Nucleotide Sequence and Comparison of the 5S Ribosomal RNA Genes of Rochalimaea henselae, R-quintana and Brucella abortus

Michael F. Minnick
University of Montana - Missoula, mike.minnick@mso.umt.edu

Gary L. Stiegler

Let us know how access to this document benefits you.

Follow this and additional works at: https://scholarworks.umt.edu/biosci_pubs

Part of the Biology Commons

Recommended Citation
https://scholarworks.umt.edu/biosci_pubs/191

This Article is brought to you for free and open access by the Biological Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
Nucleotide sequence and comparison of the 5S ribosomal RNA genes of *Rochalimaea henselae*, *R.quintana* and *Brucella abortus*

Michael F. Minnick and Gary L. Stiegler

Division of Biological Sciences, The University of Montana, Missoula, MT 59812 and 1Pacific Northwest Laboratories, Richland, WA 99352, USA

Received March 29, 1993; Accepted April 5, 1993

GenBank accession nos L12402 – L12404 (incl.)

The 5S rRNA genes from three human pathogens within the α-2 subgroup of the *Proteobacteria* were characterized. The resulting 5S rRNA sequences were then used to corroborate phylogenetic relationships previously based upon 16S rRNA sequences (1,2). PCR amplification of the 5S rRNA genes from *Rochalimaea henselae* (bacillary angiomatosis), *R.quintana* (trench fever) and *Brucella abortus* (undulant fever) was accomplished by using 15mer primers based on the 5' (GACTTGGTGTTATG) and 3' (AGACCTGGCCAGCGAC) ends of the 5S rRNA gene from the closely-related pathogen, *Bartonella bacilliformis* (Oroya fever) (3). PCR amplification of purified DNA from the three bacteria and control DNA from *B. bacilliformis* produced ~120-bp DNA fragments. Nucleotide sequences of the 5S rRNA genes were subsequently determined by double-stranded sequencing of the PCR products (4) using the 15mer primers employed in PCR amplification. Sequences within the 15-nucleotide primer regions were verified by directly sequencing bacterial chromosomal DNA by Taq dideoxy-terminator cycled sequencing (Applied Biosystems). Results of the sequencing are shown in Figure 1 with an alignment of the three 5S rRNA genes, the 5S rRNA gene of *B. bacilliformis* (3) and the 5S rRNA of *Vibrio cyclotis* (5). The overall sequence identity of the rRNA genes of *R. henselae* and *R.quintana* are 98.3% identical; in good agreement with 16S rRNA sequence identity of 99.1% (2). The *B. bacilliformis* 5S rRNA gene (3) is approximately 92% identical to the two *Rochalimaea* spp., in excellent agreement with the 91.7% sequence identity obtained by sequence comparison of *R.quintana* and *B. bacilliformis* 16S rRNA (1). *Brucella abortus* shows the least homology to other bacteria within the group at 86.6%, but has 95% sequence identity with the 5S rRNA of *V. cyclotis*, a bacterium which is not believed to be a true member of the *Vibionaceae* (5). A dendogram showing the predicted phylogenetic relationships between the bacteria is given in Figure 2. These results are very similar to the phylogeny based upon 16S rRNA homology (1,2). Double-stranded DNA sequence can be obtained rapidly from amplified 5S rRNA genes due to their small size relative to 16S rRNA (~120 bp vs. ~1425 nucleotides, respectively). This feature, plus the production of phylogenetic results which are similar to those obtained from 16S rRNA homology, make the 5S rRNA genes an attractive alternative for determining phylogenetic relationships among the α-group of *Proteobacteria*.

ACKNOWLEDGEMENTS

We express our gratitude to Joan Strange for excellent technical assistance (U of M Murdoch Molecular Biology Facility), to L.Mallavia for *R.quintana* DNA and to R.Regnerly for the *R.henselae* strain. This work was supported by funds from the U of M URCAC and MONTS program (#RII 8912934).

REFERENCES


![Figure 1](image1)

Figure 1. Nucleotide sequence and alignment of the 5S rRNA genes of *Rochalimaea henselae* (Rh), *R.quintana* (Rq), *Brucella abortus* (Ba), *Bartonella bacilliformis* (Bb) (3) and the 5S rRNA of *Vibrio cyclotis* (Vc) (5). Only bases which differ from the *R.henselae* (Rh) 5S rRNA gene sequence are indicated.

![Figure 2](image2)

Figure 2. Dendogram of the bacterial species based on 5S rRNA genes or 5S rRNA sequence. Abbreviations correspond to those of Figure 1.