9-2013

PSYX 520.01: Advanced Psychological Statistics I

Daniel J. Denis

University of Montana - Missoula, daniel.denis@umontana.edu

Let us know how access to this document benefits you.

Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation

https://scholarworks.umt.edu/syllabi/37

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
Advanced Psychological Statistics I

PSYX 520

Autumn 2013

Meeting Times: Fridays, 11:10 AM – 2:00 PM
Location: 246 Skaggs Building

Instructor: Daniel J. Denis, Ph.D.
Office: 369 Skaggs Building
Phone: (406) 243-4539
E-mail: daniel.denis@umontana.edu
Autumn Office Hours: Wed, 1:10 – 3:00pm; Fri, 2:00 – 3:00pm

Data & Decision Lab: http://psychweb psy.umt.edu/denis/datadecision/front/index.html

Course Overview & Expectations

This course is designed for graduate students in psychology. Although the course is self-contained, it is assumed that you have taken at least one undergraduate statistics course. The scope of the course is generally applied, however select theoretical details and results will be emphasized insomuch as they facilitate the understanding of statistical concepts. It is imperative to gain an understanding of statistics, and a sense of its logical foundation, before knowing how and when to apply them (and in some cases, whether they should be applied at all).

Learning Outcomes

1. By completion, you should have a reasonable understanding of the nature of statistics, its common applications and its benefits and limitations within scientific practice. You should be able to critically evaluate statistical analyses and design issues in the field, and be in a position to independently expand and generalize your knowledge of the subject. More generally, by the end of the course, you should feel somewhat confident about your grasp of the nature of statistics and their applications in psychological and related sciences.

2. Understanding the wealth of statistical procedures used in psychology begins with an understanding of the key fundamental foundations that are a component of virtually every statistical method or procedure, and that lie at the very heart of statistical science. Unifying concepts and principles will be emphasized in this course as to encourage a general understanding and appreciation of statistics. The goal is to strike a balance between showing you HOW to do statistics and providing an appreciation for WHAT you are doing, so that you may generalize your skills to new domains. Though it is understood that you will likely be working in applied research and will be a producer and/or consumer of research, it is quite meaningless and hollow to conduct a statistical analysis based on probability concepts (for instance) if you are not at least somewhat familiar with the concepts or meaning of probability. In addition to providing the skills of data analysis, which will allow you to conduct the most common analyses used in modern social science, the goal is to provide you with the skills required to permit independent study of statistical topics in psychological research and beyond. Psychology and related sciences have literally seen an explosion of statistical methods in the past couple of decades, and unless you have a foundation for understanding them, you will quickly get lost in the "cookbook" approach, and in no time be making serious (and potentially egregious) errors of application and interpretation. To avoid this, you need some understanding of what unites virtually
all statistical methods. Even the most "complex" of statistical methods are nothing more than elaborations of basic foundational statistical elements. For instance, if you truly understand the essentials of correlation and regression, structural equation modeling can be interpreted as an extension of these core concepts rather than as an entirely "new" procedure.

3. More specifically, this course will cover topics which include: functions, essentials of set theory, probability, conditional probability and distributions, independence, association, random sampling and randomization, measurement scales, probability and sampling distributions, discrete and continuous random variables, expectation, the binomial distribution, measures of central tendency, measures of variability, confidence intervals, normal distribution, hypothesis testing, the nature of the null vs. alternative hypotheses, power, inferences about population means, chi-square distribution, $F$ distribution, linear contrasts and post-hoc comparison procedures, general linear model, experimental design, simple analysis of variance, factorial analysis of variance, correlation, linear regression, linear multiple regression.

Credits: 3.0

Required Texts


Optional Texts & Resources


A Note About Texts & Resources

Statistics and data analysis books can be categorized across a wide spectrum from in-depth analytical thought-provoking books, to very surface data-analytic "how to" and "procedural" books. Hays' text is a foundational and very-often-cited classic text in quantitative methodology and statistics. Its depth of knowledge is the bar by which many other texts in the area seek to measure up to. Dowdy and Kirk's texts are less so, and Morgan & Leech texts are mostly data-analysis driven. What one kind of text will give you makes up for what another kind will not. For instance, if you're wanting to understand the details and logic of ANOVA and the general linear model, Hays' text is quite in-depth for this, and definitely should be consulted and studied. However, if you're wanting to know "how to" run an ANOVA using software and how to produce a printout (without necessarily a complete understanding or appreciation of what the output means), Hays will be of little use to you, and you would be better off consulting Morgan and Leech for their excellent "procedural" instructions. One kind of book is no better than the other so long as you understand that they were written with different purposes in mind. In this course, all definitions and fundamental concepts will be drawn from Hays, and you will be expected to be familiar with these fundamental concepts. For instance, in learning what a null hypothesis actually is, data-analytic sources are not your best reference, whereas Hays (or similar fundamental texts) is.
Office Hours

Office hours are held weekly. You are also strongly encouraged to e-mail questions to the TA or instructor, as they arise. Writing your question out in an e-mail, as clearly as you can (even if very long) is an excellent way to clarify what you do not understand, and often, you achieve a deeper understanding of the topic itself. Replies will usually be given 24 to 48 hours after the e-mail is received. Please be as detailed and specific as you can in your e-mail so I know how to frame my response to best suit your needs. There will be a class e-mail listserv with which I will use to communicate with the class. Be sure you are on this list.

Evaluation

There are 4 components that will make up your final grade (see "grade thermometer" to the left):

1. Assignments/Homework (12 @ 2% EACH = 24%)
2. Test 1 (6%)
3. Mid-Term Exam (20%)
4. Final Exam (50%)**

** Final Exam = Final Grade IF Final Exam is higher than cumulative total of Test 1 and Mid-term Exam.

Policies regarding Tests & Exams

All tests and exams will be written in-class, room 246 Skaggs. Be on time for all evaluations, as you will not have additional time if you arrive late.

Because of the nature of the short-answer and multiple-choice testing, tests and exams will require the class seating to be as sparse as possible (i.e., every second or third position). Please adopt "test-taking" seating on test days.

All material in lecture/Hays is testable. However, usually, tests (and the final exam) will consist of a subset of material from each chapter. By attending lectures and keeping up with the class, you should get a good idea of what this subset will consist of.

Sketchy Notes

"Sketchy Notes," along with other material, will be posted on-line on the Data & Decision Lab webpage. These may be useful to you in helping you master the material, but should not be used as complete replacements or substitutes for textbook readings.

Assignments

Unless otherwise noted, homework assigned in a given class period is due in class the following week. Late homework will not be accepted. In all assignments, you must show sufficient detail that you have understood the problem and have addressed it successfully. Work turned in that does not show sufficient detail or thought process will receive a grade of zero. If you are unsure of how much explanation or work to include in your solutions, include more than not.
Accommodation of Students with Disabilities

Whenever possible, and in accordance with civil rights laws, the University of Montana will attempt to provide reasonable modifications to students with disabilities who request and require them. Please feel free to setup a time with me to discuss any modifications that may be necessary for this course. For more information, visit the Disability Services for Students website at http://www.umt.edu/disability.

Attendance

You are expected to attend regularly. Missing more than 3 classes without justifiable reason as determined by the instructor in conjunction with the Department of Psychology, may result in a grade of F for your final grade, regardless of your quiz, test, and exam performance. If you absolutely must miss a class, please note that it is your responsibility to catch up on missed work. Instructor notes will not be made available on an individual basis at any time. Please notify the instructor in advance should you need to miss a class. Attending class lectures usually helps a great deal in understanding material, and consequently doing well on tests and exams.

Academic Misconduct

You are expected to adhere to the university's student conduct code with regard to academic integrity. Academic misconduct in this course will not be tolerated and will result in an academic penalty. If you are suspected of cheating on a test or exam, you will receive zero on that test or exam and be asked to leave the class permanently. In short, even if you do not know the answer to a question, you're much better off guessing than risking the chance of getting caught cheating.

Policy on Class Disruptions

The expectations for this course are such that you remain respectfully silent while either the instructor is speaking or a colleague in the class is asking or responding to a question. In accordance with policies set by the University, disruptions in class will not be tolerated. This policy is set very strict so that every student has the opportunity to learn in a quiet and constructive environment. A failure to meet this expectation (p < .05) will result in your being dismissed permanently from the class. This policy is extremely strict as to protect the rights of students who have invested time, money and energy into this course and deserve nothing less than an optimal learning environment. The instructor will make every effort to make sure you, the student, has an ideal learning environment. Please speak to the instructor privately if you are being disturbed in class.

Incompletes

Departmental and university policies regarding incompletes do not allow one to change “incomplete” grades after 1 year has passed since the “I” was granted.

Lectures

Most of the material presented in lectures will be drawn from Hays and Dowdy. You can also use Morgan and Leech as menu-driven guides to using SPSS. Morgan and Leech's texts will likely also be useful when conducting your MA or Ph.D. research. Hays' text is thorough and a complete "stand alone" source on the nature of statistics. Lectures will serve to highlight the most essential points in each chapter, the big "chunks" or "themes" necessary for a good understanding of statistics. The smaller, yet still just as important details can be absorbed through a careful reading (or two or three) of each chapter. Generally, you should focus on what is highlighted in lectures, and read Hays to understand and reinforce these concepts. We will also from time to time supplement Hays with additional examples to illustrate statistical concepts and show data analysis as we progress throughout the course. A "class discussion" atmosphere will be encouraged at times. You will be expected to offer your point of view.
Questions During Class

Although you are welcome and often encouraged to ask questions during lecture, class questions to some extent will have to be limited if they become too numerous, as to allow us to make our way through all the material we need to wade through by the end of the course. Be sure to recognize that only once in a “blue moon” will you understand EVERYTHING from the beginning to end of a given lecture, which is why studying between lectures is necessary. This is normal. If you understand the main themes of lectures, and can more or less “stay with us” as we progress through the lecture, that’s a good guidepost to evaluate your in-class progress. Many of the questions you have during class will be answered by post-class study (or sometimes while waiting at a red light on the way home). Such is the nature of learning - do your best to “get it now,” but if you can’t, then sit or sleep on it for a little bit and return to experience the concept again from scratch once more. It might just “take” this time! Even the best of the best learners are always learning. As soon as you declare a concept “mastered,” you possibly close the door to new learning and deepening of that very concept. If you would like to discuss learning strategies further, feel free to contact myself or the TA.

Mathematical Arguments Used in Statistics

Stat I will not be taught as if it were a mathematics course because statistics (applied) is not equal to mathematics. You will not be tested on whether you can prove or justify the equations that make up the discipline of statistics. Most test items will focus on your understanding and grasp of the material rather than on your ability to manipulate equations (though it would be nice if both went hand-in-hand). Familiarity with the mathematics of statistics can sometimes (but not always) aid in your understanding of the fundamental concepts. For that reason, lectures will sometimes contain mathematical arguments to help in your understanding of statistics. However, be aware that knowing how to “work” a formula or follow a mathematical argument may or may not help you in understanding the underlying statistical concept. If you understand the concept however, the math often (but not always) makes much more sense, and may help to fill “gaps” in your conceptual knowledge, or at minimum, provide you with a means to express your statistical knowledge. The opposite is also true - learning the math might help you in understanding statistical concepts. It’s generally a two-way street, but guard against knowing the math without understanding the underlying conceptual meanings, it will get you nowhere fast. Tests and exams will aim to evaluate your understanding of statistics - the “Do you get it?” part, and not weather you were able to memorize a formula you don’t truly understand yet. In this course, mathematics is simply seen as a vehicle or means to expressing statistical understanding. Focus on the concepts (even the most technical of mathematics are but expressions of underlying concepts).

A Note on the Use of Statistical Software

Although SPSS (and at times, R) will be taught and used, it is of extreme importance that you do not equate “SPSS knowledge” with statistical knowledge. The emphasis in this course will be on first understanding statistics, then applying them on the computer. Learning how to use SPSS (or any other software) effectively and efficiently is relatively easy IF YOU FIRST UNDERSTAND THE STATISTICAL PROCEDURES which it offers. Using software texts as a guide now and in the future will help you in using SPSS or R or SAS, or STATA, etc. It is much easier to know what an ANOVA is first, then learn how to do it on a computer, than to know how to do it on a computer and be totally clueless as to what it is. Further, you will rarely be asked at a thesis or dissertation defense to demonstrate your knowledge of SPSS, no more than you would be asked to demonstrate your ability to use your pocket calculator. However, you will likely be asked to defend the statistics you've used in your research. To do that, you must UNDERSTAND what you are doing, and not simply HOW to do it.

Recommendations for Studying Statistics

In learning and/or expanding your knowledge of statistics, always try to see the “parts” within the “whole.” In other words, take the elements that you learn, and try to situate them within the “bigger picture.” You need a certain amount of small pieces before you can build the bigger picture, but always make the effort to see the larger frame. Once you do, the smaller pieces fall into place, and even new things that you learn can be more easily situated within the larger framework. For instance, if you are familiar with the general linear model (big picture), you can more easily situate and understand ANOVA and regression (smaller pieces). Similarly, if you understand what an F-distribution is (small piece), you can link this concept to better understanding ANOVA and regression (larger pieces).

Studying in groups is encouraged. Discussing statistical concepts with others (including the instructor) is a powerful way to master the subject. Always be critical of what you are learning. There are countless debates over the proper use of statistics in research, and both statistics and psychology are still relatively young sciences, and to some extent, grew up together (but are still in their teen years). All scientific knowledge should be regularly subjected to reconstruction.
### Tentative Timetable

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Primary Readings</th>
<th>Assignments</th>
<th>Graded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Sept.</td>
<td>Probability Theory</td>
<td>Hays, Ch. 1</td>
<td>A2: Hays, Ex. 2, 6, 10, 12, 20, 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Sept.</td>
<td>Probability Theory &amp; Probability Distributions</td>
<td>Hays, Ch. 1</td>
<td>A3: Hays, Ex. 8, 18, 22, 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Sept.</td>
<td>A Discrete Random Variable: The Binomial</td>
<td>Hays, Ch. 3</td>
<td>A4: Hays, Ex. 10, 12, 20, 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>An Introduction to Hypothesis Testing</td>
<td>Dowdy, Ch. 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 Sept.</td>
<td>Central Tendency, Variability &amp; Expected Values</td>
<td>Hays, Ch. 4</td>
<td>A5: Hays, Ex. 4, 12, 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Oct.</td>
<td>Sampling Distributions and Point Estimation</td>
<td>Hays, Ch. 5</td>
<td>A6: Hays, Ex. 8, 18, 22, 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Oct.</td>
<td>Normal Population and Sampling Distributions</td>
<td>Hays, Ch. 6</td>
<td>A7: Hays, Ex. 12, 18, 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inferences About Population Means</td>
<td>Dowdy, Ch. 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Oct.</td>
<td>Inferences About Population Means</td>
<td>Hays, Ch. 7</td>
<td>A8: Hays, Ex. 8, 18, 22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 Oct.</td>
<td>Central Tendency, Variability &amp; Expected Values</td>
<td>Hays, Ch. 8</td>
<td>A9: Hays, Ex. 4, 12, 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Nov.</td>
<td>MID-TERM EXAM (20%)</td>
<td>Hays, Ch. 9</td>
<td>A10: Hays, Ex. 4, 12, 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Nov.</td>
<td>Chi Square Distributions: A General Linear Model (Introduction to ANOVA)</td>
<td>Hays, Ch. 10</td>
<td>A11: TBA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Nov.</td>
<td>Comparisons Among Means</td>
<td>Hays, Ch. 11</td>
<td>A12: TBA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 Nov.</td>
<td>Factorial ANOVA</td>
<td>Hays, Ch. 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 Nov.</td>
<td>THANKSGIVING FRIDAY (NO CLASS)</td>
<td>Hays, Ch. 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Dec.</td>
<td>Correlation &amp; Simple &amp; Multiple Linear Regression</td>
<td>Hays, Ch. 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Dec.</td>
<td></td>
<td>Hays, Ch. 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Dec.</td>
<td>FINAL EXAM (50%)</td>
<td>Hays, Ch. 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dowdy, Ch. 16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All material covered in the course is subject to examination.