Better than Before and Better Together

Ashley M. Alexander
The University Of Montana, ashley.alexander@umontana.edu

Let us know how access to this document benefits you.

Follow this and additional works at: https://scholarworks.umt.edu/umcur

https://scholarworks.umt.edu/umcur/2016/amposters/12

This Poster is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in University of Montana Conference on Undergraduate Research (UMCUR) by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mail.lib.umt.edu.
Cooperation as a Function of Complexity

- Fitness is the capacity to survive and reproduce; fitness can be measured as the capacity of a variant type to displace another type in competition for available resources.
- Symbioses, such as mutualism, are pervasive features of the natural world, thus collaboration may be just as important as competition in driving biological innovation.
- Although collaborative interactions are pervasive in Nature, do they actually increase the fitness of collaborating partners?
- Are collaborative systems that are more complex, consisting of multiple variants, more productive than simpler systems consisting of one or few variants?

Previous Work Shows:

<table>
<thead>
<tr>
<th>Strains</th>
<th>Relevant characteristic</th>
<th>Growth rate for x μM</th>
<th>Glucose uptake (μM)</th>
<th>Steady state (胁迫)</th>
<th>Glycerol production (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA122</td>
<td>Derivative of RJ253, F. P. not wild type; used here to amplify his potential to grow.</td>
<td>0.46 ± 0.01</td>
<td>1.18 ± 0.08</td>
<td>1.06 ± 0.08</td>
<td>196 ± 20</td>
</tr>
<tr>
<td>CV101</td>
<td>Derivative of JA122 selected after 775 generations, tests small phenotype on Kenyon 12, Kanm.</td>
<td>0.40 ± 0.01</td>
<td>2.60 ± 0.18</td>
<td>3.07 ± 0.08</td>
<td>362 ± 17</td>
</tr>
<tr>
<td>CV116</td>
<td>Derivative of JA122 selected after 775 generations, tests large phenotype on Kanm.</td>
<td>0.30 ± 0.02</td>
<td>1.85 ± 0.06</td>
<td>0.68 ± 0.06</td>
<td>± 0</td>
</tr>
<tr>
<td>CV103</td>
<td>Derivative of JA122 selected after 775 generations, tests large phenotype on Kanm.</td>
<td>0.40 ± 0.01</td>
<td>1.81 ± 0.07</td>
<td>0.74 ± 0.06</td>
<td>40 ± 0</td>
</tr>
</tbody>
</table>

In 1987, Heffin et al. evolved in the laboratory a community of E. coli strains starting with a single common ancestor. The population was culled for 775 generations with glucose as a limiting resource.

Questions

- Are E. coli that evolved into a community more fit than their common ancestor, which was a single clone?
- Does collaboration among evolved E. coli boost fitness? If collaborating variants are more fit, are they also, as a group, more productive?

Results

Part 1: The Reconstruction

![Figure 1 A, B Reconstruction of the consortium with glucose scavenger, strain E3 (CV103) and either of two waste consuming clones E1 and E6 (CV101 & CV116).](image)

E3 is always most abundant; cross-feeding is inferred from the fact frequencies are constant after ~15 generations. When E strains are grown, individually or collectively, in the presence of A, their common ancestor, A is eliminated after ~20 generations.

Part 2: Fitness Comparison

![Figure 2 Differences in fitness between individuals and groups, relative to their common ancestor.](image)

Fitness coefficients were calculated as the slope of the linear regression (experiment reference), as a function of elapsed generations. Cell generations elapsed equals (time * dilution rate)/2.

Part 3: Productivity Comparison

![Figure 3 Yield differs among evolved strains, consortia and their common ancestor.](image)

Co-evolved consortia produce more cells, biomass, and total protein.

Methods

Label Bacteria with Green Fluorescent Protein

- One-On-One Competitions
- Teams of Two versus Ancestor
- Team of Three versus Ancestor
- Cell Counting with Flow Cytometry
- Quantify Biomass
- Quantify Protein Content

Results

![Figure 4 Insert Green Fluorescent Protein gene into the E. coli chromosome.](image)

![Figure 5 Plate GFP-labeled colonies and unlabeled colonies, archive labeled colonies in 20% glycerol at -40°C.](image)

![Figure 6 Culture E coli were competed in "chowestas" fed continuously with a simple medium of salts-glucose.](image)

![Figure 7 Competition. At 0 h GFP cells 1:1 ratio with unlabeled cells. At 48 h free, of green cells has increased, and at 72 h green cells have outcompeted unlabeled cells.](image)

![Figure 8 Strain frequency by flow cytometry.](image)

![Figure 9 Biomass 250 μl of culture was filtered, dried overnight at 65°C, then weighed to 1μg.](image)

![Figure 10 Total protein was quantified on cell extracts by standardizing with a protein-specific dye](image)

Conclusions

- Co-evolved communities can be reconstructed in lab.
- Evolved clones are all more fit than their common ancestor, but not more fit than each other.
- Community fitness is greater than individuals’ fitness, but fitness is not additive.
- Community fitness and productivity increases as a function of its genetic complexity.

Acknowledgements

DDY, AA and FR were funded by NNX12AB87G-EXO from NASA, AC and AR by University of Toronto Cancer Center.