CROSS SYSTEM RELIABILITY OF COSMED K4b2 vs. PARVO 2400 TRUE ONE METABOLIC SYSTEMS

Kyle R. Cochrane
University of Montana, kyle.cochrane@umontana.edu

Steven Gaskill
University of Montana - Missoula

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/gsrc

https://scholarworks.umt.edu/gsrc/2014/posters/13

This Poster Presentation is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in UM Graduate Student Research Conference (GradCon) by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
The measure of oxygen consumption (VO₂) via indirect calorimetry is used to evaluate energy expenditure in laboratory and field settings. During the development of a new fitness test for Wildland Firefighting, we needed to compare laboratory VO₂ testing using a Parvo Medics 2400 True One metabolic cart with field data collected with a Cosmed K4b2 system. The field test VO₂ data were consistently slightly higher than the lab data at identical work rates during 20 kg load carriage. **PURPOSE:** To examine the validity of the Cosmed with the Parvo metabolic system and the ASCM equations. **METHODS:** Thirty subjects (17 male; 13 female) participated in the study. Upon arrival to the lab, subjects were outfitted with a 20kg backpack and performed a five-minute warm up at a self-selected intensity. Subjects then completed two identical five-minute steady state stages while wearing the backpack. Each stage was randomly selected for monitoring order with the Cosmed and Parvo system. Subjects walked on a treadmill at an assigned speed between 2-3.5 MPH (mean=3.1 ± 0.4 MPH) and grade between 3-9% (mean=6.0 ± 2.5%). VO₂, Vₑ and O₂ extraction data using the Cosmed or Parvo metabolic systems and estimated VO₂ (ACSM prediction equations) were analyzed using a one-way repeated measures ANOVA or dependent t-tests (for comparisons of Vₑ and O₂ extraction). Significance was established at p<0.05. **RESULTS:** The Cosmed measured a higher VO₂ compared to the Parvo and ASCM equations (27.5 ± 5.7, 25.4 ± 5.6, and 25.5 ± 5.5 ml•kg⁻¹•min⁻¹, respectively, p<0.05). The Vₑ for Cosmed was higher compared to the Parvo (44.4 ± 14.3 vs. 40.6 ± 13.4 L•min⁻¹, respectively, p<0.05). There was no difference between the Cosmed or Parvo for percent expired O₂. **CONCLUSION:** Although the Cosmed VO₂ and Vₑ values were slightly higher than the Parvo values, the differences were small and within a reasonable range for energy expenditure estimation in a field vs. laboratory setting. We are currently validating Vₑ in the two systems.
CROSS SYSTEM RELIABILITY OF COSMED K4b2 vs. PARVO 2400 TRUE ONE METABOLIC SYSTEMS

During the development of a new fitness test for Wildland Firefighting, we needed to compare laboratory VO$_2$ testing using a Parvo medics 2400 True One metabolic cart with field data collected with a Cosmed K4b2 system. The field test VO$_2$ data were consistently slightly higher than the lab data at identical work rates during 20 kg load carriage. **PURPOSE:** To examine the validity of the Cosmed with the Parvo metabolic system and the ASCM equations. **METHODS:** Thirty subjects (17 male; 13 female) participated in the study. Upon arrival to the lab, subjects were outfitted with a 20kg. backpack and performed a five-minute warm up at a self-selected intensity. Subjects then completed two identical five-minute steady state stages while wearing the backpack. Each stage was randomly selected for monitoring order with the Cosmed and Parvo system. Subjects walked on a treadmill at an assigned speed between 2-3.5 MPH (mean=3.1 ± 0.4 MPH) and grade between 3-9% (mean=6.0 ± 2.5%). VO$_2$, V$_e$ and O$_2$ extraction data using the Cosmed or Parvo metabolic systems and estimated VO$_2$ (ACSM prediction equations) were analyzed using a one-way repeated measures ANOVA or dependent t-tests (for comparisons of V$_e$ and O$_2$ extraction). Significance was established at p<0.05. **RESULTS:** The Cosmed measured a higher VO$_2$ compared to the Parvo and ASCM equations (27.5 ± 5.7, 25.4 ± 5.6, and 25.5 ± 5.5 ml•kg$^{-1}$•min$^{-1}$, respectively, p<0.05). The V$_e$ for Cosmed was higher compared to the Parvo (44.4 ± 14.3 vs. 40.6 ± 13.4 L•min$^{-1}$, respectively, p<0.05). There was no difference between the Cosmed or Parvo for percent expired O$_2$. **CONCLUSION:** Although the Cosmed VO$_2$ and V$_e$ values were slightly higher than the Parvo values, the differences were small and within a reasonable range for energy expenditure estimation in a field vs. laboratory setting. We are currently validating V$_e$ in the two systems.