9-2013

PSYX 522.01: Multivariate Statistics

Daniel J. Denis
University of Montana - Missoula, daniel.denis@umontana.edu

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation
https://scholarworks.umt.edu/syllabi/36

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
Meeting Time: 12:10pm – 3:00pm, Thursdays
Location: Skaggs 336

Instructor: Daniel J. Denis, Ph.D.
Office: 369 Skaggs Building.
Phone: (406)-243-4539
E-mail: daniel.denis@umontana.edu
Office Hours: Wed, 1:10 – 3:00pm; Fri, 2:00 – 3:00pm

Data & Decision Lab: http://psychweb.psy.umt.edu/denis/datadecision/front/index.html

Course Overview & Expectations

This course is designed for graduate students in psychology. It is assumed that students entering this course have taken previous graduate statistics courses (e.g., Stat I and Stat II here at U of M or equivalent elsewhere), and have a basic understanding of statistics and statistical inference from early concepts through to linear models such as ANOVA and multiple regression.

The learning outcomes of this course are as follows:

1. To provide you with the opportunity to obtain a working knowledge of various multivariate statistical procedures, and to conduct and interpret such analyses using software.

2. To provide you with the ability to critically evaluate various multivariate analyses found in modern social and natural science literature.

3. To provide you with the opportunity to successfully present and defend statistical/methodological material to an audience (such as your thesis or dissertation committee, or anyone else in the future, e.g., "job talks" etc.).

Course Description

We will survey the more common multivariate procedures used in psychology and related sciences. We will not be surveying every multivariate methodology. Such will include topics as multivariate multiple regression (with interactions), multivariate analysis of variance, logistic regression, discriminant analysis, factor analysis/SEM models, principal components analysis, cluster analysis, and others. In addition to surveying these methods, their application using SPSS software and R will be demonstrated. The key to understanding and using statistics is to be able to rely on your knowledge of fundamental concepts so that you may learn a variety of statistical procedures that you may need (or read) in your career. The key is to understand what you are doing, and not simply run statistical procedures blindly. The focus of the course will be 1/2 on theory, and 1/2 on application. A fundamental goal of the course is to teach you how to think statistically (almost synonymous with "scientifically") from the ground up so that you may become a wise interpreter and producer of scientific knowledge.
Course Depth vs. Breadth

This course is necessarily a "breadth" course, as it is impossible to cover all of multivariate statistics in depth in the amount of time allotted for this course. For instance, for each of the multivariate procedures that exist, there are many BOOKS written on these individual topics, and countless peer-reviewed journal articles. It is unreasonable to think that this course alone will make you an "expert" on any of the various multivariate procedures. Rather, the course will provide you with reasonable knowledge of which multivariate procedure might be suitable for a given research problem, and how to begin to implement the procedure. Even if you complete a given data analysis as an exercise in this course, every time you do a new data analysis in the future, you are always "starting anew." Each data analysis is different, and "cookbook" approaches to statistical analysis, even if somewhat helpful and having their place as a learning tool, can be dangerous if they are not used with caution. The course will also to some extent introduce you to the underlying technical details of these procedures, so that you have some background on the "anatomy" of multivariate analysis before attempting to apply it to problems in research.

Credits: 3

Course Materials

The required texts for this course are:

Handouts posted on the Data & Decision Lab website will also be used.
http://psychweb.psy.umt.edu/denis/datadecision/front/index.html

Optional Texts & Resources

Office Hours

Office hours are held weekly. You are also strongly encouraged to e-mail questions to the instructor and/or TA, as they arise. Writing your question out in an e-mail, as clearly as you can (even if very long) is an excellent way to clarify what you do not understand, and often, you achieve a deeper understanding of the topic itself. Replies will usually be given 24 to 48 hours after the e-mail is received. Please be as detailed and specific as you can in your e-mail so I know how to
frame my response to best suit your needs. There will be a class e-mail listserv with which I will use to communicate with the class. Be sure you are on this list.

Evaluation

Your final grade will be based on the following:

1. Student Seminar (20%)
2. Mid-Term Test (10%) 1/2 Theory / 1/2 Application
3. Assignments (7 @ 5% each = 35%)
4. Final Exam (35%) 1/2 Theory / 1/2 Application

Multivariate E-mail List

There will be a Multivariate E-mail list that will be created and used by the instructor. The list will be used by the instructor to communicate with the class via e-mail regarding course content and special messages. When students ask questions by e-mail, the instructor may respond to the question to the entire list (but will first remove identifying info. of the student asking the question). Please be sure you are on this e-mail list.

Student Seminar

Each seminar will be approximately 45 minutes in length, and will consist of 2 presenters at a time (find a partner to present with). Seminars will be evaluated on the following:

1. Topic Knowledge & Expertise (30%)
2. Level of Difficulty, Complexity and Depth (30%)
3. Presence and Clarity of Exposition (20%)
4. Organization, Delivery, and Thought Process (20%)

Accommodation of Students with Disabilities

In accordance with the University of Montana's mission to provide equal educational opportunities for all students, the instructor is willing to provide necessary accommodations for students with disabilities. If you require any accommodations, please make these known to the instructor, who will work with the office of Disability Services in adapting this course to meet your needs.

Incompletes

Departmental and university policies regarding incompletes do not allow one to change "incomplete" grades after 1 year has passed since the "I" was granted.

A Note on the Use of Statistical Software

SPSS (and R) will be used in this course. Although SPSS (and R) will be taught and used in this course, it is of extreme importance that you do not equate "software knowledge" with statistical knowledge. The emphasis in this course will be on first understanding statistics, then applying them on the computer. Learning how to use SPSS effectively and efficiently is relatively easy IF YOU FIRST UNDERSTAND THE STATISTICAL PROCEDURES which it offers.
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Readings</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 Aug.</td>
<td>Introductions, Exploratory Review of Univariate Statistics</td>
<td>Rencher, Chapter 1</td>
<td></td>
</tr>
<tr>
<td>05 Sept.</td>
<td>Matrix Algebra</td>
<td>Rencher, Chapter 2</td>
<td>Assignment #1</td>
</tr>
<tr>
<td>12 Sept.</td>
<td>Displaying Multivariate Data: Multivariate Normal Distribution</td>
<td>Rencher, Chapter 3, 4</td>
<td>Assignment #1, SUB</td>
</tr>
<tr>
<td>19 Sept.</td>
<td>Tests on One or Two Mean Vectors</td>
<td>Rencher, Chapters 5-6</td>
<td></td>
</tr>
<tr>
<td>26 Sept.</td>
<td>Multivariate Analysis of Variance (MANOVA)</td>
<td>Rencher, Chapter 8</td>
<td>Assignment #2</td>
</tr>
<tr>
<td>02 Oct.</td>
<td>Tests on Covariance Matrices: Discriminant Analysis</td>
<td>Rencher, Chapters 6-7</td>
<td>Assignment #3</td>
</tr>
<tr>
<td>09 Oct.</td>
<td>Multivariate Regression (with interactions)</td>
<td>Rencher, Chapter 10</td>
<td></td>
</tr>
<tr>
<td>16 Oct.</td>
<td>Canonical Correlation</td>
<td>Rencher, Chapter 11</td>
<td>Assignment #4</td>
</tr>
<tr>
<td>23 Oct.</td>
<td>Principal Components Analysis</td>
<td>Rencher, Chapter 12</td>
<td></td>
</tr>
<tr>
<td>30 Oct.</td>
<td>Exploratory Factor Analysis</td>
<td>Rencher, Chapter 13</td>
<td>Assignment #5</td>
</tr>
<tr>
<td>06 Nov.</td>
<td>Confirmatory Factor Analysis</td>
<td>Rencher, Chapter 14</td>
<td></td>
</tr>
<tr>
<td>13 Nov.</td>
<td>Overload</td>
<td>TSA</td>
<td>Assignment #6, SUB</td>
</tr>
<tr>
<td>13 Nov.</td>
<td>Sub Analysis/Structural Equation Modeling</td>
<td>Student Seminars</td>
<td></td>
</tr>
<tr>
<td>02 Nov.</td>
<td>THANKSGIVING NO CLASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 Nov.</td>
<td>Latent Growth Curve Analysis, Logistic Regression, Multilevel Modeling</td>
<td>Student Seminars</td>
<td>Assignment #7, SUB</td>
</tr>
<tr>
<td>10 Dec.</td>
<td>FINAL EXAM (SUB)</td>
<td></td>
<td>10:10 – 12:10</td>
</tr>
</tbody>
</table>