Spring 2-1-2017

EELE 203.01: Circuits II for Engineering

Steve Shen

University of Montana - Missoula, steve.shen@montana.edu

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation
https://scholarworks.umt.edu/syllabi/8879
Circuits II for Engineering - EELE 203 – 01
Credits: 4
Prerequisite: EELE 201
Term: Spring 2017

Meetings
Lectures: MWF 3:00pm – 3:50pm in Liberal Arts 105
Labs: W 4:00pm – 5:50pm in Charles H Clapp Building 012

Final Exam
Wednesday, May 10, 2017, 1:10pm – 3:10pm, in Clapp 012

Faculty Contact
Steve Shen – steve.shen@umontana.edu
Phone: 406-243-7914
Office Hours: Mondays, Wednesdays & Fridays: 12:00PM to 1:00PM
Thursdays: 12:00PM to 1:00PM
Office: Griz House 8, Missoula College

Course Description

EELE 203. Circuits II for Engineering. 4 Credits. (3 Lec, 1 Lab) Spring
PREREQUISITE: EELE 201, M 274. Natural and forced response of R-L-C circuits,
frequency response of R-L-C circuits and Bode plots, frequency response, slew-rate and DC
imperfections of real op-amps; Laplace Transform, Fourier series and Fourier Transform
techniques in circuit analysis; basic R-L-C and op-amp filters; two port networks.

Course Overview

In the modern era of engineering, electrical and electronic circuits are heavily
involved in just about every field of science and engineering, as well as in our daily
lives. The courses of Circuits I & II for Engineering introduce fundamental and
essential theories and applications along with practical skills of circuit analysis and
design.

The topics of Circuits II for Engineering include, but are not limited to, Sinusoidal
Steady-State Analysis, AC Power Analysis, Three Phase Circuits, Magnetically
Coupled Circuits, Frequency Response, Laplace Transform, Fourier Series and
Fourier Transform, and Two Port Networks.

The course is built for the students to master fundamental theory and hands-on
skills in circuit analysis, design, implementation, and trouble-shooting by physical
components and software simulations. There is a significant lab component to
accompany the theory. Simulation software, such as Multisim, PSpice, and
MATLAB are introduced throughout the course.

Course Objectives

Upon completion of this course students will be able to:

- Apply phasor analysis to AC circuits in sinusoidal steady state.
Describe the difference between linear and non-linear circuits.

Describe AC power systems

Describe and analyze three phase circuits

Explain magnetically coupled circuits

Describe frequency response

Explain time-domain and frequency-domain

Describe and analyze Laplace transform and its applications

Explain and analyze Fourier series

Describe and analyze Fourier transform and its applications

Describe and analyze two port networks

Design, analyze, implement, and troubleshoot basic electric and electronic circuits using both physical components and simulation software, such as Multisim, PSpice, or MATLAB.

Required Materials

*Fundamentals of Electric Circuits*
By Charles Alexander and Matthew Sadiku
Copyright: 2017
Publication Date: January 13, 2016
ISBN10: 0078028221
ISBN13: 9780078028229

Scientific Calculator (recommend TI 84-Titanium, TI 86, or TI 89)


Evaluation Procedures

Grades will be assessed as follows

<table>
<thead>
<tr>
<th>Assessment Area</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework Assignments</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
<tr>
<td>Lab Exercises</td>
<td>25%</td>
</tr>
</tbody>
</table>

Grading Scale:

- 90-100% A
- 80-89% B
- 70-79% C
- 60-69% D
- Below 60% F

Topic Outline of EELE 201 Circuits I for Engineering

1. Sinusoidal Steady-State Analysis
2. AC Power Analysis
3. Three Phase Circuits
4. Magnetically Coupled Circuits
5. Frequency Response
6. Laplace Transform
7. Fourier Series
8. Fourier Transform
9. Two Port Networks

General Requirements for the Course
1. All the assigned lab experiments and projects are to be done with physical components, unless otherwise indicated by the instructor.
2. Multisim, PSpice, or MATLAB simulations are required for some of the lab exercises.
3. Please demonstrate every lab experiment and project to the instructor as soon as you complete them.
4. Late work may be accepted at most one week after the due date and can receive a maximum of 80% of the full credit.
5. No work will be accepted one week after the due date, or after the solutions have been gone through.
6. No work will be accepted after the final week of the semester.

Academic Integrity:
All students must practice academic honesty. Academic misconduct is subject to an academic penalty by the course instructor and/or a disciplinary sanction by the University. All students need to be familiar with the Student Conduct Code. The Code is available for review online at: http://life.umt.edu/vpsa/student_conduct.php

Using the Web to research materials and concepts is an integral part of learning in the twenty-first century. Studying with other students is a productive method of learning. A certain amount of collaborating on concepts with other students and using resources found on the Internet in an assignment is recommended. Copy and paste is not acceptable. It is expected that each student will input his/her assignment into the computer, and each student must be able to explain any assignment turned in. Collaboration on exams is strictly forbidden.

Dropping and Adding Courses or Changing Sections, Grading or Credit Status
University Policy for dropping courses or requesting grading/credit status changes can be found in the catalog: http://www.umt.edu/withdrawal/Withdrawal%20Policies.aspx

Students should become familiar with all academic policies.
For Complete Academic Policies Please View the Um Catalog at: http://www.umt.edu/catalog/academics/academic-policy-procedure.php

Disability Accommodations:
Eligible students with disabilities will receive appropriate accommodations in this course when requested in a timely way. Please contact me after class or in my office. Please be prepared to provide a letter from your DSS Coordinator. For more information, visit the Disability Services website at http://www.umt.edu/dss. Or call 406.243.2243 (voice/text).

Changes to Syllabi:
NOTE: Instructor reserve the right to modify syllabi and assignments as needed based on faculty, student, and/or environmental circumstances. If changes are made to the syllabus, amended copies will be dated and made available to the class.

Cell Phone and other Electronic Communication Devices Policy:
All electronic communication devices must be tuned off and stowed away prior to the start of class.

Attendance Policy:
Regular classroom attendance is expected.

Exam, Project, and Assignment Policy:
All exams are to be taken on the assigned date and time. Projects and assignments are due at the start of class on the assigned date and time. Late assignments will be accepted at the instructor’s discretion. Rescheduling of an exam will be approved at the discretion of the instructor and only in extraordinary situations.

Learning Management System:
It is the responsibility of the student to access and familiarize herself/himself with the Learning Management System (LMS) for the course (Moodle). Access & training is available through UMOnline http://umonline.umt.edu