Impact of a Flame Resistant Synthetic Material on Heat Stress Factors

Matthew Dorton
Joseph Domitrovich
Brent Ruby
Charles Dumke

Let us know how access to this document benefits you.
Follow this and additional works at: https://scholarworks.umt.edu/gsrc
IMPACT OF A FLAME RESISTANT SYNTHETIC MATERIAL BASE LAYER ON HEAT STRESS FACTORS

M.C. Dorton, J. Domitrovich, B.C. Ruby FACSM, C.L. Dumke FACSM.

University of Montana, Department of Health and Human Performance, Montana Center for Work Physiology and Exercise Metabolism, Missoula, MT

Protective clothing worn by wildland firefighters (WLFF) may increase physiological strain and heat stress factors due to increased insulation and decreased ventilation. PURPOSE: To examine the effects of a flame resistant synthetic material base layer on heat stress factors. METHODS: Ten recreationally active males (25 ± 6.1 yrs, 80.9 ± 8.4 kg, 11.1 ± 5.3% fat, 4.4 ± 0.6 L·min⁻¹ VO₂ max) completed two trials of intermittent (50 min walking, 10 min sitting) treadmill walking (2.5mph, 4% grade) over 3 hours in a climate chamber (35°C, 30% RH). Participants wore standard WLFF Nomex green pants, yellow shirt with either a 100% cotton base layer (C) or a flame resistant synthetic material base layer (S), while carrying a 35lb pack, hard hat, and gloves. Exercise was followed by a 30 minute rest period without pack, hard hat, gloves, or Nomex yellow shirt. Core (T₉) and skin (Tₛₐ) temperature were measured continuously throughout the trial. Skin blood flow (SBF) and skin temperature (DTₛₐ) was recorded via laser doppler for two minutes prior to walking, five minutes during each break, and three, five minute periods during the 30 minutes following exercise. Physiological strain index (PSI) was calculated. Water was scripted at 8 ml/kg/hr. Repeated measures ANOVAs were performed using SPSS 22.0. RESULTS: Significant main effects for time were found on T₉ (p≤0.001) and Tₛₐ (p=0.003). No significant trialXtime interactions were found in T₉ (p=0.077) and Tₛₐ (p=0.086). SBF showed significant main effects for time (p=0.001) and a trialXtime interaction (p=0.001). Significant main effects for time were found on DTₛₐ (p=0.001). Comparisons for SBF and DTₛₐ were made between peaks, nadirs, and the three post-exercise periods for C and S. Significant main effects for time were found on SBF peaks (p=0.001), nadirs (p=0.028), and posts (p=0.001). Significant main effects for time were found on DTₛₐ peaks (p=0.019) and posts (p=0.001). No significant trialXtime interactions were found between C and S. Significant main effects for time and trial were found on PSI (p≤0.001 and p=0.04, respectively). CONCLUSION: These data indicate that a flame resistant synthetic base layer may elevate SBF and possibly jeopardize indices of heat stress.