<td>65 ft.</td>
</tr>
</tbody>
</table>

9. Construction:

- Well seal: Material used in seal
- Depth of seal: 12 ft.
- Was a packer used? **No**
- Diameter of well bore to bottom of seal: 12 in.
- Were any loose rocks removed off? **Yes**
- Depth
- Was a drive shoe used? **Yes**
- Was well gravel packed? **No**
- Size of gravel:
-avel placed from to fl.
- Any strata contain unusable water? **No**
- Depth of strata
- Type of water:

10. Water Levels:

- Static level: 14 ft. below land surface
- Date 2/15/92

11. Well Tests:

- Drawdown is amount of water over a lowered below static level.
- Was a pump test made? **Yes**
- If yes, by whom? Hauli
- Yield: 711 gal./min. with 9 ft. drawdown after 5 min.
- Boiler test gal./min. with ft. drawdown after
- Artesian flow g.p.m. Date
- Temperature of water
- Was a chemical analysis made? **Yes**

12. Well Log:

- Diameter of well below casing
- Depth drilled ft. Depth of completed well
- Formation: Describe by color, character, size of material and structure, in: sand, shingles of gravel and the wind and nature of the material in strata penetrated, with at least one entry for each change of formation.

Material

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
</table>
| Silt | Rec.
| Red Clay | 3 ft. |
| Clay | 5 ft. |
| Shale | 0 ft. |

13. Pump:

- Manufacturer's Name
- Type
- Water Well Contractor's Certification:
 - This well was drilled under my jurisdiction and this report true to the best of my knowledge and belief.

| Drilling Machine Operator's License No. | 223 |

(Signed)

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(1) OWNER:
Herald T Goodrich
10650 SE Saxon Rd
Scappoose, Oregon

(2) TYPE OF WORK (check):
- Improvement
- Drilling
- Abandon
- Other

(3) TYPE OF WELL: (4) PURPOSE (check):
- Groundwater
- Industrial
- Aquifer
- Geothermal
- Other

(5) Casing Installed:
- Steel
- Plastic
- Stainless Steel

(6) PERFORATIONS:
- Yes
- No

(7) SCREENS:
- Well screen installed? Yes
- Name of manufacturer:
- Model No.
- Size

(8) WELL TESTS:
- Date
- Water level
- Water production
- Pressure

(9) CONSTRUCTION:
- Well depth
- Type of material
- Depth

(10) LOCATION OF WELL by legal description:
- Description
- Township
- Range
- Section
- State

(11) WATER LEVEL of COMPLETED WELL:
- Depth
- Static level
- Water table

(12) WELL LOG:
- Diameter of well bore casing
- Depth drilled

MATERIAL:
- Type
- Size

LOCATION OF WELl:
- Legal description

CONSTRUCTION:
- Description
- Date

WATER WELL CONSTRUCTION

NOTE TO WATER WELL CONSTRUCTOR:

The original and true copy of this report
can be filed with the

WATER RESOURCES DEPARTMENT
SALEM, OREGON 97310

STATE OF OREGON
WATER WELL REPORT

EYED
MAY 23, 1985

WATER RESOURCES DEPT
SALEM, OREGON

S-31

4/1-31da

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
OWNERS:

[Partial text]

2. TYPE OF WORK (check):
- Deepening
- Abandonation
- Reducing
- Abandonment
- 3.2.4.2.1

3. PROPOSED USE (check):
- Domestic
- Irrigation
- Municipal
- Other
- 3.2.4.2.1

5. CASING INSTALLED:
- Steel
- Plastic
- Concrete
- Other

6. PERFORATIONS:
- Perforated
- Yes
- 3.2.4.2.1
- Use of perforation:
- 3.2.4.2.1

7. SCREENS:
- Screen installed
- Yes
- 3.2.4.2.1
- Manufacturer Name
- 3.2.4.2.1
- Diameter
- 3.2.4.2.1
- Length
- 3.2.4.2.1

8. WELL TESTS:
- Groundwater level
- 3.2.4.2.1
- Permeability
- 3.2.4.2.1
- Yield
- 3.2.4.2.1

9. CONSTRUCTION:
- Special standards
- Yes
- 3.2.4.2.1
- Well cement
- 3.2.4.2.1
- Diameter of well bore before seal
- 3.2.4.2.1
- Nature of cement
- 3.2.4.2.1
- Welding
- 3.2.4.2.1
- Method of welding
- 3.2.4.2.1
- Inspecting authority
- 3.2.4.2.1

10. LOCATION OF WELL:
- Section 21
- Township 12
- Range 26
- 3.2.4.2.1

11. WATER LEVEL:
- 3.2.4.2.1

12. WELL LOG:
- Diameter of well shown
- 3.2.4.2.1
- Formation
- 3.2.4.2.1
- Water level
- 3.2.4.2.1
- Screen
- 3.2.4.2.1
- String test
- 3.2.4.2.1

NOTICE TO WATER WELL CONTRACTOR:
The original and true copy of this report.
WATER WELL REPORT

STATE OF OREGON

STATE WELL No. _______

STATE Permit No. _______

1. OWNER:

Name: Mike Wathage
Address: Freeman Rd, Scappoose, Oregon

2. TYPE OF WORK (check):

- [] New Well
- [] Deepening
- [] Reconditioning
- [] Abandoned

Description:

[If abandonment, describe material and procedure in Item 12]

3. TYPE OF WELL:

- [] Rotary
- [] Driven
- [] Bored
- [] Jetted
- [] Domestic
- [] Industrial
- [] Municipal
- [] Irrigation
- [] Test Well
- [] Other

Description:

[Describe water resources department Salem, Oregon situation within 30 days from the date of well completion]

4. PROPOSED USE (check):

- [] Water
- [] Irrigation
- [] Test Well
- [] Other

Description:

[Specify purpose, if any]

5. CASING INSTALLED:

- [] Threaded
- [] Welded
- [] INS
- [] Other

Description:

[Provide details of casing installation]

6. PERFORATIONS:

- [] Perforated
- [] Yes
- [] No

Description:

[Specify type of perforation used and depth]

7. SCREENS:

- [] Perforated
- [] Yes
- [] No

Description:

[Provide details of screen installation]

8. WELL TESTS:

- [] Drawdown
- [] Amount water level is lowered below static level

Description:

[Specify yield and drawdown data]

9. CONSTRUCTION:

- [] Well seal—Material used: Cement
- [] Diameter of well bore to bottom of seal: 20 in.
- [] Diameter of well bore below seal: 6 in.
- [] Depth of artesian flow encountered: ______ ft

Description:

[Provide details of construction procedure]

10. LOCATION OF WELL:

- [] Type of work: Driller's well number

Description:

[Provide location details and other information]

11. WATER LEVEL:

- [] Completed well
- [] Depth at which water was first found: 60 ft.

Description:

[Provide water level data]

12. WELL LOG:

- [] Diameter of well below casing: 6 in.

Description:

[Provide well log data and formation information]

MATERIAL
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>soil, brown sandy</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>clay, brown sandy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>boulders</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>gravel, red, sandy</td>
<td>10</td>
<td>33</td>
</tr>
<tr>
<td>sand fine</td>
<td>22</td>
<td>49</td>
</tr>
<tr>
<td>gravel, red</td>
<td>49</td>
<td>60</td>
</tr>
</tbody>
</table>

Screen
- [] Perforated
- [] Yes
- [] No

Description:

[Provide details of screen and perforation information]

Signed:

[Signatures and dates]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT

STATE OF OREGON

STATE ENGINEER

STATE WATER WELL REPORT

COUNTY: COLUMBIA
Driller's well number:

377

32-46-1

BEARING AND DISTANCE FROM SECTION OR SUBDIVISION CORNER

32-46-1

1. OWNER:

Hudson Rain Co.

2. TYPE OF WORK (check):

- New Well
- Deepening
- Reconditioning
- Abandon

3. TYPE OF WELL (check):

- Roter
- Driven
- Cable
- Jetted
- Barred

4. PROPOSED USE (check):

- Irrigation
- Test Well
- Industrial
- Municipal
- Static Storage

5. CASING INSTALLED:

- Threaded
- Welded

6. PERFORATIONS:

- Perforated
- Yes
- No

7. SCREENS:

- Well screen installed
- Yes
- No

8. WELL TESTS:

- Was a pump test made?
- Yes
- No
- If yes, by whom?

9. CONSTRUCTION:

- Well seal:
- Material used

- Well sealed from land surface
- Depth

- Diameter of well bore below seal
- Depth

- Number of seals of cement used in well seal
- Number of sacs

- Number of sacs of bentonite used in well seal
- Number of sacs

- Brand name of bentonite

- Number of pounds of bentonite per 100 gallons

- Water depth
- Depth

- Work started
- Date

- Completed
- Date

- Date well drilling machine moved off of well

- Date

10. LOCATION OF WELL:

- County
- Section
- Township
- Range

- BEARING AND DISTANCE FROM SECTION OR SUBDIVISION CORNER

- Depth of water when water was first found

- Artisanal pressure

- Material from top to bottom of well Log:

- Diameter of well bore below casing

- Depth

- Formation:
- Describe color, texture, grain size and structure of material:

- Artisanal pressure

- Artisanal pressure

- Water level:

- Completed well

- Artisanal pressure

- Artisanal pressure

- Location of well

- Geology and distance from section or subdivision corner

- Depth

- Completion

- Depth

- Completion

- Date

11. WATER LEVEL:

- Depth

- Static level

- Water level

- Date

12. WELL LOG:

- Diameter of well below casing

- Depth

- Formation:
- Color, texture, grain size and structure of material:

- Artisanal pressure

- Water level:

- Completed well

- Artisanal pressure

- Artisanal pressure

- Location of well

- Geology and distance from section or subdivision corner

- Depth

- Completion

- Depth

- Completion

- Date

Drilling Machine Operator's Certification:

- This well was constructed under my direct supervision:

- Materials used and information reported above are true to the best of my knowledge and belief:

- Date

- Name

- Address

- Drilling Machine Operator's License No.

Water Well Contractor's Certification:

- This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief:

- Date

- Name

- Address

- Water Well Contractor's License No.

- Date

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>FORM NO.</th>
<th>30001-6</th>
<th>30001-6</th>
<th>30001-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAGE NO.</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

WATER WELL REPORT

STATE OF OREGON

(Do not write above this line)

WATER RESOURCES DEPT.

RECEIVED

Salem, Oregon 97310

Within 30 days from the date of well completion.

OWNER:

W. W. Dever

Address: #73, Scappoose, OR 97056

TYPE OF WORK (check):

New Well □ Re-conditioning □ Abandon □

(If abandonment, describe material and procedure in Item 12.)

TYPE OF WELL:

Rotary □ Driven □ Domestic □ Industrial □ Municipal □ Bored □ Jetted □ Irrigation □ Test Well □ Other □

PROPOSED USE (check):

Domestic □ Irrigation □ Municipal □ Industrial □ Municipal □ Mining □ Drilling □ Other □

CASING INSTALLED:

Threaded □ Welded □

Diam. from ______ ft. to ______ ft. Gage 25

PERFORATIONS:

Perforated? Yes □ No □

SCREENS:

Well screen installed? Yes □ No □

WELL TESTS:

Drawdown is amount water level is lowered below static level.

CONSTRUCTION:

Well sealed-Material used CEMENT

MATERIAL

From To SW.

DISCLAIMER:

The information contained in this report is based on the best of my knowledge and belief. The contractor is responsible for the accuracy of the report.

SIGNATURES:

Drilling Machine Operator: [Signature] Date: [Date]

Well Drilled by: [Name] License No. [License No.]

STATE OF

WATER RESOURCES DEPT.

Date Well No. [Date]

State Permit No. [Permit No.]

RECEIVED

[Date]

WATER RESOURCES DEPT.

Date [Date]

OWNER:

W. W. Dever

Address: #73, Scappoose, OR 97056

LOCATION OF WELL:

County: Columbia

WELL LOG:

Diameter of well below casing ______ ft.

WATER LEVEL:

Depth of water level during report [Date].

CONSTRUCTION:

Well sealed-Material used CEMENT

WELL LOG:

Diameter of well below casing ______ ft.

MATERIAL

From To SW.

DISCLAIMER:

The information contained in this report is based on the best of my knowledge and belief. The contractor is responsible for the accuracy of the report.

SIGNATURES:

Drilling Machine Operator: [Signature] Date: [Date]

Well Drilled by: [Name] License No. [License No.]

STATE OF

WATER RESOURCES DEPT.

Date Well No. [Date]

State Permit No. [Permit No.]

OWNER:

W. W. Dever

Address: #73, Scappoose, OR 97056

LOCATION OF WELL:

County: Columbia

WELL LOG:

Diameter of well below casing ______ ft.

MATERIAL

From To SW.

DISCLAIMER:

The information contained in this report is based on the best of my knowledge and belief. The contractor is responsible for the accuracy of the report.

SIGNATURES:

Drilling Machine Operator: [Signature] Date: [Date]

Well Drilled by: [Name] License No. [License No.]

STATE OF

WATER RESOURCES DEPT.

Date Well No. [Date]

State Permit No. [Permit No.]
WATER WELL REPORT

STATE OF OREGON

(Please type or print)

(State Permit No.

(Do not write above this line)

1) **OWNER:**
 - Name: Reichold Chemical, Inc.
 - Address: P. O. Box 810, St. Helens, Oregon 97051

2) **TYPE OF WORK** (check):
 - New Well
 - Deepening
 - Recompletion
 - Abandon

3) **TYPE OF WELL:**
 - Domestic
 - Industrial
 - Municipal

4) **PROPOSED USE** (check):
 - Drinking Water
 - Irrigation
 - Test Well
 - Other

5) **CASING INSTALLED:**
 - Threaded
 - Weaved

6) **PERFORATIONS:**
 - Perforated
 - Yes
 - No

7) **SCREENS:**
 - Well screen installed
 - Yes
 - No

8) **WELL LOG:**
 - Diameter of well below casing
 - Depth drilled
 - Depth of completed well

9) **CONSTRUCTION:**
 - Material used
 - Water level
 - Depth to bottom of well

10) **LOCATION OF WELL:**
 - County: Columbia
 - Driller's well number

11) **WATER LEVEL:**
 - Depth at which water was first found
 - Static level
 - Artesian pressure

12) **WELL COMPLETED TO 106 FT.**
 - Date of completion

MATERIAL

<table>
<thead>
<tr>
<th>Material</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown sand & gravel</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Med. gravel-coarse w/some</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>Broom sandy clay</td>
<td>14</td>
<td>32</td>
</tr>
<tr>
<td>Fine to Coarse gravel-occ.</td>
<td>32</td>
<td>46</td>
</tr>
<tr>
<td>Broom clamp</td>
<td>46</td>
<td>65</td>
</tr>
<tr>
<td>Broom sand - occ.</td>
<td>65</td>
<td>72</td>
</tr>
<tr>
<td>Tight brown sand & gravel-occ.</td>
<td>72</td>
<td>98</td>
</tr>
<tr>
<td>Brown sand & gravel</td>
<td>98</td>
<td>108</td>
</tr>
<tr>
<td>Brown silty sand & gravel</td>
<td>108</td>
<td>109</td>
</tr>
</tbody>
</table>

STATE OF OREGON

COUNTY

Driller's well number

Date well drilling machine moved off well

Driller's Machine Operator's Certification:

This well was constructed under my direct supervision. Materials used and information reported above are true to my best knowledge and belief.

(Signed)

Driller's Machine Operator's License No.

WATER WELL CONTRACTOR:

This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

Name

Address

(Signed)

Water Well Contractor's Certification:

(Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.)
WATER WELL REPORT

DATE: 9/12/79 **Completed:** 9/12/79

Driller's Permit No. 523

Owner: Jansen Well Drilling Co., Inc.
Address: 21015 NW Turatin Valley Hwy., Aloha, Or.

Type of Work:
- Drilling
- Reconditioning
- Abandon

Proposed Use:
- Domestic
- Industrial
- Municipal
- Irrigation
- Test Well
- Other

Casing Installed:
- Type of perforation used:
 - Perforated: Yes
 - No:

Perforations:
- Size of perforations:
 - Diameter from X ft. to Y ft. Gage
 - Diameter from X ft. to Y ft. Gage
 - Diameter from X ft. to Y ft. Gage

Screens:
- Well screen installed: Yes
- No:

Well Tests:
- Drawdown is amount of water level is lowered below static level
- Depth drilled:
 - ft. Depth of completed well

Construction:
- Well seal:
 - Materials used:
 - Diameter of well bore below seal:
 - Diameter of well bore below seal:
 - Number of cement used in well:
 - How was cement placed?
 - Tremied in place and pressurized
 - Drive shoe used: Yes
 - No Plug:
 - Size: Location:

Location of Well:
State of Oregon
County:
Driller's Permit No.: 523
Driller: H. Jansen
Well Drilling Co., Inc.

Material:
- Cement Grout:
 - 80' 70'
 - 80' 60'
 - 80' 50'
 - 80' 40'
 - 40' 20'
 - 40' 10'

Drilling Machine Operator's Certification:

Well Drilling Contractor's Certification:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
State of Oregon

Water Well Report (as required by ORR 127.745)

<table>
<thead>
<tr>
<th>1. Owner:</th>
<th>Name: T.S. Wikens, Water Number: 2704, Address: OR, 97105</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Type of Work:</td>
<td>□ Cistern □ Rehabilitation □ Abandonment</td>
</tr>
<tr>
<td>3. Drill Method:</td>
<td>□ Water Well □ Other</td>
</tr>
<tr>
<td>4. Proposed Use:</td>
<td>□ Domestic □ Industrial □ Irrigation</td>
</tr>
<tr>
<td>5. Bore Hole Construction:</td>
<td>Depth of Completed Well: 157 ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HOLE</th>
<th>From</th>
<th>To</th>
<th>Material</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>From</td>
<td>To</td>
<td>Resin</td>
<td>119</td>
</tr>
<tr>
<td>Seal</td>
<td>From</td>
<td>To</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>110</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Hole was well-placed Method: □ A □ B □ C □ D □ E
- Multi-stage pump: □ N □ M □ L □ K □ J □ I □ H □ G □ F
- Water level: Depth: 140 ft

<table>
<thead>
<tr>
<th>Casing/Liner:</th>
<th>From</th>
<th>To</th>
<th>Gauge</th>
<th>Steel Plastic</th>
<th>Welded</th>
<th>Threaded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>From</td>
<td>To</td>
<td>18</td>
<td>12</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Casing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liner</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Perforations/Screens:
- □ Perforations Method: □ Screen Type: □ Material
- From | To | Stat size | Number | Diameter | Telescope size | Casing | Liner |

8. Well Tests: Minimum testing time is 1 hour
- □ Pumping □ Recharge
- Flowing Artesian
- Yield: gal/min
- Drawdown
- Drill rate at Time: 1 hr.
- Temperature of water: 54°F
- Depth Artesian: Flow Found
- Water source: □ Yes □ No
- Suitable for domestic use: □ Yes □ No
- Suitable for animal use: □ Yes □ No
- Water source: □ Saline □ Saltwater □ Other
- Depth of screen: 91-142 ft

9. Location of Well by legal description:

10. Static Water Level:
- Depth: 12 ft

11. Water Bearing Zones:
- Depth: 12 ft

12. Well Log:
- Ground reaction:
- Material: From: To |
- Water: 1" 146 |
- Water: 12" 42 |
- Water: 24" 52 |
- Water: 36" 52 |
- Water: 48" 52 |
- Water: 60" 52 |
- Water: 72" 52 |
- Water: 84" 52 |
- Water: 96" 52 |
- Water: 108" 52 |
- Water: 120" 52 |
- Water: 132" 52 |
- Water: 144" 52 |
- Water: 156" 52 |
- Water: 168" 52 |
- Water: 180" 52 |
- Water: 192" 52 |
- Water: 204" 52 |
- Water: 216" 52 |
- Water: 228" 52 |
- Water: 240" 52 |
- Water: 252" 52 |
- Water: 264" 52 |
- Water: 276" 52 |
- Water: 288" 52 |
- Water: 300" 52 |
- Water: 312" 52 |
- Water: 324" 52 |
- Water: 336" 52 |
- Water: 348" 52 |
- Water: 360" 52 |
- Water: 372" 52 |
- Water: 384" 52 |
- Water: 396" 52 |
- Water: 408" 52 |
- Water: 420" 52 |
- Water: 432" 52 |
- Water: 444" 52 |
- Water: 456" 52 |
- Water: 468" 52 |
- Water: 480" 52 |
- Water: 492" 52 |
- Water: 504" 52 |
- Water: 516" 52 |
- Water: 528" 52 |
- Water: 540" 52 |
- Water: 552" 52 |
- Water: 564" 52 |
- Water: 576" 52 |
- Water: 588" 52 |
- Water: 600" 52 |
- Water: 612" 52 |
- Water: 624" 52 |
- Water: 636" 52 |
- Water: 648" 52 |
- Water: 660" 52 |
- Water: 672" 52 |
- Water: 684" 52 |
- Water: 696" 52 |
- Water: 708" 52 |
- Water: 720" 52 |
- Water: 732" 52 |
- Water: 744" 52 |
- Water: 756" 52 |
- Water: 768" 52 |
- Water: 780" 52 |
- Water: 792" 52 |
- Water: 804" 52 |
- Water: 816" 52 |
- Water: 828" 52 |
- Water: 840" 52 |
- Water: 852" 52 |
- Water: 864" 52 |
- Water: 876" 52 |
- Water: 888" 52 |
- Water: 900" 52 |
- Water: 912" 52 |
- Water: 924" 52 |
- Water: 936" 52 |
- Water: 948" 52 |
- Water: 960" 52 |
- Water: 972" 52 |
- Water: 984" 52 |
- Water: 996" 52

(Unbonded) Water Well Constructor Certification:
- I certify that the work performed on the construction, alteration, abandonment of this well is in compliance with Oregon well construction standards. Materials used and information reported above are true to my knowledge and belief.
- WWC Number
- Date

(Bonded) Water Well Constructor Certification:
- I accept responsibility for the construction, alteration, or abandonment of this well during the construction dates reported above. Work performed during this time is in compliance with Oregon construction standards. This report is true to the best of my knowledge and belief.
- WWC Number
- Date

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
WATER WELL REPORT

OCT 13, 37

STATE OF OREGON

STATE WELL No. 17-235

STATE PERMIT No. 17-235

OWNER:

REPLACEMENT OF WELLS AND CONSTRUCTION

1) TYPE OF WORK (check):
- Well
- Deepening
- Reconditioning
- Abandon

2) TYPE OF WELL:
- Driven
- Domestic
- Industrial
- Municipal
- Bored
- Irrigation
- Test Well
- Other

3) CASING INSTALLED:
- Threaded
- Welded

4) PERFORATIONS:
- Perforated
- Yes
- No

5) SCREENS:
- Well screen installed
- Yes
- No

6) CONSTRUCTION:
- Material used
- CEMENT

7) LOCATION OF WELL:
- County:
- Location:
- District:
- Section:
- T
- R
- W

8) WELL LOG:
- Diameter of well below casing
- Depth drilled
- Depth of completed well

9) WELL TESTS:
- Drawdown in amount water level is lowered below static level
- As a pump test made
- Yes
- No
- If yes, by whom

10) WATER LEVEL:
- Completed well
- Static level
- Date

11) ARTESIAN PRESSURE:
- Lbs. per square inch
- Date

12) CONSTRUCTION:
- Water well drilled under jurisdiction
- Direct supervision
- Drilling Machine Operator's Certification
- Water Well Contractor's Certification

SIGNATURES

[Signature]

[Signature]

Date

*(Signed) CONTRACTOR'S NAME

Date

[Signature]

Date

[Signature]

Date
WATER WELL REPORT

STATE OF OREGON

State Permit No. 4-1-17-36

State Well No. 245

DATE OF COMPLETION:

Owner: Salem, Oregon

WATER RESOURCES DEPT.

1. OWNER: Salem, Oregon

2. TYPE OF WORK (check):
- New Well
- Deepening
- Recompletion
- Abandon

3. TYPE OF WELL:
- Rotary
- Driver
- Jettied

4. PROPOSED USE (check):
- Domestic
- Industrial
- Municipal
- Irrigation
- Test Well
- Other

5. CASING INSTALLED:
- Threaded
- Welded

6. PERFORATIONS:

7. SCREENS:
- Manufacturer's Name
- Model No.
- Slot size
- Set from
- Diam.
- Slot size
- Set from

8. WELL TESTS:
- Drawdown in amount water level is lowered below static level
- Was a pump test made? Yes No

9. CONSTRUCTION:
- Well seal—Material used
- Diameter of well bored to bottom of seal
- Diameter of well bored below seal
- Number of sacks of cement used in well seal
- Number of sacks of bentonite used in well seal
- Brand name of bentonite
- Number of pounds of bentonite per 100 gallons of water
- Was a drive shoe used? Yes No
- Depth of strata

10. LOCATION OF WELL:

11. WATER LEVEL:
- Depth at which water was first found
- Static level
- Artisan pressure
- Artesian flow

12. WELL LOG:
- Diameter of well below casing
- Depth drilled
- Depth of completed well

Drilling Machine Operator's Certification:
- This well was constructed under my direct supervision.
- Materials used and information reported above are true to the best knowledge and belief.

Drilling Machine Operator's License No. 805

Water Well Contractor's Certification:
- This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief.

Contractor's License No. 640

Work started 1/12/17
1/12/17

Date well drilling machine moved off of well

State Permit No. 4-1-17-36

Date Permit issued 1/12/17

Date Permit expires 7/12/17

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
BORING LOGS
KEY TO BORING LOGS

PROJECT NUMBER: 410-106 | **BORING LOG: LEGEND**

PROJECT: Lone Star - Saniosh

LOCATION: Approximate location of borehole

ELEVATION: Elevation above MSL

METHOD: Type of drill

WATER LEVEL AND TIME: Water level and time

PROJECT NUMBER: 410-106 | **DRILLING CONTRACTOR:** Beck Environmental Contracting

START DATE: On-site drilling

FINISH DATE: Off-site

TOTAL DEPTH: Depth to bottom hole

DIAMETER: OD of drillpipe

NO. AND TYPE: Sample number and type

DEPTH (ft): Depth

SYMBOL: Sample symbol

DESCRIPTION: Description of subsurface conditions

COMMENTS: Comments on sample conditions

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GW</td>
<td>Well Graded Sands, Gravel - Sand Mixtures</td>
<td>Clean gravels with gravel framework bound together with sand and silica cement</td>
</tr>
<tr>
<td>2</td>
<td>CP</td>
<td>Silty Sands, Poorly Graded Gravel-Sand Mixtures</td>
<td>Gravelly sands with < 15% fines</td>
</tr>
<tr>
<td>3</td>
<td>GM</td>
<td>Clean sands with little or no fines</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SW</td>
<td>Well Graded Sands, Gravelly Sands</td>
<td>Clean sands with gravel framework bound together with sand and silica cement</td>
</tr>
<tr>
<td>5</td>
<td>SP</td>
<td>Silty Sands, Poorly Graded Gravel-Sand Mixtures</td>
<td>Gravelly sands with > 15% fines</td>
</tr>
<tr>
<td>6</td>
<td>SM</td>
<td>Clean sands with little or no fines</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ML</td>
<td>Inorganic Clays of low to med. plasticity, Lean Clays</td>
<td>Liquid Limit < 50%</td>
</tr>
<tr>
<td>8</td>
<td>CL</td>
<td>Inorganic Clays of low to med. plasticity, Lean Clays</td>
<td>Inorganic Clays of low to med. plasticity, Lean Clays</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>Blown gravel and gravel framework bound together with sand and silica cement</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>Strongly cemented sand and gravel, similar but harder than cemented sand and gravel</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>S</td>
<td>Blow counts higher than 190 blows per foot are recorded as 180 blows per foot</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>T</td>
<td>Ground-water level at time of exploration or as noted</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>S</td>
<td>Sample number and depth interval</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>Bulk sample location obtained by collecting soil cuttings in a plastic bag or fiberglass sack</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>S</td>
<td>Sample type</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:

- **B:** BAG SAMPLE
- **ST:** SHELBY TUBE
- **SS:** SPLIT SPOON
- **SK:** BULK SAMPLE

NOTE: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
PROJECT: Lowa Star - Saniscoch
LOCATION: N. cu Pt B
ELEVATION: 9.58 ft. MSL
DIAETERS: 6 5/8 in.
METHOD: Becker hammer drill
START DATE: 1/6/94
FINISH DATE: 1/6/94

PROJECT NUMBER: 94B1
LOCATION: N. cu Pt B
ELEVATION: 9.58 ft. MSL
DIAETERS: 6 5/8 in.
METHOD: Becker hammer drill
START DATE: 1/6/94
FINISH DATE: 1/6/94

WATER LEVEL AND TIME: 5 ft @ 850 1/6

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>NO. / AND</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>842</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>846</td>
<td>WELL-GRADED GRAVEL w/ SAND (GW), grey-brown. damp to wet, med. dense, occ. loose, rounded gravels to >4 in. max. dimensions</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>846</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>852</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>852</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>858</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>852</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>891</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>901</td>
<td>becomes grey, slightly sandier</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>902</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>902</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>908</td>
<td>becoming silty, water return dark grey</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>908</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>918</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES: B - BAG SAMPLE ST - SHELBY TUBE SS - SPLIT SPOON BK - BULK SAMPLE
Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.

Page 1 of 6
Boring Log

Project Number: 420-106
Boring Number: 94B1
Location: N. of Pit B
Elevation: 958 ft MSL
Method: Becker hammer drill
Start Date: 1/6/94
Finish Date: 1/6/94
Water Level and Time: 1/3 & 850 1/6

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>No. and Type</th>
<th>Time</th>
<th>Graphic Log</th>
<th>Description</th>
<th>Blow Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>918</td>
<td></td>
<td>becoming sandy, more gravelly</td>
<td>11</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td>SANDY SILT w/ GRAVEL (ML), black to dark grey, wet, soft</td>
<td>5</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>928</td>
<td></td>
<td>rounded gravels to 3-4 in. max</td>
<td>12</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td>SILET SAND (SM), dark grey, wet, loose, rounded gravels to >4 in. max</td>
<td>13</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>929</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>934</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>935</td>
<td></td>
<td>POORLY-GRADED SAND w/ GRAVEL (SP), grey, occ. grey-green, wet, med. dense, tr. silt</td>
<td>18</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRADED GRAVEL w/ SAND (GW), dark grey-green</td>
<td>24</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td>wet, med. dense, tr. silt</td>
<td>22</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>945</td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>949</td>
<td></td>
<td>POORLY-GRADED SAND (SP), grey, to grey-green, wet, loose, tr. gravel</td>
<td>69</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRADED GRAVEL w/ SAND (GW), dark grey, wet</td>
<td>15</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td>med. dense, tr. silt</td>
<td>12</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>959</td>
<td></td>
<td></td>
<td>119</td>
</tr>
</tbody>
</table>

Sample Types:
- B = Bag Sample
- ST = Shelby Tube
- SS = Split Spoon
- SK = Bulk Sample

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Boring Log

Project Number: 420-106
Boring Number: 94B1

Location: N. of Pil B
Total Depth: 219 ft
Elevation: 938 ft MSL
Drilling Contractor: Beck Environmental

Method: Becker hammer drill
Start Date: 1/6/94
Finish Date: 1/6/94

Water Level and Time: 10 ft @ 830 1/6

Logged By: J. Lawes

Sample Log

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>No. and Type</th>
<th>TIME</th>
<th>Graphic Log</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>1002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>1010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>1014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>1026</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td></td>
<td>1030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>1042</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>1055</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>1101</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Types:
- B = Bag Sample
- ST = Shelby Tube
- SS = Split Spoon
- SE = bulk sample

Note: The log of subsurface conditions shown hereon applies only to the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.

Page 3 of 6

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Boring Log

Location: N. c/l Pit B
Total Depth: 219 ft.
Elevation: 9.58 ft. MSL
Drilling Contractor: Becker Environmental

Method: Becker hammer drill
Start Date: 1/6/94
Finish Date: 1/6/94

Water Level and Time: 7.5 ft @ 850 1/6

Logged By: J. Laws

<table>
<thead>
<tr>
<th>Sample</th>
<th>Depth (ft)</th>
<th>No. and Type</th>
<th>Time</th>
<th>Graphic Log</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>125</td>
<td></td>
<td></td>
<td>CEMENTED, WELL-GRARED GRAVEL w/ SAND (GW), green, wet, very dense, cemented</td>
<td></td>
</tr>
<tr>
<td></td>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>130</td>
<td></td>
<td></td>
<td>large boulders</td>
<td></td>
</tr>
<tr>
<td></td>
<td>131</td>
<td></td>
<td></td>
<td>becomes very well cemented, extremely dense</td>
<td></td>
</tr>
<tr>
<td></td>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>135</td>
<td></td>
<td></td>
<td>becomes very well cemented, extremely dense</td>
<td></td>
</tr>
<tr>
<td></td>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>139</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>141</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>142</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>147</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>149</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>151</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>152</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>153</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>154</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>158</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>159</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Types:
- B = Bag Sample
- ST = Shelby Tube
- SS = Split Spoon
- SK = Bulk Sample

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

LOCATION: N. cri Pt B
ELEVATION: 958 ft MSL
PROJECT NUMBER: 420-106
PROJECT: Looe Sur - Sanarii
BORING NUMBER: N. cri Pit B
TOTAL DEPTH: 219 ft
DIAMETER: 6 5/8 in
DRILLING CONTRACTOR: Beck Environmental
METHOD: Becker hammer drill
START DATE: 1/6/94
FINISH DATE: 1/6/94
WATER LEVEL AND TIME: * & 850 1/6
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td></td>
<td></td>
<td>1400</td>
<td>tr. silt, more gravelly</td>
<td></td>
</tr>
<tr>
<td>166</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td></td>
<td></td>
<td></td>
<td>grades to</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td></td>
<td></td>
<td></td>
<td>POORLY GRADED SAND w/ GRAVEL (SP), green, wet, med.</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td></td>
<td></td>
<td></td>
<td>dense to loose, wood chips - interbedded with</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td></td>
<td></td>
<td>1413</td>
<td>WELL-GRADED SAND w/ GRAVEL (SW), green, wet, med.</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td>dense, tr. silt</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
<td></td>
<td>1415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>179</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td></td>
<td></td>
<td>1423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td></td>
<td></td>
<td>1425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td></td>
<td></td>
<td>1431</td>
<td>less gravelly</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td></td>
<td></td>
<td>1432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>196</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td>1437</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
B = BAG SAMPLE
ST = SHELBY TUBE
SP = SPLIT SPOON
BK = BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring locations and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

LOCATION: N cr Pt B
ELEVATION: 9.58 ft. MSL
METHOD: Becker hammer drill
WATER LEVEL AND TIME: 7.5 ft @ 830 1/6
PROJECT NUMBER: 420-106
BORING NUMBER: 9481
PROJECT: Lone Star - Santoah
DRILLING CONTRACTOR: Beck Environmental
START DATE: 1/6/94
FINISH DATE: 1/6/94
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
<th>BLOW COUNTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>205</td>
<td></td>
<td>1438</td>
<td></td>
<td>< 20%(?) gravel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td></td>
<td>1445</td>
<td></td>
<td>grades to POORLY-GRADED SAND (SP), green, wet, loose</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>211</td>
<td></td>
<td></td>
<td></td>
<td>tr. gravel</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>212</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>215</td>
<td></td>
<td>1446</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td>TD @ 219 ft at 1447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/6/94</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPOON
- SK = BULK SAMPLE

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M1
PROJECT: Lone Star - Minter Property
LOCATION: SE portion Minter prop
TOTAL DEPTH: 215 ft
DIAMETER: 6 5/8 in.
ELEVATION: approx. 13 ft MSL
DRILLING CONTRACTOR: Beck Environmental
START DATE: 1/25/94
FINISH DATE: 1/27/94
WATER LEVEL AND TIME: 17 ft @ 11:25 1/25
LOGGED BY: J. Lawes

SAMPLE

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
<th>Blow Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1102</td>
<td></td>
<td>SILT (ML) with some ELASTIC SILT (ML), brown, moist soft, tr. sand, with roots and plant fragments in upper 6 in. plastic to very plastic (topsoil)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1102</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRADED GRAVEL w. SILT (GW-GM), brown, moist, med. dense</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>94M1</td>
<td>1116</td>
<td></td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>0'-20'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1119</td>
<td></td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>becomes wet</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>1148</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1153</td>
<td></td>
<td></td>
<td></td>
<td>83</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>28</td>
<td>94M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>29</td>
<td>20-40'</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>30</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>1210</td>
<td></td>
<td>SILTY SAND w. GRAVEL (SM), brown, moist to wet, med. dense to loose, occ. gravels or cobbles to >4 in. max.</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>1223</td>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPOON
- SK = BULK SAMPLE

Note: The log of subsurface conditions shown here applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M1
PROJECT: Lone Star - Meier Property
LOCATION: SE portion Meier prop
ELEVATION: appx. 13 ft. MSL
DRILLING CONTRACTOR: Beck Environmental
METHOD: Becker hammer drill
START DATE: 1/25/94
FINISH DATE: 1/27/94
TOTAL DEPTH: 215 ft.
DIAMETER: 6 5/8 in.

WATER LEVEL AND TIME: 17 ft @ 1125 1/25
LOGGED BY: I. Lawes

<table>
<thead>
<tr>
<th>DEPTH</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
<th>BLOW COUNTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td>Silty gravel (GM), brown, wet, moderate to dense, tr. sand</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td>Silty gravel w/ sand (GM) as above, sandier</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Many large cobbles & boulders</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRADED GRAVEL w/ SAND (GW), grey, wet, dense to very dense, tr. silt</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>122</td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td>Much sand - about 50% sand</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>59</td>
<td>94M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>40-90°</td>
<td></td>
<td></td>
<td>WELL-GRADED SAND w/ GRAVEL (SW), grey, wet, moderate to dense, tr. silt</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>61</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td>Grades to</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td>POORLY-GRADED SAND w/ GRAVEL (SP), grey, wet, moderate to dense, occ. boulders</td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>117</td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPOON
- SK = BULK SAMPLE

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
Boring Log

Project Number: 420-106
Boring Number: 94M1
Location: SE portion Meier prop
Total Depth: 215 ft.
Elevation: approx. 13 ft MSL
Method: Becker hammer drill
Drilling Contractor: Beck Environmental
Start Date: 1/25/94
Finish Date: 1/27/94
Water Level and Time: 17 ft @ 1125 1/25
Logged By: J. Lawes

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>No. and Type</th>
<th>Graph Log</th>
<th>Time</th>
<th>Description Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>94M1</td>
<td></td>
<td></td>
<td>very dark brown</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td></td>
<td>1342</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>SK</td>
<td></td>
<td></td>
<td>more gravelly</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td>grades to</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>94M1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>90-100°</td>
<td>1417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>94M1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>100-110°</td>
<td>1435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td></td>
<td>1458</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>94M1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>110-215°</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td>125</td>
<td></td>
</tr>
</tbody>
</table>

Sample Types: B = Bag Sample
ST = Shelby Tube
SS = Split Spoon
SK = Bulk Sample

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94MI

PROJECT: Lone Star - Meier Property

LOCATION: SE portion Meier prop
TOTAL DEPTH: 215 ft.
DIAMETER: 6 5/8 in.

ELEVATION: appx 13 ft MSL
DRILLING CONTRACTOR: Beck Environmental

METHOD: Becker hammer drill
START DATE: 1/2/94
FINISH DATE: 1/27/94

WATER LEVEL AND TIME:
17 ft @ 1/25
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>1503</td>
<td></td>
<td>sandier, less well cemented</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td></td>
<td>1315</td>
<td></td>
<td>gravelly</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>1322</td>
<td></td>
<td>very well cemented, dark grey-green</td>
<td>124</td>
</tr>
<tr>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>139</td>
<td>94MI</td>
<td>1352</td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>140</td>
<td>110-115'</td>
<td>1352</td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>141</td>
<td>SK</td>
<td></td>
<td></td>
<td>single large (1.3-2 ft. min. dimensions) vesicular basalt boulder, 500+ blows per foot from 140 to 142 ft.</td>
<td>180</td>
</tr>
<tr>
<td>142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>183</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
<td>1446</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>1507</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td>1534</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
B - BAG SAMPLE
ST - SHELBY TUBE
SS - SPLIT SPOON
SK - BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
Boring Log

Location: SE portion Meier prop
Total Depth: 215 ft
Elevation: appx 13 ft MSL
Method: Becker hammer drill
Start Date: 1/25/94
Finish Date: 1/27/94
Project: Lone Sater - Meier
Drilling Contractor: Beck Environmental
Logging By: J. Lawes

<table>
<thead>
<tr>
<th>Sample</th>
<th>Type</th>
<th>Time</th>
<th>Graphic Log</th>
<th>Description</th>
<th>Blow Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>163</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>164</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>165</td>
<td></td>
<td>923</td>
<td></td>
<td>sandy, grey, weakly cemented</td>
<td>134</td>
</tr>
<tr>
<td>166</td>
<td></td>
<td></td>
<td></td>
<td>grey-green to dark green, well cemented</td>
<td>155</td>
</tr>
<tr>
<td>167</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>168</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>169</td>
<td></td>
<td>943</td>
<td></td>
<td>weakly cemented</td>
<td>93</td>
</tr>
<tr>
<td>170</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td>POORLY-GRADED SAND w/ GRAVEL (SP), very dark green, wet, med. dense fine to very fine sand</td>
<td>55</td>
</tr>
<tr>
<td>172</td>
<td></td>
<td></td>
<td></td>
<td>making great amounts of water - sand washing out of sample</td>
<td>46</td>
</tr>
<tr>
<td>173</td>
<td></td>
<td>1006</td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>175</td>
<td></td>
<td>1006</td>
<td></td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>176</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>177</td>
<td></td>
<td>1006</td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>178</td>
<td></td>
<td>945</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>179</td>
<td>94M1</td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>180</td>
<td>110-215'</td>
<td>1014</td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>181</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>183</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
</tr>
<tr>
<td>185</td>
<td></td>
<td>1018</td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>186</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>187</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>188</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>189</td>
<td></td>
<td>1024</td>
<td></td>
<td>CEMENTED, WELL-GRADED SAND w/ GRAVEL (GW), very dark green, wet, very dense, tr. silt, well cemented, less water</td>
<td>140</td>
</tr>
<tr>
<td>190</td>
<td></td>
<td>1024</td>
<td></td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>191</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>195</td>
<td></td>
<td>1058</td>
<td></td>
<td></td>
<td>125</td>
</tr>
<tr>
<td>196</td>
<td></td>
<td>1058</td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>197</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>199</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>1125</td>
<td></td>
<td></td>
<td>94</td>
</tr>
</tbody>
</table>

Sample Types:
- B - BAG SAMPLE
- ST - SHELBY TUBE
- SS - SPLIT SPOON
- SK - BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 410-106
BORING NUMBER: 94M1
PROJECT: Lone Star - Meter Property
LOCATION: SE portion Meier prop
TOTAL DEPTH: 215 ft.
DIAMETER: 6 5/8 in.
ELEVATION: approx. 13 ft. MSL
METHOD: Becker hammer drill
DRILLING CONTRACTOR: Beck Environmental
START DATE: 1/25/94
FINISH DATE: 1/27/94
WATER LEVEL AND TIME: 17 ft. @ 1125 1/25
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>94M1</td>
<td>1127</td>
<td></td>
<td>CEMENTED, WELL-GRADED SAND w/GRAVEL (SW), dark green, wet, med. dense to dense, cemented, gravelly, grades between (SW) and WELL-GRADED GRAVEL w/ SAND (GW), as above but dense to very dense</td>
<td>48</td>
</tr>
<tr>
<td>207</td>
<td>110-215'</td>
<td>1147</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>212</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>213</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>215</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>219</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>221</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>223</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>226</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>227</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>228</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>229</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>233</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>237</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- **B** - BAG SAMPLE
- **ST** - SHELBY TUBE
- **SS** - SPLIT SPOON
- **SK** - BULK SAMPLE

COMMENTS:
- TD @ 215 ft. at 1204
- 1/27/94

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M2

PROJECT: Lone Star - Meier Property

LOCATION: SW portion Meier prop

TOTAL DEPTH: 135 ft
DIAMETER: 6 5/8 in.

ELEVATION: appx. 36 ft MSL

DRILLING CONTRACTOR: Beck Environmental

METHOD: Becker hammer drill

START DATE: 1/28/94
FINISH DATE: 1/31/94

WATER LEVEL AND TIME: 3 ft 1038 1/28

LOGGED BY: J. Lawes

SAMPLE DESCRIPTION COMMENTS

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>949</td>
<td></td>
<td>SILT w/ GRAVEL (ML), brown, moist, hard, tr. sand, low plasticity, subangular to rounded gravels to 3 in. max. (upper 6 in. topsoil)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>1005</td>
<td></td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRADED GRAVEL w/ SILT & SAND (GW-GM), brown, damp, med. dense to dense, occ. boulders to >10 in. max.</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1007</td>
<td></td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>20</td>
<td>0-50/60-80</td>
<td>1016</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>21</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1022</td>
<td></td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td>less silt - trace</td>
<td>82</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1033</td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRADED GRAVEL w/ SAND (GW), brown, moist, med. dense, much pea gravel, occ. cobbles to >8 in. max, tr. silt</td>
<td>47</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td>becomes wet</td>
<td>29</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td>1036</td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>1044</td>
<td></td>
<td></td>
<td>64</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B - BAG SAMPLE
- ST - SHELBY TUBE
- SS - SPLIT SPOON
- SK - BULK SAMPLE

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

LOCATION: SW portion Meier prop

TOTAL DEPTH: 135 ft.

DIAMETER: 6 5/8 in.

ELEVATION: approx. 35 ft. MSL

PROJECT: Lone Star - Meier Property

DRILLING CONTRACTOR: Beck Environmental

PROJECT NUMBER: 420-106

BORING NUMBER: 94M2

LOCATION: SW portion Meier prop

TOTAL DEPTH: 135 ft.

DIAMETER: 6 5/8 in.

ELEVATION: approx. 35 ft. MSL

PROJECT: Lone Star - Meier Property

DRILLING CONTRACTOR: Beck Environmental

METHOD: Becker hammer drill

START DATE: 1/28/94

FINISH DATE: 1/31/94

WATER LEVEL AND TIME: 3 ft. at 1018 1/28

LOGGED BY: J Lawes

SAMPLE TYPES: B - BAG SAMPLE, ST - SHELBY TUBE, SS - SPLIT SPOON, SK - BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>94M2</td>
<td>0-50/50-80</td>
<td>1041</td>
<td>interbeds of SILT (ML) or SILT w/ GRAVEL (ML), grey, moist firm to hard, mod. plasticity, tr. sand</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>94M2</td>
<td>50-60/50-80</td>
<td>1055</td>
<td>becomes damp</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>94M2</td>
<td>0-50/50-80</td>
<td>1120</td>
<td>WELL-GRADED GRAVEL w/ SAND (GW), bronze-brown, wet, dense to very dense, tr. silt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>94M2</td>
<td>SK</td>
<td></td>
<td>SILT (ML), grey, moist to wet, hard, mod. plasticity, occ. gravel, tr. sand</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>94M2</td>
<td>50-60/50-80</td>
<td>1055</td>
<td>becomes damp</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>94M2</td>
<td>0-50/50-80</td>
<td>1135</td>
<td>WELL-GRADED GRAVEL w/ SAND (GW), bronze-brown, wet, dense to very dense, tr. silt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>94M2</td>
<td>0-50/50-80</td>
<td>1041</td>
<td>interbeds of SILT (ML) or SILT w/ GRAVEL (ML), grey, moist firm to hard, mod. plasticity, tr. sand</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>94M2</td>
<td>50-60/50-80</td>
<td>1055</td>
<td>becomes damp</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>94M2</td>
<td>0-50/50-80</td>
<td>1120</td>
<td>WELL-GRADED GRAVEL w/ SAND (GW), bronze-brown, wet, dense to very dense, tr. silt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>94M2</td>
<td>SK</td>
<td></td>
<td>SILT (ML), grey, moist to wet, hard, mod. plasticity, occ. gravel, tr. sand</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>94M2</td>
<td>50-60/50-80</td>
<td>1055</td>
<td>becomes damp</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>94M2</td>
<td>0-50/50-80</td>
<td>1135</td>
<td>WELL-GRADED GRAVEL w/ SAND (GW), bronze-brown, wet, dense to very dense, tr. silt</td>
<td></td>
</tr>
</tbody>
</table>
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M2
PROJECT: Lone Star - Meier Property
LOCATION: SW portion Meier prop
TOTAL DEPTH: 135 ft
DIAMETER: 6 5/8 in
ELEVATION: appx 36 ft MSL
METHOD: Becker hammer drill
START DATE: 1/28/94
FINISH DATE: 1/31/94
WATER LEVEL AND TIME: 3" ft a 1038 1/28
LOGGED BY: J. Lawes

SAMPLE

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
<th>BLOW COUNTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td>traces of brown ('weathered') cement</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td>becomes weakly cemented, brown</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>1135</td>
<td></td>
<td></td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>1215</td>
<td></td>
<td></td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td>Shut down@ 1219 1/28 Drilling 925 1/31</td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>945</td>
<td></td>
<td>CEMENTED, WELL-GRADED SAND w/ GRAVEL (SW) brown to bronze-brown, wet, very dense, well cemented, tr silt</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>945</td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>99</td>
<td>94M2</td>
<td>1009</td>
<td></td>
<td>POORLY-GRADED SAND w/ GRAVEL (SP), bronze-brown, wet, med dense to dense, tr silt, occ cement</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>80-135° SK</td>
<td></td>
<td></td>
<td>becomes less well cemented</td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>101</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>121</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>121</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>105</td>
<td>1026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>109</td>
<td></td>
<td>1039</td>
<td></td>
<td>POORLY-GRADED SAND w/ GRAVEL (SP), bronze-brown, wet, med dense to dense, tr silt, occ cement</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>1039</td>
<td></td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>115</td>
<td>1042</td>
<td></td>
<td></td>
<td>CEMENTED, WELL-GRADED SAND w/ GRAVEL (SW), brown, occ. grey-brown, wet, very dense, cemented</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>126</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>120</td>
<td>1057</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
</tbody>
</table>

SAMPLE TYPES
- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPOON
- SK = BULK SAMPLE

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M2

LOCATION: SW portion Meier prop
TOTAL DEPTH: 133 ft.
DIAMETER: 6 5/8 in.

ELEVATION: approx. 36 ft. MSL
DRILLING CONTRACTOR: Beck Environmental

METHOD: Becker hammer drill
START DATE: 1/28/94
FINISH DATE: 1/31/94

WATER LEVEL AND TIME: 37 ft @ 1038 1/28
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>1106</td>
<td></td>
<td>well cemented, very dense</td>
<td>48</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>94M2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>80-140'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td>1124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M3
PROJECT: Lone Star - Meier Property
LOCATION: W side Meier prop
TOTAL DEPTH: 118 ft.
DIAMETER: 6 5/8 in.
ELEVATION: appx. 39 ft MSL
METHOD: Becker hammer drill
START DATE: 1/3/94
FINISH DATE: 2/1/94
WATER LEVEL AND TIME: 3 ft @ 1521 1/31
LOGGED BY: J. Lawes

SAMPLE

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>144</td>
<td></td>
<td>SILT (ML), black, moist, soft root hairs (topsoil)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>WELL-GRADED GRAVEL w/ SAND & SILT (GW-GM), green-brown, damp, med. dense to dense</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>less silt</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>94M3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0-50'</td>
<td>1513</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>1515</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>152</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>1528</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES

- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPOON
- SK = BULK S-CORE

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M3

LOCATION: West Meier prop
TOTAL DEPTH: 118 ft
DIAMETER: 6 1/2 in.

ELEVATION: approx. 39 ft MSL
DRILLING CONTRACTOR: Beck Environmental

METHOD: Becker hammer drill
START DATE: 1/31/94
FINISH DATE: 2/1/94

WATER LEVEL AND TIME: 3' at 1521 1/31
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>94M3</td>
<td>15</td>
<td></td>
<td></td>
<td>POORLY-GRADED GRAVEL w/ SAND (GP) grey-brown</td>
<td>15</td>
</tr>
<tr>
<td>42</td>
<td>94M3</td>
<td>15</td>
<td></td>
<td></td>
<td>wet, loose to med. dense, much pea gravel, occ. gravel</td>
<td>25</td>
</tr>
<tr>
<td>43</td>
<td>94M3</td>
<td>15</td>
<td></td>
<td></td>
<td>>4 in. max. dimension</td>
<td>4</td>
</tr>
<tr>
<td>44</td>
<td>94M3</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>45</td>
<td>94M3</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>46</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>47</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>48</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>49</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>SK</td>
<td>94</td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPOON
- SK = BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td>much sand - almost WELL-GRADED SAND w/ GRAVEL (SW), similar to above</td>
<td>133</td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>1024</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>89</td>
<td>94M3</td>
<td></td>
<td></td>
<td>CEMENTED, WELL-GRADED SAND w/ GRAVEL (SW), grey to grey-brown, wet, dense to very dense, cemented to weakly cemented</td>
<td>141</td>
</tr>
<tr>
<td>90</td>
<td>50-100'</td>
<td>1024</td>
<td></td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>91</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>1032</td>
<td></td>
<td>becomes green to grey-green</td>
<td>76</td>
</tr>
<tr>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td>very green</td>
<td>88</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69</td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>1059</td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>108</td>
<td>94M3</td>
<td></td>
<td></td>
<td>well cemented</td>
<td>111</td>
</tr>
<tr>
<td>109</td>
<td>100-118'</td>
<td></td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>110</td>
<td>SK</td>
<td>1113</td>
<td></td>
<td></td>
<td>84</td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>156</td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>121</td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87</td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>188</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2/1/94</td>
</tr>
</tbody>
</table>

SAMPLE TYPES:
- B = BAG SAMPLE
- ST = SHELBY TUBE
- SS = SPLIT SPOON
- SK = BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations or times.
Boring Log

Project Number: 420-106
Boring Number: 94M4
Location: NE portion Meier prop
Total Depth: 145 ft.
Diameter: 6 5/8 in.
Elevation: appx 37 ft MSL
Drilling Contractor: Beck Environmental
Method: Becker hammer drill
Start Date: 2/1/94
Finish Date: 2/2/94
Sample Types:
- ST - Shelby tube
- SS - Split spoon
- SK - Bulk sample

Sample Log

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>NO AND TYPE</th>
<th>TIME</th>
<th>Graphic Log</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-50'</td>
<td>SK</td>
<td>1500</td>
<td></td>
<td>WELL-GRaded GRAVEL w/ SAND (GW), brown, moist, loose to med. dense, tr. silt, rounded gravels to > 4 in. max. dimensions</td>
<td></td>
</tr>
<tr>
<td>50-100'</td>
<td></td>
<td></td>
<td></td>
<td>becomes grey-brown</td>
<td></td>
</tr>
<tr>
<td>100-150'</td>
<td></td>
<td></td>
<td></td>
<td>sandier</td>
<td></td>
</tr>
<tr>
<td>150-200'</td>
<td></td>
<td></td>
<td></td>
<td>grades to</td>
<td></td>
</tr>
<tr>
<td>200-250'</td>
<td></td>
<td></td>
<td></td>
<td>SILTY GRAVEL w/ SAND (GM), brown, wet, loose to med. dense</td>
<td></td>
</tr>
</tbody>
</table>

Sample Types:
- ST - Shelby tube
- SS - Split spoon
- SK - Bulk sample

Note: The log of subsurface conditions shown herein applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
Boring Log

Project Number: 420-106
Boring Number: 94M4
Project: Lone Star - Meier Property
Location: NE portion Meier prop
Total Depth: 145 ft
Diameter: 6 5/8 in.
Elevation: approx. 27 ft MSL
Drilling Contractor: Beck Environmental
Method: Becker hammer drill
Start Date: 2/1/94
Finish Date: 2/2/94
Water Level and Time: 2” @ 1507 21/94
Logged By: J Lawes

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>No and Type</th>
<th>Time</th>
<th>Graphic Log</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>94M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0-50’</td>
<td>1512</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>1521</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td>1526</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>94M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>50-70’</td>
<td>1529</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>1531</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>1538</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>94M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>70-120’</td>
<td>1547</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td>1553</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample Types:
- B = Bag Sample
- ST = Shelby Tube
- SS = Split Spoon
- SK = Bulk Sample

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

PROJECT NUMBER: 420-106
BORING NUMBER: 94M4

LOCATION: NE portion, Meier prop
TOTAL DEPTH: 145 ft
DIAMETER: 6 5/8 in.

ELEVATION: approx. 2 ft MSL
DRILLING CONTRACTOR: Beck Environmental

METHOD: Becker hammer drill
START DATE: 2/1/94
FINISH DATE: 2/2/94

WATER LEVEL AND TIME: 2 ft @ 1507 2/1/94

LOGGED BY: J. Lawes

SAMPLE

<table>
<thead>
<tr>
<th>DEPTH (ft)</th>
<th>NO. AND TYPE</th>
<th>TIME</th>
<th>GRAPHIC LOG</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
<td>834</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>851</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td>859</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>94M4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>70-120’</td>
<td>922</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
<td>940</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
<td>1019</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td>1027</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td>1047</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES:

- **B** - BAG SAMPLE
- **ST** - SHELBY TUBE
- **SS** - SPLIT SPOON
- **SK** - BULK SAMPLE

Note: The log of subsurface conditions shown hereon applies only at the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
BORING LOG

LOCATION: NE portion Meier prop
TOTALDEPTH: 145 ft
ELEVATION: approx. 27 ft MSL
METHOD: Becker hammer drill
WATER LEVEL AND TIME: 27 ft @ 1507 2/1/94
PROJECT NUMBER: 420-106
PROJECT: Lone Star - Meier Property
BORING NUMBER: 94M4
DRILLING CONTRACTOR: Beck Environmental
START DATE: 2/1/94
FINISH DATE: 2/2/94
LOGGED BY: J. Lawes

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>DEPTH (ft)</th>
<th>TIME</th>
<th>DESCRIPTION</th>
<th>COMMENTS</th>
<th>BLOW COUNTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td></td>
<td>grey-brown, wet, med. dense, weak cement, much pea gravel, occ. boulder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>125</td>
<td></td>
<td>1046</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>127</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>129</td>
<td>94M4</td>
<td></td>
<td>better cemented, dense</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>130</td>
<td>120-145'</td>
<td>1057</td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>131</td>
<td>SK</td>
<td></td>
<td></td>
<td></td>
<td>42</td>
</tr>
<tr>
<td>132</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>133</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>134</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78</td>
</tr>
<tr>
<td>135</td>
<td></td>
<td>1101</td>
<td></td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>137</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>139</td>
<td></td>
<td>1119</td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td>well cemented, very dense</td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td></td>
<td>1218</td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>142</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>143</td>
<td></td>
<td>180</td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>146</td>
<td></td>
<td></td>
<td>TD @ 145 ft at 1256</td>
<td>2/2/94</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE TYPES: B = BAG SAMPLE
ST = SHELBY TUBE
SS = SPLIT SPOON
SK = BULK SAMPLE

Note: The log of subsurface conditions shown herein applies only to the specific boring location and at the date indicated. It is not warranted to be representative of subsurface conditions at other locations and times.
WELL CONSTRUCTION LOGS
Monitoring Well No. P-1

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Mitsubishi tracked excavator
INITIAL GW DEPTH: 4 ft.

DATE: 3-31-93
HOLE DIA.: 48 in.
FINAL GW: 4 ft.
HOLE ELEV.: 9.2 ft. MSL
LOGGED BY: John Lawes
SAMPLER: none

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USCS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE NO.</th>
<th>WELL CONSTRUCTION DETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>POORLY-GRADED GRAVEL WITH SOME SILT</td>
<td>GP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILTY SAND, brown, loose to muddy, faint wet. Gravel to 10 inches maximum dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom of Hole at 9 feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

DAVID J. NEWTON ASSOCIATES INCORPORATED
Monitoring Well No. P-2

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Mitsubishi tracked excavator
INITIAL G.W. DEPTH: 5 ft.

DATE: 3-31-93
HOLE DIA.: 48 in.
FINAL G.W.: 5 ft.
LOGGED BY: John Lawes
SAMPLER: none
HOLE ELEV.: 8.4 ft. MSL

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USCS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>POORLY-GRACED GRAVEL with SILT to COBBLY SILO SAND, brown, loose to medium dense, moist to wet. Cobbles to 12 inches maximum dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOTTOM OF HOLE AT 10 FEET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WELL CONSTRUCTION DETAIL

Locking Metal Well Cap
Native Soil Backfill
1" dia. Sch.40 Blank PVC
Sch.40 Hand-sawn Slotted PVC
Sand

Notes:

DAVID J. NEWTON
ASSOCIATES
INCORPORATED

Project No. 420-101
Page 1 of 1

139
Monitoring Well No. P-3

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Mitsubishi tracked excavator
INITIAL GW DEPTH: 11 ft.
DATE: 3-31-93
HOLE DIA.: 48 in.
FINAL GW: 11 ft.
LOGGED BY: John Lawes
HOLE ELEV.: 8.0 ft. MSL
SAMPLER: none

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USCS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>WELL CONSTRUCTION DETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silt with cobbles and boulders to silt, gravel, brown, loose to medium dense, moist to wet. Boulders to 7 feet maximum dimension.</td>
<td>GM</td>
<td></td>
<td></td>
<td></td>
<td>Locking Metal Well Cap</td>
</tr>
</tbody>
</table>

Notes:
Project No. 420-101
Page 1 of 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Boring Log No. P-4

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: unknown
INITIAL GW DEPTH: 21 ft.
LOGGED BY:
HOLE DIA: unknown
FINAL GW: 21 ft.
SAMPLER: none
HOLE ELEV: 27.0 ft. MSL

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USCS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE NO.</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>This piezometer was located by DNA on March 31, 1993. No exploratory boring or piezometer construction details are known</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-in. clays, PVC - no well details known</td>
</tr>
</tbody>
</table>

Bottom of Piezometer at 34 feet

Notes:

DAVID J. NEWTON ASSOCIATES INCORPORATED
Monitoring Well No. P-5

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Mitsuiishi tracked excavator
INITIAL GM DEPTH: 5 ft.

DATE: 3-31-93
HOLE DIA: 48 in.
FINAL GM: 5 ft.

LOGGED BY: John Lawes
SAMPLER: none
HOLE ELEV: 7.2 ft. MSL

DESCRIPTION
SILT with COBBLES AND BOULDERS to SILTY GRAVEL, medium brown, loose to medium dense, moist, Cobbles to 8 inches maximum dimension

POORLY-GRADED GRAVEL, medium brown to medium gray, loose, wet, sides caving below 4 feet. Cobbles to 8 inches max. dimension

Bottom of Hole at 8 feet

DAVID J. NEWTON
ASSOCIATES
INCORPORATED
Monitoring Well No. P-6

PROJECT: Lone Star Northwest Pit E
DATE: 4-5-93
EQUIPMENT: Truck-mounted Hollow-stem Auger
LOGGED BY: John Lawes
HOLE ELEV.: 10.0 ft MSL

<table>
<thead>
<tr>
<th>WELL CONSTRUCTION DETAIL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locking Metal well Cap</td>
<td>SILT with GRAVEL, dark brown, moist, fine to stiff, roots and rounded gravels and cobbles to 4 inches maximum dimension</td>
</tr>
<tr>
<td>Bentonite Seal</td>
<td>WELL-GRADED GRAVEL with SILT, brown, moist to wet, medium dense</td>
</tr>
<tr>
<td>3-3/8" Sch.80 Barre PVC</td>
<td>CLAYEY GRAVEL, grey-brown, wet, medium dense</td>
</tr>
<tr>
<td>10x20 Sand</td>
<td>Bottom of Hole at 20 feet</td>
</tr>
<tr>
<td>Sch.80 Hand-sewn Slotted PVC</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

DAVID J. NEWTON ASSOCIATES INCORPORATED
Monitoring Well No. P-7

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Truck-mounted Hollow-stem Auger
INITIAL GIN DEPTH: 10 ft.

DATE: 4-5-93
HOLE DIA: 10 in.
FINAL GIN: 10 ft.

LOGGED BY: John Lawes
SAWMER: none
HOLE ELEV.: 11.7 ft. MSL

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USGS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE NO.</th>
<th>WELL CONSTRUCTION DETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILT with GRAVEL, dark brown, moist, fine to stiff, roots and rounded gravels and cobbles to 4 inches maximum dimension</td>
<td>ML_GM</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WELL-GRADED GRAVEL with SILT, brown, moist to wet, medium dense</td>
<td>GW</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom of Hole at 20 feet

Notes:

DAVID J. NEWTON ASSOCIATES INCORPORATED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Boring Log No. P-8

PROJECT: Lone Star Northwest Pit E
DATE: located 8/93
LOGGED BY: John Lawes
EQUIPMENT: unknown
HOLE DIA.: unknown
INITIAL GW DEPTH: 43 ft.
FINAL GW: 43 ft.
HOLE NO.: unknown
HOLE ELEV.: unknown

DESCRIPTION

This piezometer was located by DNA in August, 1993. No exploratory boring or piezometer construction details are known.

<table>
<thead>
<tr>
<th>DEPTH</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No well details known</td>
</tr>
</tbody>
</table>

Baton of Piezometer at 40 feet

NOTES:
Groundwater at 41 feet when found August 1993.
Monitoring Well No. MW-1

PROJECT: Lone Star Northwest Pit E
DATE: 4-8-93
EQUIPMENT: Truck-mounted Hollow-stem Auger
HOLE DIA: 10 in.
INITIAL GW DEPTH: 31 ft.
FINAL GW DEPTH: 31 ft.
LOGGED BY: John Lawes
HOLE ELEV: approx. 38 ft. MSL

Description

<table>
<thead>
<tr>
<th>ORGS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
<th>WELL CONSTRUCTION DETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SILT with GRAVEL, black, moist, firm to stiff, roots and rounded gravels and cobbles to 4 inches maximum dimension

WELL-GRADED GRAVEL with SILT, brown, moist to wet, medium dense

Notes:

- Protect No. 420-101

DAVID J. NEWTON ASSOCIATES INCORPORATED

Project No. 420-101

Page 1 of 2

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Monitoring Well No. MW-1

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Truck-mounted Hollow-stem Auger
INITIAL GW DEPTH: 31 ft.
DATE: 4-9-93
LOGGED BY: John Lawes
HOLE DIA.: 10 in.
FINAL GW: 31 ft.
SAVER: none
HOLE ELEV.: approx. 38 ft. MSL

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USGS CLASS</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>HOLE CONSTRUCTION DETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELL-GRADED GRAVEL with SILT, brown, moist to wet, medium dense</td>
<td>GW</td>
<td>30</td>
<td></td>
<td>0400 Colorado Silica Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td>Sch. 80 Machine-placed 0400-Silt PVC</td>
</tr>
<tr>
<td>Bottom of Hole at 42.5 feet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- Protect No. 420-101

AVID J. NEWTON ASSOCIATES INCORPORATED

Project No. 420-101

Page 2 of 2

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Monitoring Well No. MW-2

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Truck-mounted Becker Hammer Drill
INITIAL GW DEPTH: 30 ft.

DATE: 3-2-94
HOLE DIA: 6 5/8 in.
FINAL GW: 30 ft.
SAMPLER: none
HOLE ELEV: approx. 28 ft. MSL
LOGGED BY: John Lawes

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILT with GRAVEL, black, moist, firm to stiff, roots and rounded gravels and cobbles to 4 inches maximum dimension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WELL-GRADED GRAVEL with SILT AND SAND, brown, moist to wet, medium dense, cobbles to 10 inches max. dimension</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WELL CONSTRUCTION DETAIL

Locking Metal Well Cap
Bentonite Cement Seal
4" dia. Sch.40 Blank PVC

NOTES:

DAVID J. NEWTON ASSOCIATES INCORPORATED

PAGE 1 OF 2

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Monitoring Well No. MW-2

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Truck-mounted Becker Hammer Drill
INITIAL GW DEPTH: 30 ft.

DATE: 3-2-94
HOLE DIA: 8 5/8 in.
FINAL GW: 30 ft.
LOGGED BY: John Lawes
SAMPLER: none
HOLE ELEV.: approx. 28 ft. MSL

### DESCRIPTION	USGS CLASS	GRAPHIC LOG	DEPTH	SAMPLE	SAMPLE NO.	WELL CONSTRUCTION DETAIL
(con't)						
WELL-GRDED GRAVEL with SILT AND SAND, brown, moist to wet, medium dense, cobbles to 10 inches max. dimension						
GW						
		30				
		35				
		40				
		45				
		50				
		55				
		60				

Bottom of Hole at 50 feet

NOTES:

DAVID J. NEWTON ASSOCIATES INCORPORATED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Monitoring Well No. MW-3

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Truck-mounted Becker Hammer Drill
INITIAL GW DEPTH: 30 ft.
DATE: 2-28-94
HOLE DIA.: 6 5/8 in.
FINAL GW: 30 ft.
LOGGED BY: John Lawes
HOLE ELEV: approx. 38 ft. MSL
SAMPLER: none

DESCRIPTON

<table>
<thead>
<tr>
<th>USCS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SILT with GRAVEL, black, moist, firm to stiff, roots and rounded gravels and cobbles to 4 inches maximum dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WELL-GRADED GRAVEL with SILT AND SAND, brown, moist to wet, medium dense, cobbles to 10 inches max. dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WELL CONSTRUCTION DETAIL

- Locking Metal Well Cap
- Bentonite Cement Seal
- 4" dia. Sch.40 Blank PVC

Notes:

DAVID J. NEWTON
ASSOCIATES INCORPORATED

Project No. 420-101
Page 1 of 2

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USGS CLASS</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
<th>WELL CONSTRUCTION DETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELL GRADED GRAVEL with Silt and Sand, brown, wet, medium dense, cobbles to 10 inches max. dimension</td>
<td>GW</td>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Preprint No. 420-101
- Bottom of Hole at 55 feet
Monitoring Well No. MW-4

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Truck-mounted Becker Hammer Drill
INITIAL GW DEPTH: 30 ft.

DATE: 2-25-94
HOLE DIA: 6 5/8 in.
FINAL GW: 30 ft.
HOLE ELEV: approx. 38 ft. MSL

LOGGED BY: John Lawes
SAMPLER: none

LOGOS CLASS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>GRAPHIC LOG</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silt with gravel, black, moist, firm to stiff, roots and rounded gravel and cobbles to 4 inches maximum dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WELL-GRADED GRAVEL WITH SILT AND SAND, brown, moist to wet, medium dense, cobbles to 10 inches max. dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WELL CONSTRUCTION DETAIL

- Locking Metal Well Cap
- Bentonite Cement Seal
- 4" dia. Sch.40 Blank PVC

NOTES:

DAVID J. NEWTON ASSOCIATES INCORPORATED

Project No. 420-101
Page 1 of 2

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Monotoring Well No. MW-4

PROJECT: Lone Star Northwest Pit E
EQUIPMENT: Truck-mounted Becker Hammer Drill
INITIAL GW DEPTH: 30 ft.

DATE: 2-25-94
HOLE DIA.: 6 5/8 in.
FINAL GW: 30 ft.
LOGGED BY: John Lawes
HOLE ELEV.: approx. 38 ft. MSL
SAMPLER: none

LOGGED BY: John Lawes
SAMPLER: none
HOLE ELEV.: approx. 38 ft. MSL

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>USGS CLASS</th>
<th>DEPTH</th>
<th>SAMPLE</th>
<th>SAMPLE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELL GRADED GRAVEL with SILT AND SAND, brown, moist to wet, medium dense, cobbles to 10 inches max. dimension</td>
<td>GW</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom of Hole at 40 feet</td>
<td></td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

DAVID J. NEWTON ASSOCIATES INCORPORATED

Project No. 420-XG
Page 2 of 2

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
APPENDIX D

MODFLOW MODEL DETAILS

Disc in Pocket
Disc contains final model MODFLOW design and output files
MODFLOW Model Results and Comparisons

The following charts contain the results of the MODFLOW models. Each table compares the model output volume from the current-conditions model and the future-conditions model for each simulation date. Sensitivity Analysis was performed by adjusting selected parameters individually in the model. Certain parameters, such as hydraulic conductivity, have a significant impact on the total amount of water which flows through the model. Therefore, the sensitivity of the model to each parameter was analyzed on the basis of its impact on the percent increase in flow for each current/future model pair. A summary of the sensitivity analysis results is given in Table D1, Sensitivity Analysis and Calibration Statistics at the end of this appendix.

Final Models

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>15-May-95</th>
<th>22-Sep-95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Volume</td>
<td>Output Volume</td>
<td>Output Volume</td>
</tr>
<tr>
<td>ft³/day</td>
<td>ac-ft/day</td>
<td>ac-ft/year</td>
</tr>
<tr>
<td>515c</td>
<td>6,048,400</td>
<td>139</td>
</tr>
<tr>
<td>515f</td>
<td>6,673,600</td>
<td>153</td>
</tr>
<tr>
<td>Increase</td>
<td>625,200</td>
<td>14</td>
</tr>
<tr>
<td>% Increase</td>
<td>10.34</td>
<td></td>
</tr>
<tr>
<td>East CH boundary</td>
<td>4.75</td>
<td>East CH boundary</td>
</tr>
<tr>
<td>Barge Canal</td>
<td>10.24</td>
<td>Barge Canal</td>
</tr>
<tr>
<td>Western gw level</td>
<td>8.0</td>
<td>Western gw level</td>
</tr>
<tr>
<td>Surface recharge</td>
<td>17 in/yr</td>
<td>Surface recharge</td>
</tr>
</tbody>
</table>

Sensitivity Analysis Results

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>15-May-95</th>
<th>22-Sep-95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Volume</td>
<td>Output Volume</td>
<td>Output Volume</td>
</tr>
<tr>
<td>ft³/day</td>
<td>ac-ft/day</td>
<td>ac-ft/year</td>
</tr>
<tr>
<td>515chik</td>
<td>57,663,000</td>
<td>1,324</td>
</tr>
<tr>
<td>515fhik</td>
<td>63,259,000</td>
<td>1,452</td>
</tr>
<tr>
<td>Increase</td>
<td>5,596,000</td>
<td>128</td>
</tr>
<tr>
<td>% Increase</td>
<td>9.70</td>
<td></td>
</tr>
<tr>
<td>East CH boundary</td>
<td>4.75</td>
<td>East CH boundary</td>
</tr>
<tr>
<td>Barge Canal</td>
<td>10.24</td>
<td>Barge Canal</td>
</tr>
<tr>
<td>Western gw level</td>
<td>8.0</td>
<td>Western gw level</td>
</tr>
<tr>
<td>Surface recharge</td>
<td>17 in/yr</td>
<td>Surface recharge</td>
</tr>
<tr>
<td>K1</td>
<td>12,250</td>
<td></td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
15-May-95

Decreased Hydraulic Conductivity

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>515clok</td>
<td>976,490</td>
<td>22</td>
<td>8,183</td>
</tr>
<tr>
<td>515flok</td>
<td>984,460</td>
<td>23</td>
<td>8,250</td>
</tr>
<tr>
<td>Increase</td>
<td>7,970</td>
<td>0.18</td>
<td>67</td>
</tr>
<tr>
<td>% Increase</td>
<td>0.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 4.75
Barge Canal = 10.24
Western gw level = 8.0
Surface recharge = 17 in/yr
K₁ = 122.5

22-Sep-95

Decreased Hydraulic Conductivity

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>922clok</td>
<td>659,610</td>
<td>15</td>
<td>5,528</td>
</tr>
<tr>
<td>922flok</td>
<td>671,250</td>
<td>15</td>
<td>5,625</td>
</tr>
<tr>
<td>Increase</td>
<td>11,640</td>
<td>0.27</td>
<td>98</td>
</tr>
<tr>
<td>% Increase</td>
<td>1.76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 3.0
Barge Canal = 4.37
Western gw level = 6.0
Surface recharge = 17 in/yr
K₁ = 122.5

15-May-95

Increased Gradient

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>515chig</td>
<td>10,255,000</td>
<td>235</td>
<td>85,941</td>
</tr>
<tr>
<td>515fchig</td>
<td>11,360,000</td>
<td>261</td>
<td>95,201</td>
</tr>
<tr>
<td>Increase</td>
<td>1,105,000</td>
<td>25</td>
<td>9,260</td>
</tr>
<tr>
<td>% Increase</td>
<td>10.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 4.75
Barge Canal = 13.6
Western gw level = 10.6
Surface recharge = 17 in/yr

22-Sep-95

Increased Gradient

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>922chig</td>
<td>5,057,200</td>
<td>116</td>
<td>42,811</td>
</tr>
<tr>
<td>922fchig</td>
<td>5,903,100</td>
<td>136</td>
<td>49,470</td>
</tr>
<tr>
<td>Increase</td>
<td>845,900</td>
<td>19</td>
<td>7,089</td>
</tr>
<tr>
<td>% Increase</td>
<td>16.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 3.0
Barge Canal = 5.8
Western gw level = 8.0
Surface recharge = 17 in/yr

15-May-95

Increased Recharge

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>515chir</td>
<td>6,343,600</td>
<td>146</td>
<td>53,162</td>
</tr>
<tr>
<td>515fchir</td>
<td>6,982,700</td>
<td>160</td>
<td>58,518</td>
</tr>
<tr>
<td>Increase</td>
<td>639,100</td>
<td>15</td>
<td>5,356</td>
</tr>
<tr>
<td>% Increase</td>
<td>10.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 4.75
Barge Canal = 10.24
Western gw level = 8.0
Surface recharge = 34 in/yr

22-Sep-95

Increased Recharge

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>922chir</td>
<td>3,221,200</td>
<td>74</td>
<td>26,995</td>
</tr>
<tr>
<td>922fchir</td>
<td>3,737,600</td>
<td>86</td>
<td>31,323</td>
</tr>
<tr>
<td>Increase</td>
<td>516,400</td>
<td>12</td>
<td>4,328</td>
</tr>
<tr>
<td>% Increase</td>
<td>16.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 3.0
Barge Canal = 4.37
Western gw level = 8.0
Surface recharge = 34 in/yr
15-May-95
Aquifer bottom at -200 ft

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>515c200</td>
<td>4,196,495</td>
<td>98</td>
<td>35,160</td>
</tr>
<tr>
<td>515f200</td>
<td>4,656,500</td>
<td>107</td>
<td>39,015</td>
</tr>
<tr>
<td>Increase</td>
<td>460,000</td>
<td>11</td>
<td>3,855</td>
</tr>
<tr>
<td>% Increase</td>
<td>10.96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 4.75
Barge Canal = 10.24
Western gw level = 8.0
Surface recharge = 17 in/yr

22-Sep-95
Aquifer bottom at -200 ft

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Output Volume ft³/day</th>
<th>Output Volume ac-ft/day</th>
<th>Output Volume ac-ft/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>922c200</td>
<td>2,070,900</td>
<td>48</td>
<td>17,355</td>
</tr>
<tr>
<td>922f200</td>
<td>2,437,200</td>
<td>56</td>
<td>20,425</td>
</tr>
<tr>
<td>Increase</td>
<td>366,300</td>
<td>8</td>
<td>3,070</td>
</tr>
<tr>
<td>% Increase</td>
<td>17.69</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

East CH boundary = 3.0
Barge Canal = 4.37
Western gw level = 6.0
Surface recharge = 17 in/yr
Table D1: Sensitivity Analysis and Calibration Statistics

<table>
<thead>
<tr>
<th>Model Root Name</th>
<th>Parameter and Amount Changed</th>
<th>Output Volume (ft³/day)</th>
<th>Volume Increase (%)</th>
<th>Water-Level Change (feet)</th>
<th>Absolute Residual Mean</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>515c</td>
<td>Final Model</td>
<td>6,048,400</td>
<td>10.34</td>
<td>-0.8 to 0.8</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>515f</td>
<td></td>
<td>6,673,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922c</td>
<td>Final Model</td>
<td>2,925,400</td>
<td>17.2</td>
<td>-0.6 to 0.7</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>922f</td>
<td></td>
<td>3,429,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515chik</td>
<td>Hydraulic Conductivity Increased 1000%</td>
<td>57,663,000</td>
<td>9.7</td>
<td>-0.7 to 0.7</td>
<td>0.48</td>
<td>Subsurface flow increases. Percentage change resulting from Pit E approximately the same as Final Models.</td>
</tr>
<tr>
<td>515fhik</td>
<td></td>
<td>63,259,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922chik</td>
<td>Hydraulic Conductivity Increased 1000%</td>
<td>26,503,000</td>
<td>17.08</td>
<td>-0.5 to 0.6</td>
<td>0.42</td>
<td>Slightly closer calibration but less water-level change than Final Models.</td>
</tr>
<tr>
<td>922fhik</td>
<td></td>
<td>31,031,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515clok</td>
<td>Hydraulic Conductivity Decreased 1000%</td>
<td>976,490</td>
<td>0.82</td>
<td>-1.1 to 1.0</td>
<td>1.28</td>
<td>Subsurface flow decreases. Percentage change in flow resulting from Pit E much less than Final Models.</td>
</tr>
<tr>
<td>515flok</td>
<td></td>
<td>984,460</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922clok</td>
<td>Hydraulic Conductivity Decreased 1000%</td>
<td>659,610</td>
<td>1.76</td>
<td>3.8 to 6.9</td>
<td>1.31</td>
<td>Water-level change for 9/22 model much larger. Calibration error much higher.</td>
</tr>
<tr>
<td>922flok</td>
<td></td>
<td>671,250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515chig</td>
<td>Gradient Increased by 33%</td>
<td>10,255,000</td>
<td>10.78</td>
<td>-1.3 to 1.3</td>
<td>1.40</td>
<td>Subsurface flow increases. Percentage change resulting from Pit E approximately the same as Final Models. Calibration error much higher</td>
</tr>
<tr>
<td>515fhig</td>
<td></td>
<td>11,360,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922chig</td>
<td>Gradient Increased by 33%</td>
<td>5,057,200</td>
<td>16.73</td>
<td>-0.5 to 0.6</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>922fhig</td>
<td></td>
<td>5,903,100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515chir</td>
<td>Recharge increased by 100%</td>
<td>6,343,600</td>
<td>10.07</td>
<td>-0.9 to 0.8</td>
<td>0.63</td>
<td>Subsurface flow increases. Percentage change resulting from Pit E approximately the same as Final Models.</td>
</tr>
<tr>
<td>515fhir</td>
<td></td>
<td>6,982,700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922chir</td>
<td>Recharge increased by 100%</td>
<td>3,221,200</td>
<td>16.03</td>
<td>-0.6 to 0.7</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>922fhir</td>
<td></td>
<td>3,434,600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>515c200</td>
<td>Decrease Aquifer Thickness by 100 feet</td>
<td>4,195,500</td>
<td>10.96</td>
<td>-0.8 to 0.8</td>
<td>0.60</td>
<td>Subsurface flow decreases. Percentage change resulting from Pit E approximately the same as Final Models.</td>
</tr>
<tr>
<td>515f200</td>
<td></td>
<td>4,655,500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>922c200</td>
<td>Decrease Aquifer Thickness by 100 feet</td>
<td>2,070,900</td>
<td></td>
<td></td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>922f200</td>
<td></td>
<td>2,437,200</td>
<td>17.69</td>
<td>-0.8 to 0.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1) Residual Mean based on a comparison of field measured water levels for 5/15/95 and 9/22/95 with MODFLOW generated water-levels from the current-conditions models.
2) Water-level change based on MODFLOW generated drawdown data from future-conditions models.
3) Model root name prefixes: 515 = 5/15/95 conditions
 922 = 9/22/95 conditions
 c = current-conditions model
 f = future-conditions model

MODFLOW design listings and output files for the final models are on the disk in pocket.