Bill Scarborough and Mike Haenke Interview, August 21, 2007

Bill Scarborough

Mike Haenke
Minie Smith: Okay, good morning. This is August 21, 2007. We're at the Milltown Dam. This is Mine Smith and Caitlin DeSilvey and we're doing an interview at the Milltown Dam just before it's taken down. If you two could introduce yourselves and give your name and where and when you were born, that would help us set the stage.

Bill Scarbrough: Well I'm Bill Scarbrough. I work for Northwestern Energy. As to where and when I was born, I was born in 1938 in Pratt, Kansas.

Mike Haenke: I'm Mike Haenke and I'm an operator here, actually I've worked for a contracting firm for Northwestern Energy. Anyhow, I was born in Harrison, Michigan, May 7, 1943.

Caitlin DeSilvey: Great. We just wanted to start off by getting some background on how long you've been working for Northwestern and how you've hooked up working here at the Milltown Dam. So, Bill...

MH: Yes, go first since you were here first.

BS: Shortly after Northwestern bought out what was left of the Montana Power Company, they were looking to find somebody with background in hydro operations and maintenance. I was then contracting through an organization and Northwestern happened to contact that organization to see if they had anybody. They called me and asked me instead of driving all the way back to Washington state, would I be interested in stopping in Montana?
CD: What year was that?

(Unknown voice): Excuse me...

[Break in tape]

MS: ...paused it. Okay.

BS: But they made a job offer to me to come in here and oversee this plant since Northwestern had no one that really knew anything about hydro operations and this was the only facility they had. So I was brought in here to basically do that and act foreman over the facility as long as Northwestern still had responsibility for the property. Once that's completed, I go away.

CD: What year was that you started?

BS: I started here September of 2002.

MH: There were two guys, Bill, and another man who worked here. He was a young fellow. When they found out for sure that this dam was coming out and his job would go away, he decided to leave and find another job before that happened. So Bill, I worked with Bill years ago in a big coal fire plant. He knew where I lived and everything and knew that I was just recently retired. He asked me if I would be interested in a possible job over here. I said, "Well, yeah I'd like to come over and talk about it." So I did. They hired me. I've been here ever since, a little over three and a half years.

CD: Who did you take over from? So Northwestern didn't have anybody who knew this plant. The Montana Power employees must have taken their retirement when...

BS: All the hydro departments, with the exception of the Milltown Dam, were sold off to Pennsylvania Power and Light Company. That was like all the Madison, Hauser, Holter, all the original Montana Power Company hydro system. The young man that was referred to, Scott
Dougherty, when it was found out for sure that he had just a short time left before this went away, he was offered a job at Hauser. So he went to work for Pennsylvania Power and Light Company as an operator there at Hauser.

CD: Okay.

MS: So he had followed Emmett Smith? What was the transition between?

BS: Well back when Emmett Smith was here and he took his retirement, Guy Engelbretz(?) came in as foreman. Following Guy, it was Rod Stewart and then when Rod Stewart transferred to one of the other dams, Ken Eastep(?) came to work here as foreman. Then when Ken left, that's when I came in as foreman.

MS: Okay. So what kind of work is involved in running a facility like this? Is it mostly maintenance or is it...?

BS: Well, the maintenance work we've done since we've been here has been minimal, simply because it was known the plant was going to be shut down. So the company wasn't going to be putting a lot of money into doing any major repairs that they'd never get their money back from. So our job was just taking care of relatively minor maintenance work around here and then just overseeing the operation of the turbines and generators. A lot of that entails shutting down the machines and going into the turbines and cleaning out the trash that comes down river and gets hung up in the turbines. When that happens, that cuts the load output on the turbines down real fast. So we had to do a lot of cleaning of the turbines.

CD: How often would you have to do that?

BS: Spring of the year with spring runoff, it would happen maybe once a month. The rest of the year, as things went on, we might be only every two or three months we'd have to open one of them up and clean them out. Most of it is these short little beaver sticks. They cut the willows and the alder branches and that for their winter food. Then the little sticks in the river would
come down river and get through the protective trash grates and go in and hang up in the turbine blades.

MH: That was kind of a fun job. You'd open up a hatch and it's all dark in there. You'd drain it down and put a light to check for oxygen and then we'd both go in and you'd never go in alone. You'd have two people so that if something happened- because you could get caught in there and not get out or something, you know.

CD: Because you're actually in there in the workings of the...

MH: It's not moving or anything, but you crawl inside and you crawl around and there's not a lot of room so you kind of.

CD: What does it smell like in there?

MH: Kind of river-y.

CD: Would you have somebody outside just in case something happened to both of you inside?

MH: Well, no. One of us might be outside where one of us was in or we'd both be in, but we'd always have two people. You'd never do it by yourself because if something happened, there wouldn't be anybody around to drag you out or call 9-1-1.

CD: Were there ever stranger things you fought caught up besides beaver sticks?

MH: Well, outside we found.

BS: Out in the trash rack we'd find whatever people threw in the river. In the turbines themselves, it was mostly wood debris, organic stuff.
MH: Coming down the river, you'd find deer, bear, a refrigerator once— a whole refrigerator— just most anything that would float.

CD: Were you there when the bear came down?

MH: He was. Bill was.

CD: When was that?

BS: That was not a bear.

MH: Yes, I thought it was a black bear.

BS: Well, that's right, yes. I've drug so much stuff out of it, I forgot about that one. I've taken pigs out of there, everything you could think of. Whatever dies and falls in the river, you know, or gets thrown in the river, we catch it here.

CD: What do you do? Do you call Fish, Wildlife, and Parks and say, "Come get the pig?"

BS: No, no. we just drag it down and flush it on down?

CD: Oh, it goes on down the other side?

MH: Anything that naturally was in the river would go on down. We'd pull out cans and bottles and manmade stuff. We'd take that out, but anything else...

BS: If it was natural or organic kind of things, it gets passed on down the river. The plastics, the pop bottles, all that kind of stuff we pull out and throw in the trash.

BS: Life jackets, life rings.

CD: Canoes?

BS: Paddles, yes.

MH: Another thing we'd do is when the generators are running and you know something could happen and trip them off line so we had an alarm system so that we'd get called. You might come back in the middle of the night and put the generators back on. That was kind of fun sometimes. Or we had intrusion alarms. Any kind of motion anywhere within the dam area there are alarms all over, like that one on the wall right there. When we'd turn them on, any motion would set them off. So we'd get called out for that. Usually it's a bird or something, a big heron or something. Every once in a while it was a person or persons which shouldn't have been here.

[Break in tape]

[From 10:00 to 14:57, previous taped conversation is repeated]

[Break in tape]

BS: ...whatever the system voltage is where the generator transmission lines are tied into the regular system. In its simplest form, that's pretty much how it works.

CD: So which pieces are going to be saved for this interpretation? I think maybe a generator...

MH: I guess they're going to save the generator and they're talking about part of the turbine. I'm not sure. It's kind of hard to save that turbine because it's hard to get them out. We're not just sure what they're going to do. The generator, for sure, they're going to keep one.

CD: What's the little governor thing? Can you explain what that was doing? I think they're going to save one of those.
BS: The governor is used to maintain the speed of the turbine. When this plant was built, it was the sole provider of electricity for the city of Missoula and the surrounding areas. The original power came from what was originally known as the Bonner Dam, which was taken out a year ago. Following that, then Clark built this facility to provide more power to supply his lumber yard operation in the town of Bonner and surrounding area. Then as things progressed, the city of Missoula was tied in and so they were supplying Missoula with AC power for the city as well as DC power supply for the old electric rail car system that served Missoula and all the way out to Bonner.

The governors, obviously then, are needed to maintain a 60 cycle frequency for the AC power. That was the function. They maintain the speed of the shaft so that for instance, on these units here, the design of them is such that they turn at 200 rpm. That was their function to maintain that 200 rpm so that the frequency of the AC power going out to the public would be at 60 cycles. It's a simple fly-weight mechanism. If the shaft speeds up, those fly-weights expand out, shifting a linkage rod that was connected to a hydraulic pilot valve and through the hydraulic system it would open or close the control valves to let more or less water to the turbine, either increasing or decreasing the volume of water spinning the turbine.

CD: Was that fairly advanced technology for 1906, that little governor?

BS: Yes, it was.

CD: It seems like that kind of feedback is a tricky thing to get.

BS: It wasn't anything new. But the way it was used here with the pilot valve mechanism and the hydraulic system, yes, that was relatively new technology.

MH: Now wasn't it one of these governors that was still running here when we were operating was one of the last ones in the whole country of that type? It was still in operation.
BS: Of the DC exciters. The DC exciters, the governor mechanism on them- they were by Woodward Governor Company, which is still in existence now. We were told that was the last still operating governor from back at the turn of the 20th century. In fact, as far as they knew, it was the last anywhere in the world of any of their governors. So one of their engineers, several years ago, stopped by here. He was rather excited to see it, you know, to see something that was from the turn of the 20th century still in operation.

CD: What kind of oil was that in there?

BS: It's a special hydraulic oil.

CD: You'd mentioned the exciter; how does that fit into the turbine/generator/transformer link there?

MH: It's just a DC generator that supplies DC power to the generator- puts a field on the generator. Without that, you couldn't produce power.

CD: You have to put the energy into the system to start to generate it?

MH: Yes.

CD: I see, okay.

BS: To get electrons to move on a wire, you have to either pass the wire past or sweep a magnetic force field over the wire, one or the other. Big generators- well, like these, because of when they were built, they were big machines kilowatt-output-wise. The outer ring of it is called the stator. That's the permanent windings that connect to the leads to the transformer and so on out to the transmission lines. The rotor part has those electromagnets wound around on it, the big black coils that you see out there on that wheel. That's the part that Mike was referring to about putting the DC on. What we're doing is we're creating a magnetic force-field in those coils, and
by that rotor spinning, we're spinning that magnetic field across the stationary wires causing the excitation of the electrons to get them to move in the leads.

CD: Great, okay.

MS: So how much power did the dam originally produce? And then when you came, it wasn't producing as much as it originally would; is that correct?

BS: With unit one, it used to be, if I remember right, 3.6 megawatts. But when unit one, it developed a bearing problem before I came here. Due to the cost of repairs and realignment of the machine, the company decided that it wasn't worth putting the money in to. So when I came here, we just had units two, three, and five still operating. Under ideal water conditions, we could get 2.5 or 2.6 megawatts out. On the yearly average, we averaged 1.9 megawatts an hour.

MH: Another kind of interesting thing is- we were talking about those governors- when we were connected to the grid and on this big grid, the grid will hold the machine at 200 RPMs no matter what you do to it unless you disconnect the breaker. So if we stopped the water, it would still be spinning that generator. It would act like a motor. It would actually be sucking power in rather than putting power out, which is kind of interesting.

CD: Oh, wow. It would keep them spinning.

MH: They'd still be spinning at 200 RPM. It wouldn't be producing any power. It would actually be using power, which is interesting. Then another thing that's interesting is that the more water you put through it, it's making more power, but it's still going the same speed. It's like a car going up a hill. You're giving it more gas, but you're still going the same speed. That's kind of how that works. You're making more power, but it's still only going 200 RPMs. It's kind of hard to understand how that works, but it does.

CD: This isn't a question that we have written down, but I was just kind of curious about how it felt that day when everything got shut down for the last time?
BS: Actually I think it was an emotional day.

MH: Yes, it was.

BS: Our life has always been operating them. I've got a background in the construction and start up of big thermal power plants. So this was a big first for me to be involved in the actual shut down and de-commissioning of a power facility. So it's something very different. Something this old and of antiquity, it was rather emotional for me, really.

MH: They were recording that too, as it shut down- as the H generators shut off. Then we got to the exciters and we tried- we closed the gates, but they were leaking through. It wouldn't shut down. It kept barely turning and I kept telling them, "It's going to stop it," but it didn't. It just kept going- it kept barely moving.

CD: Did you find it kind of emotional too?

MH: Oh, yes. You know, it was all going to happen. It was emotional, but it was fun too. It was a really fun day actually even though it was sort of sad to see it all shut down and never run again, at least here.

CD: Did you think about yourselves coming out of retirement to put this dam into retirement?

MH: Well, yes, that's kind of interesting, really.

BS: Yes, I hadn't thought of it that way.

CD: (unintelligible) were the ones for the job.

MH: We weren't quite as old as the dam, but...
BS: Well, he is.

CD: So what parts of your job have you enjoyed most working out here?

MH: I think just the serenity of the place is- because you know, like where we used to work in a big noisy power plant with people running all over and this is so different. It's just so peaceful with the eagles and the fish and the beavers, everything that you see around. That's for me, anyhow. I know Bill likes the outdoors. It's really a nice place to be.

BS: People don't- because of the nature that the public can't go into the big power stations except on special occasions when they're with a tour and that, but the general public isn't aware of the stress level that exists in the big thermal power plants. There are so many different things occurring constantly in there that for the operators, particularly, you're constantly under stress. Everybody is always Monday morning quarter-backing you. We all know about the cost of electricity that we pay. Then you get into these big thermal power plants and you see the enormous budgets it takes to operate and maintain one of those. The amount of pressure that's put on the people there constantly to look after how the dollars are spent, there's never a break. There's never a relaxing moment in them. So coming out of that and Mike and I getting the opportunity to come here and have our own little world, and as Mike says to watch the wildlife around us, yes, it was just such a dramatic change of work environments.

MH: You know, I've known people who have worked in the big power plants and went to hydro and said, "Man, it's really nice." I just never realized how nice until I came here.

MS: So how well have you gotten to know the area, Milltown, Bonner, and the people who live there? I mean is there much back and forth with the community and the dam?

MH: Well for me, at least, a lot of fishermen used to come down here when they could fish here. That was- you got a lot of old history from people that- you know, fellows in their eighties telling us about things and fishing here, and doing things way back when. It was quite interesting. There were quite a lot of neat people that you get to talk to, or did get to talk to.
He was jerking his head back. He was just really a character. He was a lot of fun, though. Another old fellow came down and was telling me he used to catch suckers down here for a farmer when he was just a kid. He is in his eighties now and the guy would bring them down and drop them off. He'd catch suckers all day and wheelbarrow them out to the pickup truck. The farmer would come home in the evening and take them back home and take the suckers and pay them so much for fish. That was a pretty neat life.

BS: He used them for fertilizer.

CD: Is that what he was doing?

BS: Yes, fertilizer for his fields.

CD: Were you here for any of the moving the fish from the bottom, below the dam, up to the top?

BS: Yes. We got in with working with Dave Schmetterling and the other fellows from the Fish, Wildlife, and Parks group doing the trapping out there in the radio gate bay and helping them tag them and implant radio transmitters in them for tracking later on, and that. Yes, we had a lot of fun with Dave and the guys doing that.

MH: On a good day, they'd have maybe 200 trout trapped in there and thousands of suckers. They would take the trout out and we'd just open the gate and push the suckers back down stream.

CD: You'd just pick the trout out?
MH: Yes, they were just interested in the trout. That's what their study was and everything.

MS: How long did that go on for?

BS: I think Dave started his first studies here in 2000 or 1999, somewhere in there when he first began his study. What he was trying to identify was the trout, as they came down stream, went through and then during migration season would come back up river. He was identifying how the fish will home in because the scent of the water is what they track. He was identifying how the fish that were trying to get back up the Blackfoot to their spawning grounds would come up one side of the river and the fish that are trying to go up the Clark Fork would go up the other side of the river. Through his studies and charting all of this, he was able to identify that had the dam been kept in place, it was going to require two fish ladders because they didn't intermingle out there. The way the flows come in, most of the Blackfoot water is what actually comes through the powerhouse during normal operation. Most of the Clark Fork water would go over the spillway and that way, so consequently, the separation of the two groups of the fish as they would come up river. So they would have wound up having to build a fish ladder over here on the north abutment wall area for the fish trying to get up the Blackfoot and one up along the south part of the spillway for the fish trying to go on up the Clark Fork.

CD: Wow. It would have been like a fish water park with slides.

MH: Yes, the other fish wouldn't come over. The Clark Fork fish wouldn't come over to this side. They'd just be hanging over there. They still wouldn't go upstream, just the Blackfoot.

CD: Did you have trout collecting underneath the powerhouse then?

BS: Oh yes. In the tunnels? Oh yes.

MH: Probably because anywhere there's flow they tried to go up.
BS: Yes, Dave Schmetterling and his group of people did a tremendous amount of research work. He's written several papers. I say "several." He's written papers on this and printed in notable magazines about his research work on the fish migration through this area.

MH: I've read several in *Montana Outdoors* magazine that Dave Schmetterling and Ladd... what's his name?

BS: Knotek.

MH: ... and some of those other fish biologists have written, which are really good.

BS: Yes. It was fun working with those fellows because it gave us a chance to learn something that we wouldn't ever have gotten exposed to before. So that was a lot of fun and interesting knowledge there.

MS: But aside from the people fishing, did other people from town...?

MH: Oh sure. They'd just come and look around. Every once in a while you'd have a good conversation with somebody that was either passing through or lived around. In fact, as we were shutting down, there's been people coming around saying, "I've never been here ever. Could I come and look?" For some of them, it's too late. Now we can't let people in much. They've lived here all their life and have never really had a chance. They never took the opportunity to. They could have, but once it's going out, there are people saying, "Oh, I've never gone in there." What we did is accommodate as many as we could, but then like right now, it's all off limits. So it's too late.

CD: Did you get people kind of coming down to say goodbye?

MH: Oh, a few people. One guy brought his young son in while it was still operating and still producing electricity and he wanted to show him. He was like seven or eight. He told him that he would be able to remember that the Milltown Dam was still making power, which would be kind
of neat, years from now. I tell Bill that he'll come by here some time in the future and nothing
will be here. There will be a kid fishing and one of us will say, "Yes, there used to be a dam here.
I used to work there." He'll say, "Sure, mister, sure."

CD: Do you get people who will sort of ask why the powerhouse couldn't be saved?

BS: Oh, a lot, yes.

CD: And how...?

BS: Well, if the dam was going to stay, a lot of money needed to put into it for maintenance
work. It's sound for what it was doing, but to allow the public, you know, there's been a lot of
suggestion, "Why didn't they make this into a museum?" or "What a neat restaurant this would
have made down here on the river," that sort of thing. Well for the general public to come in,
there would have been a tremendous amount of money needed to be put into this, bringing it up
to a standard that would be safe for the general public to just come and go. For us working here,
it's not unsafe, but yet there are things here that had it remained, would have had to been fixed.
We knew we were on short term. So there again, we just didn't put the money into it because it
would have been money spent poorly.

MS: So right now there are just the two of you? Originally there were four houses, right? So
there were more people here early on that were needed to run it? Why can it be run now?

BS: Was it four houses? I think at one time- it seems to me that Emmett Smith told me at one
time there were four houses because there used to be a superintendent's house, then the foreman,
and then two operators. If I remember Emmett correctly, and I wouldn't want my feet held to the
fire for this, as the system grew, he was relocated to Butte or something or in town Missoula and
his house was removed. So it was just the foreman and two operators that had houses here.

MS: So was it with the automation things that reduced the number of people?
MH: We were just so efficient that they only need us.

BS: What it really amounted to was the system was getting so big that the amount of power we were putting out here was getting to be such a small, infinitesimal amount that if the plant tripped offline, the system wouldn't really even notice it. So the need for that kind of coverage was no longer necessary. Back in the days when this was a significant percentage of the system's power for the surrounding area here, yes, they needed that kind of 24 hour coverage so that whatever happened, they had an operator already on duty. The guys used to work around the clock to make sure things kept going. Or if the plant did trip off for some reason, they could get it back online and get it going right away because of the plant being such a major part of the system's output. There again, as things grew, the country grew, we became smaller and smaller in relationship to the whole.

MH: So you know, this last few years, there would only be one of us here. Then we would have days when we were together when I'd take over the shift. Normally it would just be one guy here. Then he'd be on-call all the time in case something happened. Like Bill said, if it took you two hours to get out and get the units back on, nobody ever hardly knew the difference. So it wasn't as critical.

BS: Dispatchers wouldn't know anything except for the alarm on the computer for them.

CD: So how are you now going about getting things ready for the demolition? What are you up to in these weeks here?

MH: We're moving everything in here up above. We're moving the office up there until we're gone.

CD: Oh into that shed?

BS: Into the garage, yes.
MH: We're looking to move the computer and we have to redo the phone line and the computer line so that we can still use that. A lot of stuff we're taking into division and the transformer guys are taking a lot of the stuff they can use because we just don't use it anymore.

BS: Over the next month, like you two came in today, we're busy getting ready to start removing the transformers. We pumped the oil out of them yesterday. Today we'll physically remove two of them. They'll be hauled to the main transformer yard in Butte. Tomorrow we'll take two more of them out. Once the transformers and the circuit breakers for the generators are removed, later on in September, we'll get the generators out. That's going to be a lot of heavy lifting work. We'll have to bring in a heavy crane. Part of the building will have to be demolished so that the crane can be able to boom in over the unit area and pick those generators out. So that will all happen by the end of the September. As it now stands, the target date to begin the official demolition of the powerhouse is October 1st. Like everything in this project, there are so many ifs, ands, and buts involved with it, any which can upset that timetable very easily. So nobody is casting any dates in concrete. It happens when it happens.

MH: It's kind of interesting. The manager from Envirocon said this section we're in right now will be about two hours worth of time to take it down. It will be gone in two hours.

CD: Oh really:?

MH: Yes.

BS: They'll just come in. there's no value in this whole thing. They'll just come in with a big clamshell shovel and they'll just start taking bites out of it and loading it onto trucks and hauling it away.

CD: So you guys are on until what point?

MH: I'm not sure exactly. Once there's no control of the river at all, we can't control the river any way, then they have no need for us at all.
CD: So you're the interface between the facility and the river and once it's...

BS: Northwestern's responsibility stops when the river is flowing free on its own. Now that is kind of up in the air, what Mike and I really aren't sure of at this time because they had to change their plans. Originally they were going to take the spillway out first, which I'm sure you're aware of. Then due to some engineering difficulties in doing that and getting it accomplished in the timeline they wanted, they had to shift their plans to take the powerhouse out first. Now whether they're going to call that "allowing the river to run free and unabated by anything," we don't know. Or is Northwestern's responsibility still going to be here until it's back in its original channel, which is over against the south cliff? So that's one of the things we're not sure of. So we know we'll be gone by next April. They have to have the river, for sure, back in its original channel and flowing free before spring runoff begins. How much before April 1st, that's the guessing game.

MS: So what do you think the best way to remember the history of the dam is for the little boy or the fisherman? After the dam is gone, how will the little kid out there fishing.?

BS: What's the best way for them to remember?

MS: To remember it, to understand it, and understand what was here.

MH: I guess just the history from the museum. Also, have you seen the artist's picture he made of the dam? Have you seen that?

CD: The ghost house?

MH: The ghost dam, yes. So he only had 350 copies of that, but that is a neat thing.

MS: Is that the Monte Dolack?
MH: Yes, right. We both got one of those.

CD: Oh you did? That's great.

BS: They were given to us as gifts by a complete stranger.

MH: That was the neatest deal.

BS: It was shocking, really.

MH: He came out one day and Bill showed him around. He worked on turbines all over the country and he lives here. He came back later and he had one of these pictures he was going to give to Bill. Bill wasn't here, but I was. He goes, "Oh two guys? You weren't here. You'll get one of these." I go, "Yeah, I'm a lot nicer than Bill anyhow." So we were talking for quite a while and he left the picture. I said, "He'll be so thrilled with that." Then the man said, "I'm going to town. I'll be back after a little bit." I said, "What are you doing?" He said, "I'm going to get you a print." I go, "Oh no, I'll buy it. I'll pay you." He said, "Nope." He insisted. He went and brought me a print, which was super nice.

BS: I was at home and Mike called. He said, "You going to be home this evening?" I said, "Yes." He said, "I've got something for you. It's a big surprise." I said, "What is it?" He said, "You've got to wait until I show you." He came driving up and here he comes with this print. I said, "Where in the world did this come from?" He said, "Do you remember so-and-so? He was the guy you were showing around in the powerhouse and that." I said, "Yes." He said, "He bought this for you." It was totally shocking. He was a complete stranger; for him to do something like that- because those aren't cheap.

CD: No, they aren't.

MS: That's neat. But do you think that the idea that's sort of been floating around about having some sort of interpretive center...
BS: The museum up here? Oh yes that'd be great.

MS: Would that be a good...?

BS: Oh yes. In fact I hope they get busy and get going on that real soon because things are starting to happen here. If they want to save some of this stuff, they've got to get a space prepared up here to store it. It's going to have to be- they're going to have to provide some sort of a makeshift building to put it in or people will be coming over scavenging. Things are going to be happening real quick, real soon. That museum that they've talked about, I hope Senator Baucus is able to come up with the money that he said he was going to try and come up with in federally supported funds for that. That would be a great thing.

CD: Would you be willing to come over every once in a while and talk to people about it? It seems like the timeline might be kind of long on that, maybe five years before there's anything up there.

BS: You're probably talking closer to ten.

CD: Yes, it might be. Are there any other stories that you think should be passed on? Emmett had a lot of stories about his time.

BS: During his time here, yes, he would have. I've got one. It's dealing with Emmett Smith. Before they put the concrete and the permanent bridge across the top of the spillway, that was all wooden and what we call "drop panels" to hold the water back. To get from one side over to the south bank, that was just a big swinging bridge. I don't know if you were here before 1987 or not. It was a swinging bridge across there. That's what the operators had to go out on because these drop panels, they had to keep the ice busted back away from them so that the pressure of the ice wouldn't knock them down because they were of a design that once they were down, the river ran free until the following summer when flows dropped down enough that they could get down there and stand these panels back up.
So it was very imperative that they keep the ice cut back away from those panels. The guys would go out, and these are the days before OSHA and the high level concern about safety that there is today. They'd go out and they'd tie ropes around themselves and lower themselves down from that swinging bridge onto the ice. They'd take chainsaws and big large bars with cutting edges on them to cut and break the ice free and move it out of the way. Bill Thompson, the engineer we work for, he found one of those old pictures of Emmett standing down on the ice with a rope tied around his chest and tied up off that swinging bridge. Here he is working away with a chainsaw cutting through the ice.

Bill decided to have some fun with the safety engineering group in Butte. He goes walking into one of the morning meetings and he said, "Guys, I've got a question here. I'm not sure if somebody needs to do something about this or not, but I'm pretty sure this is not an acceptable practice." He shows him this picture of Emmett. Of course there's no date on the picture. So little do they know that it's an old picture. They just went ballistic on him when that safety engineering group saw what was happening. They just went critical. They said, "Oh my god we've got to get over there and put a stop to this right now." Then Bill clued them into what was going on. "That's all gone today."

MH: There was another one of him, Emmett, in days past when they'd get a big log jam up against the three gates they had instead of this big radio gate. He was down there and water was going through it, but he was down there cutting on these logs all jammed up. He had a harness on, but still as dangerous as could be. They would have never let anybody do that nowadays.

BS: Well several guys that still work here in the division used to have to come out and help with the log jams. Doug Amos(?) and some of those guys still tell stories about being out there on that swinging bridge when one of those logs would get hung and kick up on the end and hit that bridge. All you could do was grab hold of the support cables and hang on for the ride.

MH: Yes, pretty exciting.
CD: So what do you think about the cleanup from what you've been able to see or what people have shared with you?

MH: Well it looks like they're doing everything they said they're going to do. I mean, it's a really big job. Working with those Envirocon guys, I'm really impressed with them. I think they're doing a great job and really doing things the right way it looks like, which is really nice.

BS: Yes. I'm so detached from that over there. What I see from here is pretty much what the general public sees. The newspapers tell me more about what's going on than anything. EPA puts out a weekly update on that. That's where I get most of my information on it. As Mike said, we do work with several of the guys over there so we have a name and face recognition rapport. Just knowing the caliber of the people they are makes you comfortable realizing the kind of guys and the conscientiousness of doing what's right and making sure that things are not getting out of control or anything like that. It's a comfortable feeling knowing what they're dealing with is being looked after that way.

MH: Exactly, yes.

MS: So have you run into things in this demolition process that you didn't expect to run into? Has it become more difficult?

BS: Really, we're not to that point in this.

CD: In the decommissioning process.

BS: Yes, in this decommissioning of this plant. We haven't run into anything yet that I could call a big surprise because we haven't done that much physically. Here today, this is the first real activity of doing any real decommissioning of removing equipment or anything. I would say no, we really haven't run into any big surprises.

MH: There were those 20 gold bricks we found....
CD: Well I think that kind of wraps up our questions here.

MS: Yes, unless you have any other stories or anything you’d like to keep for posterity?

CD: We really appreciate you talking with us.

MS: Yes we do. I know it's a busy time.

BS: Yes. I want to read my poem into this.

CD: Okay.

MS: Yes please do.

BS: Mike and I decided that something had to be left to be said about the history of the plant. So one day just doodling around here, I put together something. It's titled "In Remembrance of Milltown Dam, Hydroelectric Power Generating Plant":

Commence generation January 9, 1908. The plant kilowatt hour meter records the first electric power generated. Cease generation on April 7, 2006, the last generator was shut off forever stopping the kilowatt hour meter. Service life was 98 years, two months, and 29 days. Through the thick and the thin, the floods, the ice, and the droughts, Milltown Dam powerhouse has seen it all and survived all but the perpetual march of time. Time does overcome all and Milltown Dam will soon be relegated to history. Local museums will put parts, pieces, and pictures of it on display. Articles will be written telling of its place in Montana history and what a bright place in history of Montana it has; almost a century of providing electric power to homes and industry. But alas, the old gives way to the new. So, good and faithful servant, we bid thee farewell.
-Bill Scarbrough and Mike Haenke, the last of the many operators of Milltown Dam

MH: So when you flip on an electric switch and light comes on, just remember there are men and women behind that magic.

CD: Thank you, Mike.

MS: Thank you.